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Abstract We investigate a phase-field model for homogeneous nucleation and critical nu-
cleus morphology in solids. We analyze the mathematical properties of a free energy func-
tional that includes the long-range, anisotropic elastic interactions. We describe the numer-
ical algorithms used to search for the saddle points of such a free energy functional based
on a minimax technique and the Fourier spectral implementation. It is demonstrated that the
phase-field model is mathematically well defined and is able to efficiently predict the critical
nucleus morphology in elastically anisotropic solids without making a priori assumptions.

Keywords Nucleation · Critical nuclei · Phase field simulation · Anisotropic elasticity ·
Solid state phase transformation

1 Introduction

Nucleation refers to a process that takes place when a material becomes metastable with
respect to its transformation to a new state (solid, liquid, and gas) or new crystal structure.
It is perhaps the most common physical phenomenon in nature. Predicting nucleation rate
and its dependence on composition/temperature is critical for controlling the microstructure
of a material and thus its properties.
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Recently, we proposed a phase-field model for predicting the nucleus morphology in
solids in the presence of interfacial energy anisotropy and anisotropic elastic interactions
[40]. Phase-field methods have been extensively applied to model microstructure evolution
for various materials processes including solidification, solid state phase transformations,
grain or phase coarsening, etc. [5]. They have also been used in fluid mechanics, biome-
chanics and other settings [1, 9]. The diffuse interface (phase field) approach is an attractive
and popular tool in materials science simulation and design since the evolution of different
microstructural features can be predicted by means of a single set of equations, and there
are no explicit boundary conditions specified at interfaces.

In this paper, we study the mathematical formulation of the diffuse-interface description
of a critical nucleus and the numerical algorithms obtaining the critical order parameter
profiles. In particular, we discuss the existence of saddle points, the minimax algorithm,
and the Fourier spectral approximations. We also present numerical examples in both two
and three dimensional spaces to illustrate the effectiveness of this computational modeling
approach.

2 Background

The classical nucleation theory was first developed in 1930s. It is still the most often used
theory in studying nucleation as of today. The earlier studies mostly considered phase
changes in fluids such as a liquid droplet in a vapor phase. It was then natural to adopt spher-
ical shapes for the critical nuclei. The thermodynamic properties of a nucleus are assumed to
be the same as in the corresponding bulk phase. The calculation of a critical spherical droplet
in a supersaturated exterior phase is then performed, with the size of a critical nucleus being
determined as a result of competition between the bulk free energy reduction and interfacial
energy increase. For instance, the free energy change accompanying the formation of a new
particle can be given by

�G = V �g + A · γ (1)

where V is volume of particle, A is surface area, �g is chemical free energy change per unit
volume, γ is the specific interfacial energy. For a spherical particle of radius r ,

�G = 4

3
πr3�g + 4πr2γ. (2)

The radius r∗ of the critical nucleus must then be such that

r∗ = − 2γ

�g
.

The critical free energy of formation of a critical nucleus is given by

�G∗ = 16πγ 3

3(�g)2
. (3)

The classical theories have been utilized to interpret kinetics of many phase transforma-
tions involving solids including solid to solid transformations, and have had some success
for providing good descriptions on the nucleation kinetics for some systems, despite the as-
sumption on the spherical critical nuclei shapes. On the other hand, nucleation in solids is
generally significantly more complicated than that in fluids. This can be understood from
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several aspects: first of all, due to the crystallographic nature of most solids, the interfacial
energy between a nucleus and the matrix is generally anisotropic, which thus leads to non-
spherical minimum surface shapes; meanwhile, there are typically mismatches between the
lattice parameters of a new phase and the corresponding parent, so an elastic energy is gen-
erated during the nucleation to accommodate such lattice mismatch between a nucleus and
the matrix. Since the elastic energy contribution depends on the morphology of a nucleus
and lattice mismatch between the nucleus and the matrix, a direct geometric construction
of the shape of a critical nucleus is thus very difficult. It is particularly challenging in cases
where both elastic energy and surface energy anisotropy exist.

When applying the classical nucleation theory to solid state transformations, the shape
of a nucleus is often given a priori [2], the elastic energy contribution to nucleation is incor-
porated as an extra nucleation barrier, i.e., the size of a nucleus is scaled by a factor related
to �fν + Ee , where �fν is the bulk driving force for nucleation and Ee is the elastic strain
energy contribution.

3 Diffuse Interface Model

The non-classical theory was pioneered by Cahn and Hilliard [4]. For subsequent studies,
generalization and application to nucleation in solids, we refer to the discussion in the works
of [6, 17, 20, 33, 35, 38]. It is mentioned in [20] that sharp-interface treatments are some-
times less effective than diffuse interface theories in comparing with experiment. It should
be pointed out that these existing diffuse interface theories for nucleation in solids have
largely ignored the anisotropic interfacial energy and anisotropic long-range elastic interac-
tions until recently [40].

We now describe the phase field diffuse-interface model considered in [40]. First, as an
illustration, only a structural transition is assumed with no compositional changes. We also
assume that the structural difference between the parent phase and the nucleating phase can
be sufficiently described by a single order parameter η. Extensions to more general cases
can also be considered in a similar fashion and will be pursued in the future.

At a given temperature, the free energy dependence on η is described by a double-well
potential

f (η) = 1

4
− η2

2
+ η4

4
− λh(η)

with local energy wells at η = ±1 respectively and h(η) = (3η − η3)/2 so that 2λ deter-
mines the well depth difference which gives the bulk free energy driving force for the phase
transformation from the η = −1 state to the η = 1 state. In Fig. 1, f is plotted for two values
of λ.

The total free energy of an inhomogeneous system described by a spatial distribution of
η is given by:

E =
∫

�

(
f (η) + 1

2
|M∇η|2

)
dx.

Here, the domain � = (−1,1)d is used with d being the space dimension and a periodic
boundary condition is used for the order parameter η. The period is taken to be large in
comparison to the size of the nucleus to avoid any possible boundary effect. M is the gra-
dient energy coefficient which is a constant diagonal tensor in � for isotropic interfacial
energy. For anisotropic interfacial energy, M may be made either directionally dependent or
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Fig. 1 Double well potentials with driving forces λ = 0.1, 0.3

dependent on the derivatives of η. To incorporate the effect of long-range elastic interactions
on the morphology of a critical nucleus, and thus the nucleation barrier, the computation of
the elastic energy Ee is needed. Assuming that the elastic modulus is anisotropic but homo-
geneous, the microscopic elasticity theory of Khachaturyan [26] is often used in phase field
simulations. For example, the elasticity effect is incorporated by expressing the elastic strain
energy as a function of field variables (see the discussion in, for example, [23, 28, 32, 36,
39], and an earlier work [12]). To be specific, the total energy is given by

Et =
∫

�

(
f (η) + 1

2
|M∇η|2

)
dx + Ee (4)

where Ee is the elastic energy defined as

Ee =
∫

�

edx; (5)

with the elastic energy density e calculated from:

e = 1

2
Cijklε

el
ij ε

el
kl .

The summation convention is used here. For a cubic material with its three independent
elastic constants c11, c12 and c44 in the Voigt’s notation, the elastic energy density takes on
the form [26]:

e = 1

2
c11((ε

el
11)

2 + (εel
22)

2 + (εel
33)

2) + c12(ε
el
11ε

el
22 + εel

11ε
el
33 + εel

22ε
el
33)

+ 2c44((ε
el
12)

2 + (εel
13)

2 + (εel
23)

2).

Here the elastic strain εel is the difference between the total strain ε and stress-free strain ε∗
since stress-free strain does not contribute to the total elastic energy, i.e.

εel
ij = εij − ε∗

ij ,

where the stress-free strain is

ε∗
ij = (ε0)ij (η − η0).
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Here, (ε0)ij is a constant tensor and η0 is the average order parameter value. The total strain
εij may be represented as the sum of homogeneous and heterogeneous strains:

εij = ε̄ij + δεij .

The homogeneous strain is defined in such a way so that
∫

�

δεij dx = 0.

The heterogeneous strain is related to the local displacement field {vk} by the usual elasticity
relation,

δεij = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
.

In the mechanical equilibrium, it satisfies the elasticity equation

∂σij

∂xj

= 0

with the stress components σij = cijklekl .
The elasticity equation with periodic boundary conditions can be solved in the Fourier

space which leads to a more explicit form of Ee . Through detailed derivations, it is shown
in [26] that, for the case of a simply connected coherent inclusion in an anisotropic solid
with cubic symmetry, if the phase transformation involves only one type of crystal lattice,
the elasticity energy contribution can be further simplified to

Ee = 1

2(2π)d

∫
�̂

dkB(n)|η̂(k) − η̂0(k)|2. (6)

Here, η̂(k) and η̂0(k) are the Fourier transform of η(x) and η0 respectively. The integration in
(6) is over the reciprocal space �̂ of the reciprocal lattice vector k, n = k/|k| = (n1, n2, n3)

is the normalized unit vector and in three dimensions, and the term B(n) is given by

B(n) = 3(c11 + 2c12)ε
2
0

− (c11 + 2c12)
2ε2

0(1 + 2ζ s(n) + 3ζ 2n2
1n

2
2n

2
3)

c11 + ζ(c11 + c12)s(n) + ζ 2(c11 + 2c12 + c44)n
2
1n

2
2n

2
3

(7)

where we employ the Voigt’s notation, and for the cubic materials, we let ζ =
(c11 − c12 − 2c44)/c44 be the elastic anisotropic factor, (ε0)ij = ε0δij with ε0 being the lat-
tice mismatch between the nucleating new cubic phase and the parent cubic phase, and
s(n) = n2

1n
2
2 + n2

1n
2
3 + n2

2n
2
3. We set in particular that n = 0 if k = 0.

Taking into account the long-range elastic interactions and surface energy anisotropy, the
increase in the total free energy arising from the order parameter fluctuation in an initially
homogeneous state with η0 is given by

�Etotal(η) =
∫

�

(
δf (η) + αx

2
η2

x + αy

2
η2

y

)
dx + βEe (8)

where δf (η) = f (η) − f (η0) and Ee is given by (6). Rather than varying the magnitudes of
lattice mismatch and elastic constants, a factor β is introduced to study the effect of relative
elastic energy contribution to chemical driving force on the critical nucleus morphology.
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4 Saddle Points

Since nucleation takes place by overcoming the minimum energy barrier, a critical nucleus
is defined as the spatial order parameter fluctuation which has the minimum free energy
increase among all fluctuations which lead to nucleation. Therefore, we may find the critical
nucleus by computing the saddle points of the energy functional of the order parameter η,
that has the highest energy in the minimum action path which is the path whose highest
energy is the lowest among all possible paths. This is consistent with the large derivation
theory which states that the most probable path (that minimizes the action [27]) passes
through the saddle point in the large time limit.

Let us first study some basic theories concerning the existence of saddle points. For sim-
plicity, we consider the case of isotropic surface energy only, that is, we take αx = αy . In this
case, for the convenience of mathematical analysis, a different scaling is often introduced so
that it is equivalent to consider the saddle points of the following functional:

Eε(η) =
∫

�

[
ε

2
|∇η|2 + 1

4ε
(η2 − 1)2 + λ

2
(3η − η3)

]
dx

+ β

2(2π)d

∫
�̂

dkB(n)|η̂(k) − η̂0(k)|2, (9)

with B(n) as given by (7). To be more precise, we consider the variation of the energy Eε in
the Hilbert space H 1

p(�) which is the standard H 1 Sobolev space of the periodic functions
defined on �.

For the parameter range of interest to us, we may assume that there are two positive
constants M1 and M2 such that

0 ≤ M1 ≤ B(n) ≤ 3(c11 + 2c12)ε
2
0 = M2

uniformly in the unit sphere.
In the literature, a popular approach to study the existence of saddle points within the

framework of calculus of variation is given by the mountain pass theorem, which often relies
on the so called minimax technique [34]. Another approach has been developed recently
in [25] to relate a saddle point of Eε with its �-limit functional. In all these works, a key
condition for the applicability is the Palais-Smale compactness condition:

Definition 1 (PS condition) Given a Hilbert space H , and a C1 functional E : H → R,
a sequence {uk}∞

1 in H is said to be a Palais-Smale sequence if

lim
k→∞

‖δE(uk)‖H−1 = 0 and {E(uk)}∞
1 is bounded. (10)

The functional F is said to satisfy the Palais-Smale condition if every Palais-Smale sequence
is precompact in H .

Here H−1 refers to the conventional dual space of H [13] and δE denotes the first varia-
tion of the energy E. We now state the result that verifies the PS condition for the functional
Eε given by (9).

Theorem 1 The functional Eε = Eε(η) given by (9) satisfies the Palais-Smale condition
in H 1

p(�).
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Proof We follow similar lines as in [25]. Suppose that {ηk} is a sequence satisfying the
conditions

sup
k

Eε(ηk) < ∞, lim
k→0

‖δEε(ηk)‖H−1 = 0.

Here, in the weak sense, the first energy variation is given by

δEε(η) = −ε�η + 1

ε
(η3 − η) + 3λ

2
(η2 − 1) + β

(2π)d

∫
�̂

B(n)(η̂(k) − η̂0(k))eikxdk.

By the energy bound, we get a uniform H 1 bound. Hence, there is a subsequence {kj } such
that

ηkj
⇀η in H 1

p(�) and ηkj
→ η in Lp(�), 1 ≤ p < 2d/(d − 2)

for some η ∈ H 1
p(�). By the assumption on B(n) and the Parseval identity, we easily see

that

lim
j→∞

∫
�̂

dkB(n)|η̂kj
(k) − η̂0(k)|2 =

∫
�̂

dkB(n)|η̂(k) − η̂0(k)|2.

By the conditions

〈δEε(ηk), ηk〉 → 0 and 〈δEε(ηk), η〉 → 0,

we then get

lim
j→∞

∫
�

|∇ηkj
|2d� = lim

j→∞

{∫
�

g(ηkj
)d� − β

ε(2π)d

∫
�̂

dkB(n)|η̂kj
(k) − η̂0(k)|2

}

=
∫

�

g(η)d� − β

ε(2π)d

∫
�̂

dkB(n)|η̂(k) − η̂0(k)|2

=
∫

�

|∇η|2d�

where g = g(η) denotes

g(η) = 1

ε2
(η4 − η2) + 3λ

2ε
(η3 − η).

The norm convergence with the weak convergence together means that the sequence is con-
vergent strongly in H 1, we thus have the PS condition satisfied. �

With the PS condition, one may apply the mountain pass type theorems to get the saddle
point of the energy [34]. For a given constant positive driving force, it can be seen that when
ε is suitably small, on the boundary of a small H 1 ball of the solution η0 = −1, the energy is
strictly larger than Eε(η0), moreover, for small ε, Eε at η = 1 is strictly less than the energy
Eε(η0). The mountain pass theorem can thus be applied [34] and there must be a saddle
connecting the path between η = η0 = −1 and η = 1 with the lowest energy barrier. Due to
the periodic boundary condition, it is possible to have a constant solution as the saddle point.
For small ε, the energy of such a trivial saddle is of O(ε−1), but one may easily construct a
path (for instance via tanh profiles [9]) which would have an energy barrier of O(1). Thus,
a non-trial saddle point exists.
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With the PS condition, one may also adopt similar techniques as that presented in [25]
to connect the saddle point of Eε with the saddle point of the �-limit as ε → 0. Let us
briefly recall the concept of �-convergence which is defined through two requirements:
given a Banach space U , a sequence of functionals, Eε : U → R, �-converges to a limiting
functional E0 as ε → 0 if for every u ∈ U one has

(i) whenever {uε} ⊂ U converges to u, lim infε→0 Eε(uε) ≥ E0(u), and
(ii) there exists a sequence {ũε} ⊂ U such that ũε converges to u and limε→0 Eε(ũε) =

E0(u).

The notion of �-convergence has proven to be a powerful tool to study the limit of min-
imizers of functional sequences Eε : U → R whose conventional limit is typically defined
on another Banach space V which has a weaker topology. For example, in [18], the �-
convergence of the minimizers for a free energy of the form (4), which includes both the
interfacial energy and the elastic misfit energy as that given in (5), has been studied. More
recently, �-convergence was also used to study the unstable saddle points of Ginzburg-
Landau like functionals in [25]. The latter naturally applies to the case we consider here.
The limiting functional is given as follows: for any v ∈ L1(�),

E0(v) =

⎧⎪⎪⎨
⎪⎪⎩

√
2

3

∫
�

|∇v|d� + ∫
�

λvd�

+ β

2(2π)d

∫
�̂

dkB(n)|v̂(k) − η̂0(k)|2, if v ∈ BV (�, {±1}),
∞, otherwise.

If the zero level set of v is rectifiable, then by the co-area formula, we may also use the
perimeter of the zero level set of v to replace the first integral in the functional. The second
term is obviously the bulk energy (volume) difference, and the third term is due to the elastic
contribution. We thus have the problem of finding the critical point of the functional E0 as
the �-limit. This is also commonly referred as the sharp interface limit of the phase field
model. Note that the form given here does not require the explicit use of the displacement
field and is simpler than the case considered in [18, 19].

The saddle point of E0 can also be computed via direct geometric modeling of the zero
level set of v, especially when a simply connected inclusion is of interest. A level set ap-
proach can also be developed similar to the case without the elastic energy. We however
elect to work with the original phase field energy, both for its rich physical origin and for fu-
ture coupling with the phase field simulation of the microstructure evolution [5]. The sharp
interface analysis is only given here to provide some theoretical understanding.

5 Numerical Algorithm

The saddle points to be computed are the solutions of the Euler-Lagrange equation
of �Etotal, or without loss of generality, that of Eε :

ε�η = η3 − η

ε
+ λ(η2 − 1) + β

(2π)d

∫
�̂

B(n)(η̂(k) − η̂0(k))eikxdk, (11)

in the domain �, subject to the periodic boundary condition.
The above equation can be viewed as a nonlocal perturbation to some well studied semi-

linear elliptic equation. Due to the periodic boundary condition, the non-locality can be
efficiently treated in the Fourier space, thus a Fourier spectral approximation is appropriate.
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For analysis of Fourier spectral approximations, we borrow the abstract framework de-
veloped in [3]. Taking for instance β as a parameter, we may view the computed Fourier
spectral solution as an approximation to an nonsingular branch of solutions of (11). We de-
note ηN(β) as the spectral solution with N Fourier modes in each variable directions. With
given ε, the phase field solutions are smooth (and analytic), and the nonlinear part as well
as the part involving the elastic contributions can be seen as a smooth compact perturbation
to the principal linear elliptic part, moreover, it is easy to see that except at certain critical
values of β , each solution branch is smooth in β and is isolated. We then have a general
error estimates for the Fourier spectral approximation:

Theorem 2 Let � be a compact interval in R, and let η = η(β) be a regular smooth solution
branch of (11). Then, for N sufficiently large, there exists a unique regular branch of ηN =
ηN(β) in a neighborhood of η = η(β) which is the approximate Fourier spectral solution of
(11) such that

lim
N→∞

‖η(β) − ηN(β)‖H 1
p(�) = 0.

Moreover, there exist positive constants c and σ , independent of N for N large, such that

‖η(β) − ηN(β)‖H 1
p(�) ≤ ce−σN . (12)

The proof of the above theorem can be constructed by coupling standard error estimates
for the linear elliptic equations with the general theory for nonlinear problems developed
in [3] (for applications to Ginzburg-Landau and phase field type of models that are similar
to ones considered here, one may also consult [8, 10]). We omit the details. The numerical
results reported later confirm such accuracy. Naturally, in many practical situations, one may
be interested in the dependence of the numerical accuracy with the model parameters such
as the interfacial width parameter ε. We refer to [15] for some studies on more precise esti-
mates with respect to the parameters. Computationally, it is found that the spectral scheme
performs well, even for very small ε, in comparing with low order finite difference or finite
element schemes, but a complete theoretical understanding is lacking at the moment. We
note that an adaptive spectral scheme has also been introduced recently [14] which can be
even more effective in resolving the thin interfacial domain.

In the numerical implementation, we do not solve the Euler-Lagrange equation directly
as the saddle points are unstable critical points of the energy. Instead, more sophisticated
numerical schemes are used to assure robustness and stability. There are various approaches
for the numerical solution of variational problems. While the most notable ones are for find-
ing minimizers, algorithms have also been developed to find minimum energy paths and to
search for saddle points [11, 16, 21, 22, 24, 30]. Here, we employ an algorithm which adopts
the minimax technique in the calculus of variation and optimization [31, 34] to find the sad-
dle points. A natural idea of the minimax algorithm is to first define a solution submanifold
M such that a local minimum point of �Etotal on M yields a saddle point on the full mani-
fold. Thus the problem becomes a minimization of �Etotal on the submanifold, and a saddle
point becomes stable on the submanifold M. Here, to ensure stability and monotonicity, a
steepest descent search is applied to approximate a local minimizer of �Etotal on submani-
fold M. Meanwhile, it is imperative that a return rule is used to prevent the descent search
from leaving the submanifold so as to guarantee the convergence of the algorithm.
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We follow the approach studied in [30] which is outlined below:

1. For k = 0, take a direction ν0 at a local minimum η0, define

M0 = {η0 + span{ν0}}
and search for a local maximum in M0, i.e., solve

wk = p(ν0) := arg max
u∈M0

�Etotal(u).

2. For k ≥ 0, compute the variational gradient gk of �Etotal at wk . If ‖gk‖ is less than some
tolerance, stop and output wk as a critical nucleus, else goto Step 3.
Given a step-size parameter b̂k , let

Mk+1
b = {νk + span{νk

b }}

with νk
b being the unit vector in the direction of νk − bgk and b in (0, b̂k), let

p(νk
b ) := arg max

u∈Mk+1
b

�Etotal(u).

Solve

b∗ := arg min
0<b<b̂k

�Etotal(p(νk
b )),

set νk+1 = νk
b∗ , wk+1=p(νk+1), update k by k + 1 and go to Step 2.

Here arg max and arg min denote respectively the variables at which the maximum and
minimum are attained. We refer to [30] for additional discussions and the convergence prop-
erties of the above algorithm.

For computational efficiency, we find that it works well to choose a tanh profile as the
initial search direction in the first step. The argument of the tanh function is a scaled distance
to some prescribed level set. In Step 2, the number b̂k is used to control the step-size of the
steepest descent search. This is important for the stability of the algorithm. Again, in each
of the steps, the Fourier spectral methods are used to solve the resulting PDEs or to compute
the energy variations, which allows very efficient computation via FFT. In addition, we note
that an inner product given by the integral of the product of the functions and their gradients
is adopted in Step 2 to define the variational gradient gk which is computed again via FFT
in the Fourier spectral discretization. This technique is similar to the use of a spectrally
equivalent preconditioner for the Hessian matrix in the numerical solution of minimization
problems.

6 Numerical Examples

We now present illustrative numerical examples that demonstrate the convergence of the
numerical scheme and examples that offer some hints on the critical nucleus morphologies
in cubically anisotropic systems. We take the energy scaled in the form (9) with η0 = −1,
c11 = 250, c12 = 150, c44 = 100 in all of our simulations. The other parameters may change
for different cases and they are specified later.

First, we conduct a series of numerical experiments in two dimensions to verify the spec-
tral accuracy of the computed solution. Since for most of the physically relevant cases, there
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Fig. 2 Plots of critical nuclei for ε = 1/32

Fig. 3 Logarithms of the H 1

errors for ε = 1/32 and 1/64

Table 1 Errors of Fourier
spectral solutions for fixed and
changing ε

Fourier modes ε = 1/32 ε = 1/64 ε = 2/N

N = 64 0.1926 0.4134 1.0509e−002

N = 128 0.0326 0.1075 2.8876e−003

N = 256 0.0017 0.0121 5.3744e−004

is no exact analytic solution available, we simply compare other numerical solutions with
that computed with the most number of Fourier modes (with the highest level of numer-
ical resolution). The comparison is done in two fronts, one with a fixed interfacial width
ε = 1/32, while the number of Fourier modes changes from 642 to 1282, 2562 and finally
5122. Here, we take λ = 6 and β = 0.3 and ε0 = 0.1.

The plots of the computed solutions are given respectively in Fig. 2 for ε = 1/32, cor-
responding to different grids. The non-convex shape of the critical nuclei is a signature
property due to the anisotropic elastic energy contribution [40].

We show in Table 1 the differences of the solutions with that on the 5122 grid, the errors
in the H 1 norm are given for the cases of ε = 1/32 and ε = 1/64 respectively. To better
examine the convergence rate as N → ∞ for a given ε, in Fig. 3, the logarithms of the H 1

error norms given in Table 1 are plotted with respect N , as stars and circles respectively cor-
responding to the different values of ε. The solid and dash lines are the respective best least
square fits of the data points using linear polynomials. The linear behavior in the logarithm
of the error provides a clear illustration of the spectral accuracy of the numerical solutions.

We also compute the solutions with a gradually decreasing ε with increasing number of
Fourier modes. Specifically, we take ε = 2/N where N is the number of Fourier modes used
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Fig. 4 Plots of critical nuclei for ε = 2/N with N = 64, 128, 256, 512

Fig. 5 3D critical nuclei for β = 0.2 (left), 0.4 (center) and 0.5 (right)

in each direction. The plots of the computed solutions are given in Fig. 4. We have found
that adequate resolutions are maintained for all values of ε, and, as expected, the interfacial
layers are getting sharper for smaller ε while the shapes remain nearly identical. Since in the
sharp interface limit, the solution is no longer in H 1, we measure the L2 difference in the
norms instead, and the results are given as errors in Table 1 also (the right-most column),
which illustrate the convergence of the solutions in such a limit. It remains as a challenge,
however, to quantify the optimal rate of convergence as N → ∞ when ε is taken to be
dependent of N [15].

Next, we present some three dimensional results to show the effect of different elastic
energy contributions in Fig. 5. Here, we take λ = 5 and ε0 = 0.1. It can be seen that the long-
range elastic interactions can dramatically change the critical nucleus morphology. A strong
elastic interaction may lead to critical nuclei with cuboidal, plate-like, needle-like, or even
non-convex shapes. We refer to similar findings and further discussions given in [40] for the
two dimensional case and more detailed analysis in three dimension [41].

7 Conclusion

Our recent works demonstrate that the morphology of a critical nucleus, or a critical fluc-
tuation in elastically anisotropic solids can be predicted by a combination of the diffuse-
interface approach and the minimax algorithm. The nucleation profile calculation is shown
to be mathematically well-posed with the diffuse-interface energy under consideration. Its
relation to sharp interface models is also revealed. Although there have been extensive theo-
retical studies of particle morphologies during growth or coarsening by minimizing the total
interfacial and elastic strain energy [7, 19, 29, 37], our method provides a new approach to
predict the morphologies of saddle-point critical nuclei without any a priori assumptions
on the shapes. The Fourier spectral discretization works efficiently in the implementation
of the minimax algorithm and provides an efficient and robust procedure for the critical nu-
clei calculation. Our calculations reveal the fascinating possibility of nuclei with non-convex
shapes and the formation of critical nuclei whose symmetry is lower than both the new phase
and the original parent matrix. It should be noted that the present work ignores the possible
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presence of defects such as dislocations and interfaces, i.e. heterogeneous nucleation. We
are presently studying generalizations to such cases as well as the effective coupling of the
critical profile calculation with the phase field simulation of microstructure evolutions.
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