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Abstract

A diffuse interface model combined with the minimax technique is implemented to predict the morphology of critical nuclei during
solid to solid phase transformations in both two and three dimensions. It takes into account the anisotropic interfacial energy as well as
the anisotropic long-range elastic interactions. It is demonstrated that the morphology of critical nuclei in cubically anisotropic solids can
be efficiently predicted by the computational model without a priori assumptions. A particular example of cubic to cubic transformation
within the homogeneous modulus approximation is considered. The effect of elastic energy contribution on the size and shape of a critical
nucleus is studied. It is shown that strong elastic energy interactions may lead to critical nuclei with a wide variety of shapes, including
plates, needles and cuboids with non-convex interfaces.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nucleation takes place when a material becomes ther-
modynamically metastable with respect to its transforma-
tion to a new state (solid, liquid and gas) or new crystal
structure. Some common nucleation phenomena include
formation of liquid droplets in a saturated vapor, appear-
ance of ordered domains in a disordered solid and nucle-
ation of tetragonal variants in a cubic matrix. Very often,
it is the nucleation process that dictates the microstructure
of a material.

In the classical theory of nucleation, the thermodynamic
properties of a nucleus are assumed to be uniform and the
same as in the corresponding bulk phase at equilibrium.
The interface between a nucleus and the parent phase is
considered to be sharp. The calculation of a critical nucleus
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size is then determined by the competition between the bulk
free energy reduction and the interfacial energy increase.
For instance, the total free energy change accompanying
the formation of a new particle is given by

DEtotal ¼ Volume � Dfm þArea � c
where Dfm is the bulk free energy driving force per unit vol-
ume and c is the interfacial energy per unit area between a
nucleus and the parent matrix. For a spherical particle of
radius r,

DEtotal ¼
4

3
pr3Dfm þ 4pr2c

with Dfm < 0 and c > 0 for a given phase transformation. A
nucleation event takes place by overcoming the minimum
energy barrier which leads to the critical size r� ¼ �
2c=Dfm of the nucleus obtained as a stationary point of
DEtotal. The associated critical free energy of the formation
of a critical nucleus, DE�total, is then given by DE�total ¼
16pc3=3ðDfmÞ2. Hence, the nucleation rate of the critical
nucleus per unit volume and unit time has the form
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I ¼ I0 exp½�DE�total=kBT� with the pre-exponential factor I0

calculated from the fundamental statistical approaches,
kB the Boltzmann’s constant and T the absolute
temperature.

While it is reasonable to assume spherical shapes for
nuclei during fluid to fluid phase transitions, the morphol-
ogy of critical nuclei in solids is expected to be strongly
influenced by anisotropic interfacial energy and anisotropic
elastic interactions. For example, nuclei for c0 precipitates
in Ni-alloys can be cuboidal or spherical depending the lat-
tice mismatch between the precipitate and matrix, h0 pre-
cipitates in A1–Cu are plates and the b0 precipitates in
Al–Mg–Si alloys are needle-shaped. The morphology of a
critical nucleus in the presence of interfacial energy anisot-
ropy alone can be deduced from the well-known Wulff con-
struction. However, predicting the shape of a critical
nucleus in the presence of both elastic energy and surface
energy anisotropy is particularly challenging since elastic
energy contribution depends on the morphology of a
nucleus and lattice mismatch between the nucleus and the
matrix. As a result, prior applications of the classical nucle-
ation theory to solid state transformations typically make
assumptions on the shape of a nucleus as an a priori, and
the elastic energy contribution to nucleation is included
as an extra barrier for nucleation, which is proportional
to volume, i.e. a� � �b�c=ðDfm þ EelÞ where a� represents
the critical size of a nucleus, Dfm is the bulk driving force
for nucleation, b� is a numerical factor depending on the
shape of the nucleus and Eel is the elastic strain energy con-
tribution to nucleation on the order of C�2

0 where C is the
elastic modulus and �0 is the lattice mismatch strain (trans-
formation strain, eigenstrain, stress-free strain) between the
nucleus and the matrix.

Another theoretical approach to nucleation is based on
the diffuse-interface description, also called the non-classi-
cal nucleation theory. In this approach, the properties
within a nucleus are inhomogeneous and the interface
between the nucleus and parent matrix is diffuse. Following
the seminal work of Cahn and Hilliard [1], the diffuse-inter-
face approach has been previously applied to nucleation in
solids. For example, Roitburd et al. [32] and Khachaturyan
et al. [20,22] described the nucleation of a new phase in
solid solutions and the general problem of extreme states
of solid solutions using the diffuse interface model. More
recently, Roy et al. [33] discussed the nucleation in the pres-
ence of a general long-range interaction. The focus is on the
critical order parameter profiles rather than predicting the
morphology of a nucleus. Wang and Khachaturyan [38]
examined the morphology of nuclei during a martensitic
transformation by switching on and off Langevin noise.
The particles obtained using this approach do not necessar-
ily correspond to saddle point configurations associated
with a critical nucleus. Poduri and Chen [29] studied the
nucleation of an ordered precipitate from a disordered
matrix by extending the diffuse-interface theory of Cahn
and Hilliard. Roitburd [31] and Chu et al. [5] were the first
to explore the nucleation of martensites using the non-clas-
sical approach. More recently, Gagne et al. [12] studied the
morphological evolution using Langevin simulations of
martensitic transformations in two dimensions. They con-
cluded that systems with long-range interactions quenched
into a metastable state near the pseudo-spinodal exhibit
nucleation that is qualitatively different from classical
nucleation near the coexistence curve. It is noted that all
existing diffuse interface theories for nucleation in solids
ignore the anisotropic interfacial energy and anisotropic
long-range elastic interactions. Within the phase-field
approach, nucleation during solidification has been studied
by Granasy et al. [14,15], and nucleation in solids in the
presence of elastic interactions by Hu and Chen [18], Zhang
et al. [41], Shen et al. [35] and Luo et al. [27]. Using a
microscopic model, LeGoues et al. [24] studied the influ-
ence of crystallography upon critical nucleus shapes and
kinetics of homogeneous nucleation by combining the dis-
crete lattice mean-field model with the microscopic theory
of strain energy. They considered both the influence of
anisotropic interfacial energy and anisotropic strain energy
on nucleation. However, they also assumed that the shapes
of the critical nuclei were either spherical or plates.

In a recent letter, we reported a computational approach
for predicting the morphology of a critical nucleus as an
extreme state in two dimensions by considering the pres-
ence of both interfacial energy anisotropy and elastic inter-
actions [39]. Some rigorous mathematical and numerical
analysis of the underlying framework are discussed in
Ref. [40]. The main purpose of this paper is to extend the
model and the numerical implementation to three dimen-
sions and discuss the influence of elastic energy on the mor-
phology of critical nucleus and shape bifurcations as strain
energy contribution increases. Though a particular exam-
ple of cubic to cubic transformation within the homoge-
neous modulus approximation is considered, our
approach can be generalized to other phase transforma-
tions. The key elements of such an approach involve the
diffuse-interface description of the nucleation problem [1]
and the minimax algorithm in the calculus of variation
[30]. A detailed description on the theoretical formulation
and numerical solutions is provided here. The effect of elas-
tic energy contribution on the size and shape of a critical
nucleus is studied. It is shown that strong elastic energy
interactions may lead to critical nuclei with a wide variety
of shapes, including plates, needles and cuboids with non-
convex interfaces. It should be emphasized that the prob-
lem under consideration is spatially inhomogeneous and
it is different from the saddle point search when a solid is
homogeneously transformed to a near phase throughout
the system, described by a homogeneous free energy as a
function of a homogeneous order parameter.

The rest of the paper is organized as follows. The diffuse
interface formulation of nucleation is presented in Section
2. The numerical algorithm for finding the critical nucleus
and its computer implementation are described in Section
3. The spectral accuracy of the numerically computed solu-
tions is validated in Section 4, along with a number of two-
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dimensional and three-dimensional numerical simulations
of the effect of elastic energy on nucleus morphology. The
most probable nucleus morphology is identified for a given
relative elastic energy and chemical driving force contribu-
tions. To offer additional understanding on the competition
of interfacial and elastic energies, we also examine the vari-
ous energy contributions analytically in a sharp interface
limit. Some final conclusions are given in Section 5.

2. Diffuse interface model

Following Ref. [39], we consider the case of a structural
transition with no compositional changes. It is further
assumed that the structural difference between the parent
phase and the nucleating phase can be sufficiently described
by a single order parameter g. Extensions to more general
cases, e.g. nucleation of a new phase in a solid solution, can
also be considered in a similar fashion, and will be pursued
in subsequent works.

For a given temperature, a double-well potential is cho-
sen to describe the free energy dependence on g : f ðgÞ ¼
ðg2 � 1Þ2=4� khðgÞ The two local energy wells are at g ¼
�1 and hðgÞ ¼ ð3g� g3Þ=2 respectively, so that 2k gives
the bulk driving force for the phase transformation from
the g ¼ �1 state to the g ¼ þ1 state (as illustrated in
Fig. 1).

The total free energy of an inhomogeneous system
described by a spatial distribution of g could be written as

E ¼
Z

X
ðf ðgÞ þ a

2
jrgj2Þdx

where a is the gradient energy coefficient in X for the isotro-
pic interfacial energy, and the domain X ¼ ð�1; 1Þd is used
with d ¼ 2 or 3 being the space dimension and a periodic
boundary condition is used for the order parameter g.

In the case that the interfacial energy is anisotropic, as is
usually the case for nucleation in solids, either the gradient
energy coefficient can be expressed as a second or higher
order derivative or, rather artificially but common in the
phase-field models, it is made directionally dependent. To
incorporate the effect of long-range elastic interactions on
the morphology of a critical nucleus and thus the nucle-
ation barrier, the computation of the elastic energy Eel

for an arbitrary microstructure is needed. Assuming that
Fig. 1. A double well potential with wells at g ¼ �1 and the driving force
being 2k.
the elastic modulus is anisotropic but homogeneous, the
microscopic elasticity theory of Khachaturyan [20] is often
used in phase field simulations. For example, the elasticity
effect is incorporated by expressing the elastic strain energy
as a function of field variables (see the discussions in e.g.
Refs. [4,37]). So the total energy is given by

Etotal ¼
Z

X
ðf ðgÞ þ 1

2
jargj2Þdxþ Eel ð1Þ

The elastic energy Eel is defined as

Eel ¼
1

2

Z
X

cijkleijekldx ð2Þ

where eij is the total strain and cijkl is the elastic stiffness
tensor for i; j; k; l ¼ 1; 2; 3. The summation convention
for the repeated indices is employed in the above equation
(2). For a cubic material with its three independent elastic
constants c11, c12 and c44 in the Voigt’s notation, the elastic
energy takes on the form [20]:

Eel ¼
Z

X

1

2
c11ðe2

11 þ e2
22 þ e2

33Þ þ c12ðe11e22 þ e11e33 þ e22e33Þ
�

þ 2c44ðe2
12 þ e2

13 þ e2
23Þ
�

dx

Here, the elastic strain eij is the difference between the total
strain eij and stress-free strain e0

ij since stress-free strain
does not contribute to the total elastic energy, i.e.

eij ¼ eij � e0
ij

where the stress-free strain is

e0
ij ¼ e�ijðg� g0Þ

Here, e�ij is a constant tensor and g0 is the average order
parameter of the system. The total strain eij may be repre-
sented as the sum of homogeneous and heterogeneous
strains:

eij ¼ �eij þ deij

The homogeneous strain is defined in such a way so thatZ
X

deijdx ¼ 0

The heterogeneous strain is related to the local displace-
ment field fukg by the usual elasticity relation,

deij ¼
1

2

oui

oxj
þ ouj

oxi

� �

It also satisfies the mechanical equilibrium condition given
by the equation

orij

oxj
¼ 0

with the stress components rij ¼ cijklekl

The elasticity equation with periodic boundary condi-
tions can be solved in the Fourier space which leads to a
more explicit form of Eel. If there is a simply connected
coherent inclusion in an anisotropic solid with cubic sym-
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metry and the phase transformation involves only one type
of crystal lattice, the elasticity energy contribution can be
further simplified (see the details in Ref. [20,21]):

Eel ¼
1

2ð2pÞd
Z

X̂
dkBðnÞjĝðkÞ � ĝ0ðkÞj2 ð3Þ

The integration in (3) is over the reciprocal space X̂ of the
reciprocal lattice vector k, n ¼ k=jkj ¼ ðn1; n2; n3Þ is the
normalized unit vector, and in three dimensions the term
BðnÞ is given by

BðnÞ ¼ 3ðc11 þ 2c12Þ�2
0

� ðc11 þ 2c12Þ2�2
0ð1þ 2fsðnÞ þ 3f2n2

1n2
2n2

3Þ
c11 þ fðc11 þ c12ÞsðnÞ þ f2ðc11 þ 2c12 þ c44Þn2

1n2
2n2

3

ð4Þ
where �0 is the lattice mismatch between the nucleating
new cubic phase and the parent cubic phase, f ¼
ðc11 � c12 � 2c44Þ=c44 is the elastic anisotropic factor, and
sðnÞ ¼ n2

1n2
2 þ n2

1n2
3 þ n2

2n2
3.

Incorporating the long-range elastic interactions and a
simple form of the surface energy anisotropy, the total free
energy increase arising from the order parameter fluctua-
tion in an initially homogeneous state with g0 is given by

DEtotal ¼
Z

X
df ðgÞ þ ax

2
g2

x þ
ay

2
g2

y

� �
dx

þ b

2ð2pÞd
Z

X̂
dkBðnÞjĝðkÞ � ĝ0ðkÞj2 ð5Þ

where df ðgÞ ¼ f ðgÞ � f ðg0Þ. Instead of changing the mag-
nitudes of lattice mismatch and elastic constants, a factor
b is introduced which effectively characterizes the relative
elastic energy contribution to the free energy driving force
in determining the critical nucleus morphology.

3. Numerical algorithm

As nucleation can be achieved by overcoming the mini-
mum energy barrier, a critical nucleus may be defined as
the spatial order parameter fluctuation which allows the
minimum free energy increase among all fluctuations which
lead to nucleation. Such a scenario is consistent with the
large derivation theory, which states that the most proba-
ble path (that minimizes the action [23]) passes through
the saddle point in the large time limit. In the study here,
our primary interest is to examine the effect of elastic
energy contributions on the critical nucleus profiles, which
can be found by computing the saddle point of the energy
functional, of the order parameter g, that has the highest
energy along the minimum action path.

By the usual calculus of variation, a saddle point is nec-
essarily a solution of the Euler–Lagrange equation corre-
sponding to the energy DEtotal:

ax
o2g
ox2
þay

o2g
oy2
¼ o

og
df ðgÞþ b

ð2pÞd
Z

X̂
BðnÞðĝðkÞ� ĝ0ðkÞÞeikxdk

ð6Þ
subject to the periodic boundary condition. Eq. (6) can be
viewed as a nonlocal perturbation, due to the elastic contri-
bution, to some well studied semi-linear elliptic equation
[30]. We recall that there have been various approaches pro-
posed for solving variational problems numerically which
include, in particular, methods for the computation of sad-
dle points and minimum energy paths [9,11,16,17,19,26].
While a couple of different approaches have been success-
fully implemented for the problem under consideration,
the results reported here are based on the use of the mini-
max technique that has been studied extensively in calculus
of variation and optimization [28,30]. Similar computa-
tional results have also been obtained via other approaches,
further validating the computational findings presented in
the later examples.

In less technical terms, the main idea of the minimax
algorithm is to first define a solution submanifold M such
that a local minimum point of DEtotal on M yields a saddle
point of the energy. Thus, the saddle point computation is
effectively transformed into a minimization of DEtotal on the
submanifold, and a saddle point becomes stable on the sub-
manifold M. To ensure stability and monotonicity in the
numerical procedure, a steepest descent search is applied
to approximate a local minimizer of DEtotal on the subman-
ifold M. Meanwhile, a return rule is used to prevent the
descent search from leaving the submanifold so as to guar-
antee the convergence of the algorithm. While different ver-
sions of the minimax algorithm can be considered, we
follow the approach studied by Li and Zhou [26], which
is outlined below:

1. For k ¼ 0, take a direction m0 at a local minimum g0,
define

M0 ¼ fg0 þ spanfm0gg
and search for a local maximum of DEtotal in M0, i.e.
solve

wk ¼ pðm0Þ :¼ arg max
u2M0

DEtotalðuÞ:

2. For k P 0, compute the variational gradient gk of DEtotal

at wk. If kgkk is less than some tolerance, stop and out-
put wk as a critical nucleus, else goto Step 3.

3. For Mkþ1
b ¼ fmk þ spanfmk

bgg with b in ð0; b̂kÞ and mk
b

being the unit vector in the direction of mk � bgk, solve

pðmk
bÞ :¼ arg max

u2Mkþ1
b

DEtotalðuÞ:

Then, solve

b� :¼ arg min
0<b<b̂k

DEtotalðpðmk
bÞÞ;

set mkþ1 ¼ mk
b� ;w

kþ1 ¼ pðmkþ1Þ, update k by k þ 1 and goto
step 2.

Earlier applications of the above algorithm often focus
on well-known semi-linear elliptic equations in the calculus
of variation. We refer to Ref. [26] for additional discussions
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and the convergence properties. We hereby give some com-
ments on the implementation of the above algorithm. First,
with the periodic boundary condition, the non-locality due
to the elastic contributions can be efficiently treated in the
Fourier space, thus a Fourier spectral method becomes
appropriate when the minimax algorithms are implemented
in the numerical computation [2,40]. Secondly, to enhance
the computational efficiency, we find that it works well to
choose a tanh profile as the initial search direction in the
first step. The argument of such a tanh function is a scaled
distance to some prescribed level set. Thirdly, in Step 2, the
number b̂k is used to control the step-size of the steepest
descent search, which is important for the stability of the
algorithm.

Furthermore, the Fourier spectral method has been pro-
ven to be highly accurate and efficient. More theoretical
analysis and numerical tests of the discretization can be
found in [40]. Moreover, in the second step, in order to
accelerate the convergence, we adopt the so-called H 1 inner
product for the definition of the variational gradient gk.
Such an inner product of any two functions is given by
the integral of the sum of their product and the product
of their gradients. This effectively defines the variational
gradient of the energy functional in the so-called H�1 sense
which is a dual space of H 1 and is often used in energy min-
imizations [7,8,36]. In our case, the computation of the var-
iational gradient is particularly convenient as it can be
computed again via FFT in the Fourier spectral
discretization.

In addition, we also note that, depending on the choice
of the initial profiles, several different saddle points may be
found. As is often the case for solving nonlinear equations,
we take a parameter continuation approach (with respect
to the parameter b, in particular) to compute the various
Fig. 2. Plots of the order parameter profiles corresponding to the two-dim
b ¼ 0:16; 0:63, and 0.78, respectively.

Fig. 3. Plots of the order parameter profiles corresponding to two-dimensiona
and 0.15, respectively.
solution branches for the saddle points. The critical nuclei
may be identified, for a particular parameter value, by
comparing the energy of the saddle points on the different
branches. While it may not be possible to exhaustively
search for all possible saddle points, efforts are made to
use many different initial profiles to ensure that those with
lower energy values are successfully found in the numerical
computation.

4. Computer simulations

A number of computer simulations are carried out in
order to make predictions on the critical nucleus morphol-
ogies based on the developed model and the numerical
algorithm. Here, results of both two-dimensional and
three-dimensional simulations are reported for the particu-
lar example of of cubic to cubic transformation within the
homogeneous modulus approximation.

For the case of the interfacial energy anisotropy, we find
that the predicted critical profile displays the ellipsoidal
direction-dependence as one would expect from the interfa-
cial energy anisotropy (see the details in [39]). To examine
the effect of the elastic contributions, we plot the predicted
critical profiles in the presence of the long-range elastic
interactions in Fig. 2. The parameter values used in the
simulations are given by g0 ¼ �1, ax ¼ ay ¼ 2:44� 10�4;
k ¼ 0:0469 and c11 ¼ 250, c12 ¼ 150, c44 ¼ 100, �0 ¼ 0:01.
The critical order parameter profiles are plotted for b ¼
0:16; 0:63) and 0.78 respectively. As shown in Fig. 2,
long-range elastic interactions can dramatically change
the critical nucleus morphology. A strong elastic interac-
tion may lead to critical nuclei with cuboidal, plate-like,
or even possibly of non-convex shapes, which are sig-
nature properties due to the anisotropic elastic energy
ensional critical nuclei shapes in a cubically anisotropic system with

l critical nuclei shapes with the diffuse interface width taken to be 0:06; 0:1
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contribution. Similar findings and more discussions on the
two-dimensional computation are given in Ref. [39]. Fur-
thermore, some evidence on the convergence and spectral
accuracy of the numerical solution could be found in
Ref. [40].

To see the effect of the diffuse interfacial width, in Fig. 3
we take c11 ¼ 250 and c12 ¼ c44 ¼ 50, and plot, respectively
the critical nucleus profiles computed with different values
of interfacial width corresponding to 0.06 and 0:1� 0:15. It
can be seen that the interfaces diffuse more with larger
interfacial width. Due to the elastic interactions, the shapes
of the critical nuclei are also no longer completely circular.

Finally, we present some simulations of the three-dimen-
sional critical nuclei and examine the effect of relative elas-
tic energy contribution. The simulation results were
obtained on a 643 three-dimensional computational grid.
The Figs. 4 and 5 contain computed isosurface plots of sad-
dle point profiles corresponding to different elastic energy
contributions. In Fig. 4, we take c11 ¼ 250; c12 ¼ 150;
c44 ¼ 100; �0 ¼ 0:01; g0 ¼ �1; ax ¼ ay ¼ 9:7656� 10�4 and
k ¼ 0:1563. In Fig. 5, the same parameter values are used
except for k. In this case, k ¼ 0:3125 is used to avoid mak-
ing the size of the critical nucleus too large to fit in the
domain X.

Similar to the previous findings based on the two-dimen-
sional computational results, the critical nuclei could be
cuboidal, plate-like, and non-convex shapes. In addition,
we find that the long-range elastic interaction may also lead
Fig. 4. Isosurface plots of the order parameter profiles corresponding to th

Fig. 5. Isosurface plots of the order parameter profiles corresponding to three
shapes for b ¼ 0:31; 0:94, and 1.56, respectively.
to critical nuclei with needle shapes. To describe the three-
dimensional most probable nucleus morphology for a given
relative elastic energy and given chemical driving force con-
tributions, we plot in Fig. 6 (right) the formation energy of
the saddle point profiles for different values of b with the
same parameters as in Fig. 5. The circles, triangles and dia-
monds are data points based on the computed critical order
parameter profiles, while the solid and dash curves are the
least square fits of these data points by cubic polynomials.
For small b, the critical nuclei with lower energy possess
the symmetry of a cubic crystal, i.e. they are either nearly
spherical or take on shapes like a cube with rounded cor-
ners. As b increases to above 0.94, the nucleus becomes
non-convex. For even larger b (above 1.4), while one saddle
point curve maintains the cubic symmetry, there is a second
curve of saddle points with lower energy values correspond-
ing to nuclei having lower symmetry groups. Continuing
the latter curve for smaller b below the intersection point
shows that it leads to saddle points of higher energy than
that for the non-convex, cube-like and nearly circular
nuclei. For some intermediate values of b, we again con-
firm, through our three-dimensional simulation, the sur-
prising result of critical nuclei with non-convex surfaces
being the most probable morphology as previously
observed in two dimensions [39]. It should be noted that this
conclusion is reached by ignoring the possible presence of
defects such as dislocations and interfaces, i.e. heteroge-
neous nucleation.
e three-dimensional saddle point for b ¼ 0; 0:63, and 1.25, respectively.

-dimensional saddle points of the plate (top row) and needle (bottom row)



Fig. 6. Plots of the three-dimensional critical nucleation energy with respect to the changing driving force at b ¼ 1:25. (left) and the changing elastic energy
contribution (right) at k ¼ 0:3125. The circles, triangles and diamonds represent data points based on the computed critical order parameter profiles, while
the solid and dashed curves are the least-squares fits.

Fig. 7. Surface plots of the elastic energy (left) and the surface energy (right) as a function of the length and width associated with for cuboidal shapes with
the unit volume.
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Fig. 6 (left) plots the critical free energy of formation as
a function of bulk chemical driving forces k with a fixed
b ¼ 1:25. The blue circles represent the data points for
the computed non-convex-shape critical nuclei, and the
red dash curve is a least-squares fit by an exponential func-
tion. As expected, with the increase in the driving force, the
size of critical nuclei (of cubic symmetry) is reduced and the
critical free energy decreases. This dependence is similar to
that predicted from the classical nucleation theory for
spherical particles.

The profiles computed are verified to indeed besaddle
points, as discussed in Ref. [39]. Thus, we observe that,
with a stronger elastic energy contribution, the formation
energy for a critical nucleus with a lower symmetry is lower
than that with cubic symmetry but with non-convex inter-
faces. Meanwhile, we notice that, in the example computed
here, the critical nucleation energy of the needle-shape
nucleus is always higher than that of plate-shape nuclei cor-
responding to the same parameters. To gain a better under-
standing on the competition of the elastic and interfacial
energies, we consider the three-dimensional analog of the
discussions for the two-dimensional case given in Ref.
[39] and compare the energies in Fig. 7 for cuboid nuclei
of dimensions a; b and 1=ðabÞ with changing aspect ratios.
To make the calculation analytically tractable, we carry out
the calculation of the various energies, albeit in the sharp
interface limit of the diffuse interface model. That is, we
let g be a Heaviside function with �1 inside and outside
the cuboid with its Fourier coefficients given by

ĝðkÞ ¼ sinðpkxaÞ sinðpkybÞ sinðpky=ðabÞÞ
p3kxkykz

Substituting it into Eq. (5), we can get an estimation of the
elastic energy in Fig. 7 (right). The sharp surface energy,
meanwhile, is proportional to 2ðabþ 1=aþ 1=bÞ in Fig. 7
(left). These calculations indicate how the different energies
are affected by the aspect ratio in the sharp interface limit
and we may expect similar effects remain in the diffuse
interface formulation. It is clear that the surface energy is
the smallest for a ¼ b ¼ 1 (thus preferring the cubic sym-



Fig. 8. Plots of the surface and elastic energies (top left) and the total energy with the coefficient h ¼ 0:5, 1 and 2 respectively as a function of a for
cuboidal shapes of size a� a� 1=a.
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metry), while the elastic energy is lower with high aspect ra-
tios corresponding to either plate or needle shapes.

The three-dimensional geometry leads to two possible
configurations with lower symmetry. To see which lower
symmetry is more probable, we further examine the surface
energy and the elastic energy for some artificially con-
structed plate-like and needle-like shapes. We take the
cuboid nuclei of dimension a; a and 1=a2 and consider local
minimizers over this special class of possible shapes, with
a > 1 being close to a plate-like shape and a < 1 resembling
to a needle-like shape. We calculate the surface and elastic
energies and choose a linear combination of two energies
via a factor h as the total energy Etotal ¼ Esurface þ h � Eel.
In Fig. 8, the surface, elastic and total energies are plotted
with different values of h. We notice that, as h is small, the
total energy has a minimizer around a ¼ 1, so the cubic
symmetry is preferred. As h increases to above 1, the total
energy has two local minimizers at a < 1 and a > 1. The
minimum energy at a > 1 is lower than that at a < 1, which
means the plate-shaped nuclei are more probable than the
needle-shaped nuclei. Although this calculation is for the
sharp interface approximation of the a priori given shapes,
it does offer a hint on the relation between needle shapes
and plate shapes due to the competition between the inter-
facial and elastic energies. The diffuse-interface model cap-
tures this competition and effectively distinguishes the
parameter ranges where one energy dominates the other,
so that critical nuclei with the particular lower symmetry
are identified as the most probable profiles for larger elastic
energy contributions.

5. Conclusion

In this paper, a recently proposed diffuse interface
approach for the study of critical nuclei morphologies in
elastically anisotropic solids is discussed. The model and
numerical implementation are extended to the three-dimen-
sional cases and the influence of elastic energy on the mor-
phology of critical nucleus and shape bifurcations is
demonstrated as the strain energy contribution increases.
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Expanded discussions are provided on the background,
models and algorithms, numerical convergence tests and
numerical examples, along with sharp interface compari-
sons of the various energy contributions. Through the dif-
fuse interface calculations, some fascinating observations
are illustrated in three dimensions on the presence of nuclei
with non-convex shapes, and the formation of critical
nuclei whose symmetry is lower than both the new phase
and the original parent matrix. Additional insights into
these numerically observed phenomena are offered via
some simple analytical calculations in the sharp interface
limit. Although there have been extensive theoretical stud-
ies of particle morphologies during growth or coarsening
by minimizing the total interfacial and elastic strain energy
[3,6,10,13,25,34,37], our method provides a new approach
for the prediction of the morphologies of saddle-point crit-
ical nuclei without any a priori assumptions on the shapes.
This approach can also be applied to nucleation of new
phase particles in solid solutions, non-cubic systems, as
well as to systems with defects such as dislocations and
interfaces, i.e. heterogeneous nucleation.
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