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Kinetics of ordering and spinodal decomposition in the pair approximation
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The kinetics of atomic ordering and phase separation in inhomogeneous systems were investigated employ-
ing microscopic master equations in the pair approximation. For a homogeneous system at completely ther-
modynamic equilibrium, the kinetic equations produce the same equilibrium states as the cluster variation
method. We studied the kinetics of both short- and long-range order and spinodal decomposition kinetics, as
well as the morphological pattern formation and evolution. It is shown that the development of long-range
order and growth of concentration wave amplitudes are significantly delayed due to the decreases in driving
forces as a result of short-range order relaxation in the pair approximation as compared to that obtained from
the point approximation with the same initial condition. It is demonstrated that the kinetics obtained by
assuming the pair distribution functions always at equilibrium is found to be a good approximation for the pair
approximation. The effect of bond energies on the ordering kinetics will be discussed.
[S0163-182698)08033-3

INTRODUCTION ics of ordering and spinodal decomposition in one-
dimensional inhomogeneous systems using the microscopic
Recently, the continuum Cahn-Hilliard and Allen-Cahn master equations with the nearest-neighbor pair
equations? and their microscopic counterparts, the approximatior?> We applied the microscopic master equa-
Khachaturyan microscopic diffusion equaticheave been tions to ordering and phase separation processes in two-
extensively employed to study the kinetics of atomic order-dimensional inhomogeneous systems with or without sur-
ing, compositional phase separation, and particularly, dofaces using a second-neighbor interaction model in both
main coarsenind-® They have been very successful in pre-point and pair approximatiorfé-2” More recently, similar
dicting the sequence of phase transformations as well as thficroscopic kinetic master equations based on the single-site
kinetics of domain coarsening. All these equations are baseghproximation were applied to ordering and phase separation
on a free-energy functional that depends on a local ordeginetics in two-dimensional inhomogeneous alloys by Vaks,
parameter or the local composition in the continuum modeggjgen, and Dobretsd%3°and Plapp and Gouyét:*2
or thg point probabilities in the microscopic model. They It is well known that the pair approximation yields more
describe the rate change of order parameters or occupatioRycyrate results than the point approximation for the equilib-
probabilities with respect to time dimearly proportional to fium thermodynamic properties for a two-dimensional

the thermodynamic driving force. Therefore, in principle, thesquare lattice, as well as a three-dimensional bcc lattice. The

quantitative descrlpthn of Kinetics by thesg.mpdels. IS Onlymain purpose of this paper is to examine the differences in
valid when a system is not too far from equilibrium, i.e., the

driving force for a given diffusional process is small, .g. the kinetics of ordering and phase separation obtained from a
during domain coarsening ' "point approximation and that from a pair approximation with
In other types of kinetic models including the micro- the same set of interaction parameters. In particular, we will

scopic master equatioh2® and the path probability method SNOW that the incubation time for ordering and spinodal de-
(PPM) (Refs. 16—22 free-energy functionals do not explic- comp_osmon is S|gn|f|can_tly Ia_\rger in the pair approximation
itly enter into the kinetic equations of motion. In principle, than in the point approximation. However, we also showed
high-order atomic correlations such as pair and tetrahedrdhat, although in the pair approximation the kinetics of long-
correlations can be taken into account. The rate of change é¢finge order is coupled with that of short-range order relax-
an order parameter is highly nonlinear with respect to theation, it can be very well approximated by assuming that
thermodynamic driving force, so they are valid for systemsshort-range order is instantaneously established, i.e., the
with a high degree of nonequilibrium. The dependency ofshort-range order is slaved by the long-range order.
atomic diffusion or exchange on the local atomic configura-
tion is automatically considered. However, essentially all
early applications of PPM and microscopic master equations THE KINETIC MODEL
assumed transitional symmetry and were concerned with ho- ) _ _ o
mogeneous systems. They were almost exclusively devoted FOr anA-B binary alloy in the pair approximation, the
to order-disorder transformations in homogeneous systenf§ructural state at a given temperature is described by point
as is necessitated in that context. and pair distribution functions denoted &,(r) and
Very recently, there have been a number of application®«, «,(f1,12) Wherea andr represent the type of atom and
of the microscopic master equation approach to inhomogdattice position’'?* respectively. These distribution functions
neous systems. For example, van Baal investigated the kinesatisfy the following normalization conditions:
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Therefore, they are not independent. Among them, we caneighbor siteg+ § of r. In Egs.(2) and (3), P

choose an independent set, eR(r) andPaa(rq,rp). All

other point and pair variables may be obtained from thisy, a,, .

independent set according to the normalization condition
Away from equilibrium, all distribution functions will

change with time as the atomic diffusion takes place in atomic specie¥X,, .
system. Although both vacancy and direct exchange mechatom) of the set{x} at the neighboring sites,, . .

nisms can be treated in this formulatitit®we shall assume
a direct exchange mechanism in this work for simplicity.
Let us consider a pair of exchange sites ahd a nearest-
neighbor siter + 8, and a sefx} of nearby influence sites
that can affect the exchange reaction. If we haveAaiom
atr, aB atom atr + 8, and a set of atomf¢} at{x}, we use
Rag({x}) to represent the rate at which theB pair ex-

changes under the influence of the set of neighboring atoms

{x}. Similarly, Rga({x}) is the rate at which 8A pair will
exchange under the same environment wh8matom is atr,
and anA atom is atr + 8. Then the rates of change Bf(r)
andPaa(rq,r,) are given by

dPa(r)
dt

225 % Peapg(r.r + 3,{x})Rga({X})

B

% Pagpg(r.r + 8.{x)Rag({x}), (2)
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dPaa(r1,r2)
dt

= > 2PABA{X}(rlrrZar2+5’{X})RBA({X})

0#r1—ry {x}

+ > ZPBAA{X}(rler’rl+51{X})RBA({X})

0Frp—rq {x}

- > 2PAAB{X}(rlvr27r2+51{X})RAB({X})

6#r1—ry {x}

- > zPAAB{X}(rlrrZar1+5!{X})RAB({X})1
d#rp—r1 {x}
€)

where 3 s denotes the summation over all the nearest-

a0y, ..., an
(rq,ro,...,r,) represents the joint probability of
.., OCccupyingrq,ro, . .. I, simultaneously. For
example,Pag(r,r+46,{x}) is the probability of simulta-
neously finding arA atom atr, a B atom atr+ §, and the

.., (in this case either aA atom or aB

., in the
site set{x}.

In order to carry out the summations in the right-hand side
of Egs.(2) and(3), we need to express the joint probability
distributions,P g (r,r + 6,{x}), etc., in terms of indepen-
dent point and pair distribution functions. For this purpose,
we invoke the superposition approximation. In the pair ap-
proximation this takes the form

Pxixj(xi Xj)
P (X)) Py ()
4
In this expression the sefs’} and {x'} are any sets of

atomic sites and specié¢scluding the “center” atomy but
in the approximation used her‘éxixj(xi ,Xj) is only nonzero

when (x;—Xx;) is a nearest- or next-nearest neighbor lattice
vector.

For example, in the first- and second-neighbor pair ap-
proximation of a square lattice, if one fixes the atom types
X1, ..., Xq0 at the sitesx,, ... Xi0 shown in Fig. 1, and
computes the probability of aA-B pair atr andr + &, then
Eq. (4) yields

11

X xje{x'}i<j

Pory{x' D =TI Py(x)

xje{x"}

Pasp (1,1 +8,{x}) = Pag(r,r + 8) Py a(X1, 1) Pax, (1 X3) Pex, (I + 8,X4) P (1 + 8,Xg)

X Pyga(Xg,l + 8)Px a(Xo  F)Pax, (I, X2) Pax, (1 X4) Py, (T + 6,X3) Py (T + 6,X5)

X Py g(X7,r + 8) Py a(Xg, 1) Px p(Xg,r + 6) Py, a(X10,1) / [PA(N][Pg(r+8)]".

In Eq. (5), the correlations for the pairs that are not directly
connected to the interchanging pair have been neglected as a

further approximation.

(5

U+ 1/2AE
—] , (6)

Rag({xp)=v eXp{ T keT

There are two ways to calculate the rate constants. On&here U is the average activation energy for &B ex-

was given by Vineyard,

change, and is the vibrational frequency associated with
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Potential Energy

FIG. 1. Schematic illustration of the exchanging p&rB) and
the influencing lattice setdl—10 around the pair. AB BA

the AB exchangeAE depends on the types of atoms occu-
pying the influence site¢x}. The potential energy of the
system as a function of a coordinate measuring the fraction
displacement of the pair from theB configuration toward to
the BA configuration is schematically shown in Fig. 2. For-
mula(6) is equivalent to recipe 1 described by Kikuchi in his
PPM formulationt’ Sincev exp(—U/kgT) occurs in all con-
figurations, it can be combined with the tirhé the kinetic
equations of motion to give a dimensionless reduced time

FIG. 2. lllustration of the activation energy for the-B ex-
clhanging process with the potential energy of the system plotted as
A function of a coordinate measuring the fractional displacement of
the pair from theAB configuration toward to thBA configuration.

whereAt is the time step for integration. All the information
about ordering and phase separation such as local composi-
tion, local long-range order, short-range order, antiphase do-
main, or composition domain size can be obtained from the
spatial point and pair distribution functions at a given time
The present model has the following featuresi) with
.. the knowledge of atom-atom bond energies and the initial
The rate constants can also be calculated by consideringsriputions, the temporal evolution of point and pair distri-
only the initial state before an atom exchange, i.e., by calcuption functions obtained from the kinetic equations auto-
lating the total-energy increase due to broken bonds duringatically describes the kinetics of long-range order, short-
the atom exchange, or called recipe Il in PPhe differ- range order, phase separation, and coarsefiingy contrast
ence in kinetics obtained using the two methods of calculatyy models that are linear with respect to thermodynamic driv-
ing the rate constants will be discussed later. ing forces, the present model is valid for large driving forces;
_ In a cqmputer simulation using the set of kinetic €qua-jii) the dependence of atomic mobility on local configura-
tlons_(l), first one need_s to (_:onstruct a s_up_ercell containing &on is automatically taken into account; afid) at equilib-
certain number of lattice sites. Then, initial values for theyjym it produces the same equilibrium distribution functions
point and pair distribution functions are assigned at eachg gerived from the cluster variation meth@VM) at the
lattice site. For example, for a completely homogeneous dissgme level of approximation as shown by Bakai and Fateev

ordered state quenched from an infinite temperature, ongy pcc and fec latticé® and demonstrated by the simulation
may set results for the pair approximation discussed below.

t* =tXv exp—U/kgT). (7)

PA(r):CA—'_g(r)' (8) RELATION BETWEEN ORDER PARAMETERS
AND DISTRIBUTION FUNCTIONS
Paa(r1,r2)=Pa(ry)Pa(rz) etc., ) ) .
It is well known that long-range order is related to the

where {(r) are small random perturbations to the averagepoint distribution function and the short-range order is re-
compositionC, at lattice siter. All other point and pair lated to the pair distribution functions. For a homogeneous
distribution functions are obtained from the normalizationsystem, it is straightforward to calculate the value of long-
conditions given in Eq(1). Based on the initial values for range order from the point distribution function. For ex-
the point and pair distribution functions as well as fheA, ample, for an ordered phase with two sublattices, the point
B-B, andA-B bond energies and temperature, the rates oflistribution function has only two different values. If the two
change for the point and pair variables are calculated accorcgublattices have equal number of lattice sites, such as the
ing to the right-hand sides of the kinetic equatiq@s and  checkerboard order in the square lattice &®&lorder in the

(3). Finally, the equations are integrated using numerical inpcc lattice, the two values for the point distribution function
tegrations, e.g., the explicit Euler technique, are

dPA(r,t Pa=Ca+Can and Pi=Ca—Cp7, (11)
PA(r,t+At)=PA(r,t)+$xAt, AT AT AT AT AT AT

t whereC, is the composition oA atoms andy is the long-
(100 range order parameter. Therefore,

_ dPana(ry,ra,t)
PAA(rlar21t+At)_PAA(rlvr21t)+TXAL Ca=3(Px+P%) (12
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and
n=(Pa—P2)/(Pi+P3). (13

If a system is inhomogeneous, e.g., an ordered phase with
antiphase domain boundaries or a two-phase mixture of or-
dered and disordered phases, the calculation of local compo-
sition and long-range order parameter from the inhomoge-
neous point distribution function is less obvious. Let us look
at a simple example of checkerboard order in the two-
dimensional square lattice. According to the concentration
wave method of Khachaturydfithe point distribution func-
tion for a homogeneous ordered phase can be written as

short- and long-range order parameters

Pa(r)=Ca+ CAﬂe_iko'r, (14 time

wherek, is the superlattice vector for the ordered phase. For FIG. 3. Plot of short- and long-range order parameters as a

the checkerboard Ordek(,:(Zﬂ'/ao)(%,%) wherea, is the funf:tlor) OT reduced time for the case of.homogengou.s ordering.
latti fth latti £ inh Solid line: long-range order parameter; dotted line: nearest-
attice parameter of the square lattice. For an in OmOgeneOlﬁ%ighbor short-range order parameter.

system, bottC, and » are functions of position, i.e.,
where(: - ) denotes ensemble averaging andr) is defined
PA(r)=Ca(r)+Ca(r)n(r)e”" ", (15 &S

Substituting the superlattice vecthky for the checkerboard

order into Eq.(15), we have 1 if r is occupied byA

M=o if r s occupied byB. @D
PA(F)=Ca(r)+ Ca(r) 7(r)e"imm+n From the definitions of distribution functions, one has

=Ca(r)+Ca(r) n(r)(=1)"" ™, (16)

wherem andn are integers defined in=a,(m,n). In this
particular example, the local compositi@y(r) can be ap-
proximated by

Pa(r)=(n(r)) and Ppa(r,r")=(n(r)n(r")).

Therefore, in terms of pair distribution functions, we can
rewrite, for a disordered state, the short-range order param-
eter as

CA(r):% 2,;‘ PA(r+8)+PA(D) |, (17) a(r,r")=[Paa(r,r') = CZl/Ca(1~Chp). (22)

One can also use the average value of the short-range order
where z is the number of nearest neighborz=(4 for the parameter to characterize the short-range order of an inho-
square latticeand 5 denotes the summation over the nearestinmogeneous system. For example, for the nearest-neighbor
neighbor sites of lattice point. Therefore, the local long- short-range order parameter, the average value is defined as
range order parameter is calculated as

— 1 2 2
(1) =[Pa() ~CAMNVICAN (D™, (18 TaN g 4 oo

One can also define the average long-range order to charac- 1 [Paa(r,r +8)—C2(1)]
terize the degree of order of an inhomogeneous system, = — i 23

9 9 y N2> 2 CAnL_CaN] @3

_ 1
_ = RESULTS AND DISCUSSION
N 2 |, (19

Kinetics of homogeneous short- and long-range order
whereN is the total number of lattice sites ahd:| denotes The ordering kinetics in homogeneous systems can be
absolute value. _ . easily obtained by solving kinetic equatioi2) and (3),

_ The short-range order parameter is usually defined in thghich are formulated for inhomogeneous systems, by choos-
disordered state in which the dlffusg scattering intensity 'sing a supercell whose size is much smaller than the typical
Teasured experimentally. For a disordered SW®g(r)  gjze of antiphase domains. For this purpose, we chose a 4
=Ca and the short-range order parameter is given by X 4 supercell with periodic boundary conditions. The bond

energies were chosen in such a way that ordering of a disor-
o(r,r")={[Na(r) = Cal[Na(r") = Cal}/CAa(1—Cp), dered state results in the checkerboard ordered structure that

(200  has the superlattice vector of 2a,)(3,3). We studied the
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FIG. 4. Long-range order parameter as a function of reduced In(®

time for differentVaa/Veg . FIG. 5. Replot of Fig. 4 using Ity instead oft and shift the
) o _ N curves forVa,/Vgg=3 and 9 along the Ity axis.
simple case of stoichiometric composition for the ordered
phase, i.e., the overall average composition is chosen to hfnships obtained by minimizing a CVM free-energy func-

3 . In this case we can define the long-range and short-ranggonal with respect to the independent point and pair
order parameters in terms of the point and pair distribution/ariables3®

functions as follows:

PaePea=PaaPss exfd &1 /kgT] (26)
n=2Pa(r)—1] (24)
and
and
Pa(ra) Pa(rp) 3_ Pas(fa:fp)|* 5
0'=4<PAA(I’,I‘+ 5)>_1 (25) PB(ra) PA(r,B) - PBA(rayrB) ’ ( 7)

The relaxation kinetics of long- and short-range order for

. . ) where Pag, Pga, Paa, and Pgg are the nearest-neighbor
thelcasel of thef nearest-neighbog |nteract|on- modsl ( pair distribution functionsy, andr, denote thea and g
=VaptVgg—2Vag=1.0 andV,=Vizg, Wheree, is called

} Y sublattices in the ordered state, amd is the nearest-
the nearest-neighbor effective interchange energy,\gpnd neighbor effective interchange energy. After a system

Vg, Vag are the nearest-neighbdk-A, B-B, and A-B  reaches equilibrium, both relatiof6) and(27) are found to
bond energies, respectivglgre shown in Fig. 3. The initial pe satisfied. Therefore, the equilibrium states produced from
condition Corresponds to the Completely disordered state the microscopic master equations are indeed the same as

scribed by Eqgs(8) and(9). The time step for integration is  those from the equilibrium CVM technique.
chosen to be 0.01 in a dimensionless reduced time unit. In

Fig. 3 the dotted and solid lines represent the time dependen-
cies of the short- and long-range order parameters, respec-
tively. Since the initial state corresponds to a completely
disordered state, the initial values for both short- and long- As discussed above, the rate constdRis Egs.(2) and
range order parameters are zero. It is shown that the initid8) can be calculated in two different ways. If the rate con-
stage of ordering involves a very fast increase in the absolutgtants are calculated using expressién and if we assume
value of the short-range ordéwithin the first 0.4 reduced U is a constantR will depend only on the effective inter-
time) followed by a stationary stage in which the value of thechange energies, not on the relative value¥/gf andVpgg
long-range order parameter is still zero and that of the shortoond energies. If we determine the rate constants by consid-
range order parameter is essentially a constant as a functi@ting only the total energy increase due to broken bonds
of time. The value of long-range order starts to grow at theduring the atom exchange, the ordering kinetics appear to
reduced time of about 5.0 and reaches the equilibrium valudepend on both the effective interchange energies and the
at reduced time of about 8.0. During this stage the magnitudeelative magnitudes 0¥, andVgg. As an illustration, the
of short-range order also increases, as shown in Fig. 3. Singéevelopment of long-range order in the pair approximation
the time for short-range order is substantially less than thoswith the same effective interchange energy but diffehé
for long-range order, it seems that the short-range order prdo Vgg ratios is shown in Fig. 4. It is quite clear that the
ceeds in a manner ‘“slaved” to the long-range orderlarger the ratio ofVas t0 Vg, the shorter the incubation
development—which is on a longer time scale. time for ordering. WheW,,/Vgg=1, the kinetics obtained
We checked the numerical values of the point and paifrom the two methods of calculating are the same. How-
distribution functions after a system reaches equilibrium anaver, it should be pointed out that the differences in the in-
compared it to those obtained from an equilibrium CVM cubation times for ordering may be eliminated by defining
calculation. In particular, we examined the following rela- different reduced time units for differem, ,/Vgg Or change

Effect of relative A-A and B-B bond energies
on ordering kinetics
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a b c d

FIG. 6. Morphological pattern formation and evolution during  FiG. 8. Morphological pattern formation and evolution during
ordering in the pair approximation. The gray levels represent th&pinodal decomposition in the pair approximation. The gray levels
magnitude of the long-range order parameter squared. The corrgapresent the magnitude of the absolute value of the local compo-
sponding time for each picture in the unit of reduced time is indi-sjtion deviation from the overall composition. The corresponding
cated in Fig. 7. time for each picture in the unit of reduced time is indicated in Fig.

the value forU in expression7). For example, if we replot

Fig. 4 using long-range order parameter vs)liifstead oft  Fig. 6 are antiphase domain boundaries. The time and the
and shift the curves along the th(axis (Fig. 5, all the  average value of the long-range order parameter correspond-
curves for differentvaa/Vgg are shown to superimpose on ing to each picture in Fig. 6 are indicated in Fig. 7. Figure

each other. 6(a), corresponding to poira in Fig. 7, is still a disordered
state where values of? at each lattice site are near zero.
Morphological pattern formation during ordering Figure @&b) shows the initial growth of ordered domains with

n average value of the long-range order parameter around
.20. The average value of the long-range order parameter

ing are automatically described by the time-dependent spati ?aches near the equilibrium value at a time equal to about

distribution of order-parameter profiles that can be deter- HO lin th_e rer:iuceo_l u::]_it a;d It:he correspondding ddgmalin mor-
mined from the inhomogeneous point distribution functionsP 0109 is shown in Fig. @). Figures. &) and &d) display

as shown in Eq(18). The temporal evolution of the spatial the antip_hase domain cqarsening process. It may be noticed
long-range order during an order-disorder transformation ighat t?e tlmehdependefnmeshof the long-range t%rdegparzmeter
shown in Fig. 6 for a computational cell of 12828 lattice are almost the same for a homogeneous syt 3) an

sites with periodic boundary conditions. The correspondingan inhomogeneous systefffig. 7).
plot of the average long-range order parameter as a function _ _
of reduced time is shown in Fig. 7. A nearest-neighbor inter- Morphologycal pattern forma.1t_|on
action model £;,=1.0 andV3,=Vgg) in the pair approxi- during spinodal decomposition
mation was employed. The initial condition corresponds to The morphological evolution during a spinodal decompo-
the disordered state with small random perturbations. Theition in the pair approximation and a nearest-neighbor inter-
time step for integration is 0.01 in a dimensionless reducedction model £,=—1.0) is shown in Fig. 8 in which the
time unit. The temperature for the simulation is £.Bkg  gray levels represent the magnitudes of local composition.
wherekg is the Boltzmann constant. The different gray lev- The overall average composition is 0.5. A computational cell
els in Fig. 6 represent the values @f, where 7 is the  of 128x 128 lattice sites with periodic boundary conditions
long-range order parameter. Bright regions are ordered dowas employed. The initial condition corresponds to a homo-
mains with 7? close to 1.0 and dark regions are the disor-geneous solution with small random perturbations. The time
dered phase withy? near 0.0. Therefore, the dark lines in step for integration is 0.1 in a dimensionless reduced time
unit. The temperature for the simulation-90.5 4 /kg . The
1,00 d average composition wave amplitudéC(r)—C,| where

Since the kinetic equations are written for inhomogeneoug
systems, the temporal morphological patterns during order:

' ' ' ' ' C(r) is the local composition an@, is the overall average
composition as a function of time during spinodal decom-
5 080 position is plotted in Fig. 9. The correspondence between
‘g Figs. 8 and 9 are labeled in Fig. 9.
S 060 [ _ _ _ o
5 Comparison between point and pair approximations
% 040 F The kinetics of long-range order obtained from the pair
go approximation and the point approximation are compared in
v Fig. 10 with the same simulation temperature and system
g 020 a size. The most significant difference is the fact that the incu-
- v bation time in the pair approximatiosolid line) is much
0.00 1 L ! L longer than that in the point approximatigdotted ling. It
0 5 4 6 8 10 12 may also be noticed that the time for the long-range order to

reach the equilibrium value from the initial growth is longer

in the pair approximationtf =5.0—8.0) than that in the
FIG. 7. The average long-range order parameter as a function gioint approximation {* = 1.0—2.0), and that the incubation

time for ordering in an inhomogeneous system. time also depends on the initial conditions, e.g., the ampli-

time
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Q" 050 F
St
S g0 a b i a
&
§ 0.30 I FIG. 11. Morphological pattern formation and evolution during
020 F ordering in the point approximation. The gray levels represent the
) magnitude of the long-range order parameter squared. The corre-
0.10 sponding time for each picture in the unit of reduced time is indi-
0.00 . 4 , . . cated in Fig. 10 on the dotted line.

1 2000 2500 3000 . . .
0 5001000 1500 ticed that there are more than two orders of magnitude dif-

time ference in the incubation times between the pair approxima-
tion and the point approximation, i.e., the time period before
FIG. 9. The average absolute value of the local compositiomany significant growth of composition wave amplitude oc-
deviation from the overall composition as a function of time for the curs(compare Figs. 9 and 13Second, the morphology after
case of spinodal decomposition and pair approximation in an i”hodecomposition and before any significant coarsening shows
mogeneous system. much coarser scale in the case of pair approximation than
that in the point approximation, even though the morpholo-
tudes of random fluctuations introduced into the initial pointgies in the two cases are very similar except in the scale.
and pair distribution functions. To give a simple explanation for the difference in kinetics
We also compared morphological evolution in the pointbetween point and pair approximations, i.e., the effect of pair
and pair approximations. The morphological evolution forcorrelation on the ordering and phase separation kinetics, we
the point approximation in Fig. 11 was obtained using ex-define the following free energy in the pair approximation
actly the same initial condition as in the pair approximationand a nearest-neighbor interaction model
and the corresponding plot of average long-range order pa-
rameter against time is shown in Fig. 10 as the dotted line. A
comparison of Figs. @) and 11b) indicates that although
the domain morphologies look similar in two approxima- 22 2 2 Vap(r1,r2)Pap(ra.ra)
tions, the average domain size in the pair approximation is
larger than that in the point approximation for the time at
which the ordering is near completion. —kgT| (z—=1)>, 2, P(r)INP(r)
The difference between the point and pair approximations roe
is much more striking in the case of spinodal decomposition

r1—r,=6 «

than in the case of ordering. The morphological evolution for
the point approximation is shown in Fig. 12. The correspond- rlE,ZE,; % 2 PaplrirIN[Pag(r1.r2)]),
ing plot of average deviation of composition from the overall
composition is shown in Fig. 13. First of all, it may be no- (28
1.00 ' ' r ' T d.d wherer, rq, r, represent lattice positions,nearest-neighbor
¢ ¢ {, distance,a and B atom speciesz the number of nearest
neighbors,V ,; the bond energies as discussed above, and
B 0.80 r P, pair probabilities. Using this definition, the nonequilib-
g rium free energies as a function of time in the point and pair
S 060
o 040 [
oh
=
=
£ 020
g
a b c d
0.00
0 2 4 6 8 10 12 FIG. 12. Morphological pattern formation and evolution during

spinodal decomposition in the point approximation. The gray levels
represent the magnitude of the absolute value of the local compo-

FIG. 10. The variation of long-range order parameter as a funcsition deviation from the overall composition. The corresponding
tion of time for the case of point approximati¢totted ling and the  time for each picture in the unit of reduced time is indicated in
case of pair approximatiofsolid line). Fig. 13.

time
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FIG. 15. Long-range order parameter obtained by assuming in-

FIG. 13. The average absolute value of the local compositionStantaneous equilibrium with respect to short-range ofgedr

deviation from the overall composition as a function of time for the (Sl?)\i/r?t()j’ the pair approximatiofpair), and the point approximation
case of spinodal decomposition and point approximation in an in-p '

homogeneous system. . . .
g y short-range order. Therefore, one may describe the kinetics

approximations are plotted in Fig. 14 for the case of oroler_of long-range order or compositional spinodal decomposition

ing. It is shown that the short-range order relaxation resultgy assuming instantaneous establishment of equilibrium with

i a signifcant o in th total fee energnore than alt_ TSP 0 Shorange arer e, e pei corlatons onty
the total free energy decreases from the initially completely”. y 9 - Flgure L5 Shc
disordered state to the equilibrium ordered stads a result, inetics of long-range order obtained by first minimizing the

L . CVM free energy with respect to the pair variables, then
the driving force for the development of long-range order Sexpressing these pair variables in terms of point variables
significantly reduced, resulting in a much longer incubation P 9 P P '

I . S L “and only solving the kinetic equations for the point variables.
time in the pair approximation. Similar to the case of Order.AIso included in Fig. 15 is the time dependence of average

ing, the difference in the kinetics between the point and pa'fong-range order parameter obtained in the pair approxima-

approximations for spinodal decomposition is also due to th%on. Although there are differences in the kinetics obtained

difference in the driving forces. However, the effect of thefrom the true pair approximation and that with slaved pair
driving force on the incubation time is more dramatic in the © rue pair approximation Wi ved pa

case of spinodal decomposition than ordering. cprrelatlons, the difference is quite sm_aII qompared to the

difference between the true pair approximation and point ap-

proximation as shown in Fig. 10. It is expected that higher-

Kinetics of long-range order with slaved short-range order order correlation functions also relax much faster than point

As demonstrated above, the kinetics of short-range ordefistribution functions that characterize the long-range order
relaxation is much faster than the development of long-rang€" compositional distribution. In principle, one can approxi-
order or compositional inhomogeneities. As a result, at dnate the kinetics of long-range order and phase separation
given state of long-range order or compositional distribution by assuming that all the correlation functions are instanta-

the system is essentially at equilibrium with respect to the'€ously established. Therefore, one could express the corre-
lation functions in terms of point variables by minimizing the

0.80 . . . ' ; corresponding CVM free energy with respect to all high-

order correlation functions, and only the kinetic equations for
the point variables needs to be solved for effectively taking
-0.85 into account high-order correlations on the kinetics.
R -0.90 SUMMARY
éo We have developed a computer simulation technique
o -0.95 based on microscopic master equations in the pair approxi-
& mation for studying the kinetics of atomic ordering and
-1.00 phase separation in highly nonequilibrium and inhomoge-
neous systems. We showed that for a homogenous system at
105 . ) ) ) ) completely thermodynamic equilibrium, the kinetic equa-

tions produce the same equilibrium states as the CVM of
equilibrium statistical thermodynamics. We observed quite
different ordering and phase separation kinetics between the
FIG. 14. Free energy as a function of time for the case of or-Single-site point approximation and the pair approximation.
dering in the point approximatiofaotted ling and the pair approxi- It is shown that the development of long-range order and
mation (solid line) in an inhomogeneous system. growth of concentration waves are significantly delayed due

0 2 4 6 8 10 12
time



5274 LONG-QING CHEN PRB 58

to their coupling to the relaxation of short-range order in the ACKNOWLEDGMENTS

pair approximation as compared to those obtained from the

point approximation with the same initial conditions. We  This work was supported by the Office of Naval Research
also showed that the kinetics of long-range order and comunder Grant No. N00014-95-1-0577, the NSF under Grant
positional phase separation can be very well approximatetio. DMR-96-33719, and through the ARPA/NIST program

by assuming that the short-range order is instantaneously esh mathematical modeling of microstructure evolution in ad-
tablished, i.e., the short-range order is slaved by the longvanced alloys. The computing time was provided by a grant

range order.

from the DOD High Performance Computing Systems.

1J. W. Cahn, Acta Metall9, 795 (1961).

2S. M. Allen and J. W. Cahn, Acta Metal7, 1085(1979.

3A. G. Khachaturyan, Fiz. Tverd. Tely 2595(1967 [Sov. Phys.
Solid State9, 2040(1968].

4L, Q. Chen, Mod. Phys. Lett. B, 1857(1993, and references
therein.

S5y. z. Wang, L. Q. Chen, and A. G. Khachaturyan,@omputer

20K, Gschwend, H. Sato, and R. Kikuchi, J. Chem. Pt#is.2844
(1979.

2H. sato and R. Kikuchi, Acta MetalR4, 797 (1976.

22T, Mobhri, in Solid-Solid Phase Transformatigredited by W. C.
Johnson, J. M. Howe, D. E. Laughlin, and W. A. Soffehe
Minerals, Metals & Materials Society, Warrendale, PA, 1994
p. 53.

Simulation in Materials Science-Nano/Meso/Macroscopic Spacé>C. M. van Baal, Physica A96, 116 (1993.

and Time Scale¥ol. 308 of NATO Advanced Study Institute
Series E: Physicedited by H. O. Kirchner, K. P. Kubin, and V.
Pontikis (Kluwer-Academic, New York, 1996 pp. 325-371
and references therein.

L. Q. Chen and Y. Z. Wang, JOMS, 13 (1996, and references
therein.

’G. H. Vineyard, Phys. Rev.02, 981 (1956.

8C. M. van Baal, Physica A11, 591(1982.

9C. M. van Baal, Physica A13 117(1982.

10¢c. M. van Baal, Physica A29 601 (1985.

11B. Fultz, Acta Metall.37, 823(1989.

128, Fultz, J. Mater. Res5, 1419(1990.

13G. Martin, Phys. Rev. Bi1, 2279(1990.

143.-F. Gouyet, Europhys. Let21, 335(1993.

150. Penrose, J. Stat. Phy&3, 975 (1991).

16R. Kikuchi, Ann. Phys(Leipzig) 10, 127 (1960.

7R, Kikuchi, Prog. Theor. Phys. Sup@5, 1 (1969.

18K, Gschwend, H. Sato, and R. Kikuchi, J. PhyBari9, Collog.
38, C7-357(1977).

19K, Gschwend, H. Sato, and R. Kikuchi, J. Chem. P168.5006
(1978.

24L. Q. Chen and J. A. Simmons, Acta Metall. Matd2, 2943
(1994).

25 Q. Chen, inDefect Interface InteractiondIRS Symposia Pro-
ceedings No. 319, edited by E. P. Kvam, A. H. King, M. J.
Mills, T. D. Sands, and V. ViteKMaterials Research Society,
Pittsburgh, 1994 p. 375.

26C. W. Geng and L. Q. Chen, Scr. Metall. Mat8t, 1507(1994.

27C. W. Geng and L. Q. Chen, Surf. S855 229 (1994.

28y, G. Vaks, S. V. Beiden, and V. Yu. Dobretsov, Pis'ma Zh.
Eksp. Teor. Fiz61, 65 (1995 [JETP Lett.61, 68 (1995].

29V, Yu. Dobretsov, G. Martin, F. Soisson, and V. G. Vaks, Euro-
phys. Lett.31, 417 (1995.

30v. Yu. Dobretsov, V. G. Vaks, and G. Martin, Phys. Rev5R&
3227(1996.

M. Plapp and J.-F. Gouyet, Phys. Rev. L&8, 4970(1997.

32M. Plapp and J.-F. Gouyet, Phys. Rev5E 45 (1997).

33A. S. Bakai and M. P. Fateev, Phys. Status SolidilB3 81
(1990.

34A. G. KhachaturyanTheory of Structural Transformations in
Solids(Wiley, New York, 1983.

35R. Kikuchi (unpublishe



