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Kinetics of ordering and spinodal decomposition in the pair approximation

Long-Qing Chen
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 1680

~Received 15 January 1998!

The kinetics of atomic ordering and phase separation in inhomogeneous systems were investigated employ-
ing microscopic master equations in the pair approximation. For a homogeneous system at completely ther-
modynamic equilibrium, the kinetic equations produce the same equilibrium states as the cluster variation
method. We studied the kinetics of both short- and long-range order and spinodal decomposition kinetics, as
well as the morphological pattern formation and evolution. It is shown that the development of long-range
order and growth of concentration wave amplitudes are significantly delayed due to the decreases in driving
forces as a result of short-range order relaxation in the pair approximation as compared to that obtained from
the point approximation with the same initial condition. It is demonstrated that the kinetics obtained by
assuming the pair distribution functions always at equilibrium is found to be a good approximation for the pair
approximation. The effect of bond energies on the ordering kinetics will be discussed.
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INTRODUCTION

Recently, the continuum Cahn-Hilliard and Allen-Cah
equations1,2 and their microscopic counterparts, th
Khachaturyan microscopic diffusion equations,3 have been
extensively employed to study the kinetics of atomic ord
ing, compositional phase separation, and particularly,
main coarsening.4–6 They have been very successful in pr
dicting the sequence of phase transformations as well as
kinetics of domain coarsening. All these equations are ba
on a free-energy functional that depends on a local or
parameter or the local composition in the continuum mo
or the point probabilities in the microscopic model. Th
describe the rate change of order parameters or occup
probabilities with respect to time aslinearly proportional to
the thermodynamic driving force. Therefore, in principle, t
quantitative description of kinetics by these models is o
valid when a system is not too far from equilibrium, i.e., t
driving force for a given diffusional process is small, e.
during domain coarsening.

In other types of kinetic models, including the micr
scopic master equations7–15 and the path probability metho
~PPM! ~Refs. 16–22!, free-energy functionals do not explic
itly enter into the kinetic equations of motion. In principl
high-order atomic correlations such as pair and tetrahe
correlations can be taken into account. The rate of chang
an order parameter is highly nonlinear with respect to
thermodynamic driving force, so they are valid for syste
with a high degree of nonequilibrium. The dependency
atomic diffusion or exchange on the local atomic configu
tion is automatically considered. However, essentially
early applications of PPM and microscopic master equati
assumed transitional symmetry and were concerned with
mogeneous systems. They were almost exclusively dev
to order-disorder transformations in homogeneous syst
as is necessitated in that context.

Very recently, there have been a number of applicati
of the microscopic master equation approach to inhomo
neous systems. For example, van Baal investigated the k
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ics of ordering and spinodal decomposition in on
dimensional inhomogeneous systems using the microsc
master equations with the nearest-neighbor p
approximation.23 We applied the microscopic master equ
tions to ordering and phase separation processes in
dimensional inhomogeneous systems with or without s
faces using a second-neighbor interaction model in b
point and pair approximations.24–27 More recently, similar
microscopic kinetic master equations based on the single
approximation were applied to ordering and phase separa
kinetics in two-dimensional inhomogeneous alloys by Va
Beiden, and Dobretsov28–30 and Plapp and Gouyet.31,32

It is well known that the pair approximation yields mo
accurate results than the point approximation for the equi
rium thermodynamic properties for a two-dimension
square lattice, as well as a three-dimensional bcc lattice.
main purpose of this paper is to examine the differences
the kinetics of ordering and phase separation obtained fro
point approximation and that from a pair approximation w
the same set of interaction parameters. In particular, we
show that the incubation time for ordering and spinodal
composition is significantly larger in the pair approximatio
than in the point approximation. However, we also show
that, although in the pair approximation the kinetics of lon
range order is coupled with that of short-range order rel
ation, it can be very well approximated by assuming th
short-range order is instantaneously established, i.e.,
short-range order is slaved by the long-range order.

THE KINETIC MODEL

For an A-B binary alloy in the pair approximation, th
structural state at a given temperature is described by p
and pair distribution functions denoted asPa(r ) and
Pa1 ,a2

(r1 ,r2) wherea andr represent the type of atom an
lattice position,7,24 respectively. These distribution function
satisfy the following normalization conditions:
5266 © 1998 The American Physical Society
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(
a

Pa~r !51,

(
a2

Pa1 ,a2
~r1 ,r2!5Pa1

~r1!, ~1!

(
a1

Pa1 ,a2
~r1 ,r2!5Pa2

~r2!.

Therefore, they are not independent. Among them, we
choose an independent set, e.g.,PA(r ) and PAA(r1 ,r2). All
other point and pair variables may be obtained from t
independent set according to the normalization condition~1!.

Away from equilibrium, all distribution functions will
change with time as the atomic diffusion takes place in
system. Although both vacancy and direct exchange me
nisms can be treated in this formulation,25,26we shall assume
a direct exchange mechanism in this work for simplicity.

Let us consider a pair of exchange sites atr and a nearest
neighbor siter1d, and a set$x% of nearby influence sites
that can affect the exchange reaction. If we have anA atom
at r , a B atom atr1d, and a set of atoms$x% at $x%, we use
RAB($x%) to represent the rate at which theAB pair ex-
changes under the influence of the set of neighboring at
$x%. Similarly, RBA($x%) is the rate at which aBA pair will
exchange under the same environment when aB atom is atr ,
and anA atom is atr1d. Then the rates of change ofPA(r )
andPAA(r1 ,r2) are given by

dPA~r !

dt
5(

d
(
$x%

PBA$x%~r ,r1d,$x%!RBA~$x%!

2(
d

(
$x%

PAB$x%~r ,r1d,$x%!RAB~$x%!, ~2!
tly
a

O

n

s

a
a-

s

dPAA~r1 ,r2!

dt

5 (
dÞr12r2

(
$x%

PABA$x%~r1 ,r2 ,r21d,$x%!RBA~$x%!

1 (
dÞr22r1

(
$x%

PBAA$x%~r1 ,r2 ,r11d,$x%!RBA~$x%!

2 (
dÞr12r2

(
$x%

PAAB$x%~r1 ,r2 ,r21d,$x%!RAB~$x%!

2 (
dÞr22r1

(
$x%

PAAB$x%~r1 ,r2 ,r11d,$x%!RAB~$x%!,

~3!

where (d denotes the summation over all the neare
neighbor sitesr1d of r . In Eqs. ~2! and ~3!, Pa1 ,a2 , . . . ,an

(r1 ,r2 , . . . ,rn) represents the joint probability o
a1 ,a2 , . . . ,an occupyingr1 ,r2 , . . . ,rn simultaneously. For
example,PAB$x%(r ,r1d,$x%) is the probability of simulta-
neously finding anA atom atr , a B atom atr1d, and the
atomic speciesX1 , . . . , ~in this case either anA atom or aB
atom! of the set$x% at the neighboring sitesx1 , . . . , in the
site set$x%.

In order to carry out the summations in the right-hand s
of Eqs.~2! and ~3!, we need to express the joint probabili
distributions,PAB$x%(r ,r1d,$x%), etc., in terms of indepen
dent point and pair distribution functions. For this purpo
we invoke the superposition approximation. In the pair a
proximation this takes the form

P$x8%~$x8%!5 )
xiP$x8%

Pxi
~xi ! )

xi ,xj P$x8%,i , j

Pxixj
~xi ,xj !

Pxi
~xi !Pxj

~xj !
.

~4!

In this expression the sets$x8% and $x8% are any sets of
atomic sites and species~including the ‘‘center’’ atoms!, but
in the approximation used here,Pxixj

(xi ,xj ) is only nonzero
when (xj2xi) is a nearest- or next-nearest neighbor latt
vector.

For example, in the first- and second-neighbor pair
proximation of a square lattice, if one fixes the atom typ
X1 , . . . ,X10 at the sitesx1 , . . . ,x10 shown in Fig. 1, and
computes the probability of anA-B pair atr andr1d, then
Eq. ~4! yields
PAB$x%~r ,r1d,$x%!5PAB~r ,r1d!PX1A~x1 ,r !PAX3
~r ,x3!PBX4

~r1d,x4!PBX6
~r1d,x6!

3PX8B~x8 ,r1d!PX9A~x9 ,r !PAX2
~r ,x2!PAX4

~r ,x4!PBX3
~r1d,x3!PBX5

~r1d,x5!

3PX7B~x7 ,r1d!PX8A~x8 ,r !PX9B~x9 ,r1d!PX10A
~x10,r !Y @PA~r !#7@PB~r1d!#7. ~5!
th
In Eq. ~5!, the correlations for the pairs that are not direc
connected to the interchanging pair have been neglected
further approximation.

There are two ways to calculate the rate constants.
was given by Vineyard,
s a

ne

RAB~$x%!5v expH 2
U11/2DE

kBT J , ~6!

where U is the average activation energy for anAB ex-
change, andv is the vibrational frequency associated wi
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5268 PRB 58LONG-QING CHEN
the AB exchange.DE depends on the types of atoms occ
pying the influence sites$x%. The potential energy of the
system as a function of a coordinate measuring the fractio
displacement of the pair from theAB configuration toward to
the BA configuration is schematically shown in Fig. 2. Fo
mula~6! is equivalent to recipe 1 described by Kikuchi in h
PPM formulation.17 Sincev exp(2U/kBT) occurs in all con-
figurations, it can be combined with the timet in the kinetic
equations of motion to give a dimensionless reduced timet* ,

t* 5t3v exp~2U/kBT!. ~7!

The rate constants can also be calculated by conside
only the initial state before an atom exchange, i.e., by ca
lating the total-energy increase due to broken bonds du
the atom exchange, or called recipe II in PPM.17 The differ-
ence in kinetics obtained using the two methods of calcu
ing the rate constants will be discussed later.

In a computer simulation using the set of kinetic equ
tions ~1!, first one needs to construct a supercell containin
certain number of lattice sites. Then, initial values for t
point and pair distribution functions are assigned at e
lattice site. For example, for a completely homogeneous
ordered state quenched from an infinite temperature,
may set

PA~r !5CA1z~r !. ~8!

PAA~r1 ,r2!5PA~r1!PA~r2! etc., ~9!

where z~r ! are small random perturbations to the avera
compositionCA at lattice siter . All other point and pair
distribution functions are obtained from the normalizati
conditions given in Eq.~1!. Based on the initial values fo
the point and pair distribution functions as well as theA-A,
B-B, andA-B bond energies and temperature, the rates
change for the point and pair variables are calculated acc
ing to the right-hand sides of the kinetic equations~2! and
~3!. Finally, the equations are integrated using numerical
tegrations, e.g., the explicit Euler technique,

PA~r ,t1Dt !5PA~r ,t !1
dPA~r ,t !

dt
3Dt,

~10!

PAA~r1 ,r2 ,t1Dt !5PAA~r1 ,r2 ,t !1
dPAA~r1 ,r2 ,t !

dt
3Dt,

FIG. 1. Schematic illustration of the exchanging pair (A-B) and
the influencing lattice sets~1–10! around the pair.
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whereDt is the time step for integration. All the informatio
about ordering and phase separation such as local com
tion, local long-range order, short-range order, antiphase
main, or composition domain size can be obtained from
spatial point and pair distribution functions at a given timet.

The present model has the following features:~i! with
the knowledge of atom-atom bond energies and the in
distributions, the temporal evolution of point and pair dist
bution functions obtained from the kinetic equations au
matically describes the kinetics of long-range order, sho
range order, phase separation, and coarsening;~ii ! in contrast
to models that are linear with respect to thermodynamic d
ing forces, the present model is valid for large driving force
~iii ! the dependence of atomic mobility on local configur
tion is automatically taken into account; and~iv! at equilib-
rium, it produces the same equilibrium distribution functio
as derived from the cluster variation method~CVM! at the
same level of approximation as shown by Bakai and Fat
for bcc and fcc lattices33 and demonstrated by the simulatio
results for the pair approximation discussed below.

RELATION BETWEEN ORDER PARAMETERS
AND DISTRIBUTION FUNCTIONS

It is well known that long-range order is related to th
point distribution function and the short-range order is
lated to the pair distribution functions. For a homogeneo
system, it is straightforward to calculate the value of lon
range order from the point distribution function. For e
ample, for an ordered phase with two sublattices, the p
distribution function has only two different values. If the tw
sublattices have equal number of lattice sites, such as
checkerboard order in the square lattice andB2 order in the
bcc lattice, the two values for the point distribution functio
are

PA
15CA1CAh and PA

25CA2CAh, ~11!

whereCA is the composition ofA atoms andh is the long-
range order parameter. Therefore,

CA5 1
2 ~PA

11PA
2 ! ~12!

FIG. 2. Illustration of the activation energy for theA-B ex-
changing process with the potential energy of the system plotte
a function of a coordinate measuring the fractional displacemen
the pair from theAB configuration toward to theBA configuration.
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and

h5~PA
12PA

2 !/~PA
11PA

2 !. ~13!

If a system is inhomogeneous, e.g., an ordered phase
antiphase domain boundaries or a two-phase mixture of
dered and disordered phases, the calculation of local com
sition and long-range order parameter from the inhomo
neous point distribution function is less obvious. Let us lo
at a simple example of checkerboard order in the tw
dimensional square lattice. According to the concentrat
wave method of Khachaturyan,34 the point distribution func-
tion for a homogeneous ordered phase can be written as

PA~r !5CA1CAhe2 iko•r, ~14!

whereko is the superlattice vector for the ordered phase.

the checkerboard order,ko5(2p/ao)( 1
2 , 1

2 ) whereao is the
lattice parameter of the square lattice. For an inhomogene
system, bothCA andh are functions of position, i.e.,

PA~r !5CA~r !1CA~r !h~r !e2 iko•r. ~15!

Substituting the superlattice vectorko for the checkerboard
order into Eq.~15!, we have

PA~r !5CA~r !1CA~r !h~r !e2 ip~m1n!

5CA~r !1CA~r !h~r !~21!n1m, ~16!

wherem and n are integers defined inr5ao(m,n). In this
particular example, the local compositionCA(r ) can be ap-
proximated by

CA~r !5
1

2z F(
d

PA~r1d!1PA~r !G , ~17!

where z is the number of nearest neighbors (z54 for the
square lattice! andd denotes the summation over the neare
neighbor sites of lattice pointr . Therefore, the local long
range order parameter is calculated as

h~r !5@PA~r !2CA~r !#/@CA~r !~21!m1n#. ~18!

One can also define the average long-range order to cha
terize the degree of order of an inhomogeneous system,

h̄5
1

N (
r

uh~r !u, ~19!

whereN is the total number of lattice sites andu•••u denotes
absolute value.

The short-range order parameter is usually defined in
disordered state in which the diffuse scattering intensity
measured experimentally. For a disordered state,PA(r )
5CA and the short-range order parameter is given by

s~r ,r 8!5^@nA~r !2CA#@nA~r 8!2CA#&/CA~12CA!,
~20!
ith
r-
o-
-

k
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n

r

us

t-

ac-

e
s

where^¯& denotes ensemble averaging andnA(r ) is defined
as

nA~r !5 H 1 if r is occupied byA
0 if r is occupied byB. ~21!

From the definitions of distribution functions, one has

PA~r !5^n~r !& and PAA~r ,r 8!5^n~r !n~r 8!&.

Therefore, in terms of pair distribution functions, we c
rewrite, for a disordered state, the short-range order par
eter as

s~r ,r 8!5@PAA~r ,r 8!2CA
2 #/CA~12CA!. ~22!

One can also use the average value of the short-range o
parameter to characterize the short-range order of an in
mogeneous system. For example, for the nearest-neig
short-range order parameter, the average value is define

h̄5
1

4N (
d

(
r

sAA~r ,r1d!

5
1

4N (
d

(
r

@PAA~r ,r1d!2CA
2~r !#

CA~r !@12CA~r !#
. ~23!

RESULTS AND DISCUSSION

Kinetics of homogeneous short- and long-range order

The ordering kinetics in homogeneous systems can
easily obtained by solving kinetic equations~2! and ~3!,
which are formulated for inhomogeneous systems, by cho
ing a supercell whose size is much smaller than the typ
size of antiphase domains. For this purpose, we chose
34 supercell with periodic boundary conditions. The bo
energies were chosen in such a way that ordering of a di
dered state results in the checkerboard ordered structure

has the superlattice vector of (2p/ao)( 1
2 , 1

2 ). We studied the

FIG. 3. Plot of short- and long-range order parameters a
function of reduced time for the case of homogeneous order
Solid line: long-range order parameter; dotted line: neare
neighbor short-range order parameter.
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simple case of stoichiometric composition for the orde
phase, i.e., the overall average composition is chosen t
1
2 . In this case we can define the long-range and short-ra
order parameters in terms of the point and pair distribut
functions as follows:

h5u2PA~r !21u ~24!

and

s54^PAA~r ,r1d!&21. ~25!

The relaxation kinetics of long- and short-range order
the case of the nearest-neighbor interaction model«1

5VAA
1 1VBB

1 22VAB
1 51.0 andVAA

1 5VBB
1 , where«1 is called

the nearest-neighbor effective interchange energy, andVAA
1 ,

VBB
1 , VAB

1 are the nearest-neighborA-A, B-B, and A-B
bond energies, respectively! are shown in Fig. 3. The initia
condition corresponds to the completely disordered state
scribed by Eqs.~8! and ~9!. The time step for integration is
chosen to be 0.01 in a dimensionless reduced time uni
Fig. 3 the dotted and solid lines represent the time depen
cies of the short- and long-range order parameters, res
tively. Since the initial state corresponds to a complet
disordered state, the initial values for both short- and lo
range order parameters are zero. It is shown that the in
stage of ordering involves a very fast increase in the abso
value of the short-range order~within the first 0.4 reduced
time! followed by a stationary stage in which the value of t
long-range order parameter is still zero and that of the sh
range order parameter is essentially a constant as a fun
of time. The value of long-range order starts to grow at
reduced time of about 5.0 and reaches the equilibrium va
at reduced time of about 8.0. During this stage the magnit
of short-range order also increases, as shown in Fig. 3. S
the time for short-range order is substantially less than th
for long-range order, it seems that the short-range order
ceeds in a manner ‘‘slaved’’ to the long-range ord
development—which is on a longer time scale.

We checked the numerical values of the point and p
distribution functions after a system reaches equilibrium a
compared it to those obtained from an equilibrium CV
calculation. In particular, we examined the following rel

FIG. 4. Long-range order parameter as a function of redu
time for differentVAA /VBB .
d
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tionships obtained by minimizing a CVM free-energy fun
tional with respect to the independent point and p
variables:35

PABPBA5PAAPBB exp@«1 /kBT# ~26!

and

S PA~ra!

PB~ra!

PB~rb!

PA~rb! D
3

5S PAB~ra ,rb!

PBA~ra ,rb! D
4

, ~27!

where PAB , PBA , PAA , and PBB are the nearest-neighbo
pair distribution functions,ra and rb denote thea and b
sublattices in the ordered state, and«1 is the nearest-
neighbor effective interchange energy. After a syst
reaches equilibrium, both relations~26! and~27! are found to
be satisfied. Therefore, the equilibrium states produced f
the microscopic master equations are indeed the sam
those from the equilibrium CVM technique.

Effect of relative A-A and B-B bond energies
on ordering kinetics

As discussed above, the rate constantsR in Eqs. ~2! and
~3! can be calculated in two different ways. If the rate co
stants are calculated using expression~6!, and if we assume
U is a constant,R will depend only on the effective inter
change energies, not on the relative values ofVAA andVBB
bond energies. If we determine the rate constants by con
ering only the total energy increase due to broken bo
during the atom exchange, the ordering kinetics appea
depend on both the effective interchange energies and
relative magnitudes ofVAA andVBB . As an illustration, the
development of long-range order in the pair approximat
with the same effective interchange energy but differentVAA
to VBB ratios is shown in Fig. 4. It is quite clear that th
larger the ratio ofVAA to VBB , the shorter the incubation
time for ordering. WhenVAA /VBB51, the kinetics obtained
from the two methods of calculatingR are the same. How-
ever, it should be pointed out that the differences in the
cubation times for ordering may be eliminated by defini
different reduced time units for differentVAA /VBB or change

d

FIG. 5. Replot of Fig. 4 using ln(t) instead oft and shift the
curves forVAA /VBB53 and 9 along the ln(t) axis.
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the value forU in expression~7!. For example, if we replot
Fig. 4 using long-range order parameter vs ln(t) instead oft
and shift the curves along the ln(t) axis ~Fig. 5!, all the
curves for differentVAA /VBB are shown to superimpose o
each other.

Morphological pattern formation during ordering

Since the kinetic equations are written for inhomogene
systems, the temporal morphological patterns during ord
ing are automatically described by the time-dependent sp
distribution of order-parameter profiles that can be de
mined from the inhomogeneous point distribution functio
as shown in Eq.~18!. The temporal evolution of the spatia
long-range order during an order-disorder transformation
shown in Fig. 6 for a computational cell of 1283128 lattice
sites with periodic boundary conditions. The correspond
plot of the average long-range order parameter as a func
of reduced time is shown in Fig. 7. A nearest-neighbor int
action model («151.0 andVAA

1 5VBB
1 ) in the pair approxi-

mation was employed. The initial condition corresponds
the disordered state with small random perturbations.
time step for integration is 0.01 in a dimensionless redu
time unit. The temperature for the simulation is 0.5«1 /kB
wherekB is the Boltzmann constant. The different gray le
els in Fig. 6 represent the values ofh2, where h is the
long-range order parameter. Bright regions are ordered
mains withh2 close to 1.0 and dark regions are the dis
dered phase withh2 near 0.0. Therefore, the dark lines

FIG. 6. Morphological pattern formation and evolution durin
ordering in the pair approximation. The gray levels represent
magnitude of the long-range order parameter squared. The c
sponding time for each picture in the unit of reduced time is in
cated in Fig. 7.

FIG. 7. The average long-range order parameter as a functio
time for ordering in an inhomogeneous system.
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Fig. 6 are antiphase domain boundaries. The time and
average value of the long-range order parameter corresp
ing to each picture in Fig. 6 are indicated in Fig. 7. Figu
6~a!, corresponding to pointa in Fig. 7, is still a disordered
state where values ofh2 at each lattice site are near zer
Figure 6~b! shows the initial growth of ordered domains wi
an average value of the long-range order parameter aro
0.20. The average value of the long-range order param
reaches near the equilibrium value at a time equal to ab
8.0 in the reduced unit and the corresponding domain m
phology is shown in Fig. 6~c!. Figures. 6~c! and 6~d! display
the antiphase domain coarsening process. It may be not
that the time dependencies of the long-range order param
are almost the same for a homogeneous system~Fig. 3! and
an inhomogeneous system~Fig. 7!.

Morphological pattern formation
during spinodal decomposition

The morphological evolution during a spinodal decomp
sition in the pair approximation and a nearest-neighbor in
action model («1521.0) is shown in Fig. 8 in which the
gray levels represent the magnitudes of local composit
The overall average composition is 0.5. A computational c
of 1283128 lattice sites with periodic boundary condition
was employed. The initial condition corresponds to a hom
geneous solution with small random perturbations. The ti
step for integration is 0.1 in a dimensionless reduced ti
unit. The temperature for the simulation is20.5«1 /kB . The
average composition wave amplitude (uC(r )2Cou where
C(r ) is the local composition andCo is the overall average
composition! as a function of time during spinodal decom
position is plotted in Fig. 9. The correspondence betwe
Figs. 8 and 9 are labeled in Fig. 9.

Comparison between point and pair approximations

The kinetics of long-range order obtained from the p
approximation and the point approximation are compared
Fig. 10 with the same simulation temperature and sys
size. The most significant difference is the fact that the in
bation time in the pair approximation~solid line! is much
longer than that in the point approximation~dotted line!. It
may also be noticed that the time for the long-range orde
reach the equilibrium value from the initial growth is long
in the pair approximation (t* 55.0– 8.0) than that in the
point approximation (t* 51.0– 2.0), and that the incubatio
time also depends on the initial conditions, e.g., the am

e
re-
-

of

FIG. 8. Morphological pattern formation and evolution durin
spinodal decomposition in the pair approximation. The gray lev
represent the magnitude of the absolute value of the local com
sition deviation from the overall composition. The correspond
time for each picture in the unit of reduced time is indicated in F
9.
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tudes of random fluctuations introduced into the initial po
and pair distribution functions.

We also compared morphological evolution in the po
and pair approximations. The morphological evolution
the point approximation in Fig. 11 was obtained using e
actly the same initial condition as in the pair approximati
and the corresponding plot of average long-range order
rameter against time is shown in Fig. 10 as the dotted line
comparison of Figs. 6~c! and 11~b! indicates that although
the domain morphologies look similar in two approxim
tions, the average domain size in the pair approximation
larger than that in the point approximation for the time
which the ordering is near completion.

The difference between the point and pair approximati
is much more striking in the case of spinodal decomposit
than in the case of ordering. The morphological evolution
the point approximation is shown in Fig. 12. The correspo
ing plot of average deviation of composition from the over
composition is shown in Fig. 13. First of all, it may be n

FIG. 9. The average absolute value of the local composi
deviation from the overall composition as a function of time for t
case of spinodal decomposition and pair approximation in an in
mogeneous system.

FIG. 10. The variation of long-range order parameter as a fu
tion of time for the case of point approximation~dotted line! and the
case of pair approximation~solid line!.
t

t
r
-

a-
A

is
t

s
n
r
-
l

ticed that there are more than two orders of magnitude
ference in the incubation times between the pair approxim
tion and the point approximation, i.e., the time period befo
any significant growth of composition wave amplitude o
curs~compare Figs. 9 and 13!. Second, the morphology afte
decomposition and before any significant coarsening sh
much coarser scale in the case of pair approximation t
that in the point approximation, even though the morpho
gies in the two cases are very similar except in the scale

To give a simple explanation for the difference in kineti
between point and pair approximations, i.e., the effect of p
correlation on the ordering and phase separation kinetics
define the following free energy in the pair approximati
and a nearest-neighbor interaction model

F5
1

2 ((
r 12r 25d

(
a

(
b

Vab~r 1 ,r 2!Pab~r 1 ,r 2!

2kBTF ~z21!(
r

(
a

Pa~r !lnPa~r !

2
1

2 ((
r 12r 25d

(
a

(
b

Pab~r 1 ,r 2!ln@Pab~r 1 ,r 2!#G ,
~28!

wherer, r 1 , r 2 represent lattice positions,d nearest-neighbor
distance,a and b atom species,z the number of neares
neighbors,Vab the bond energies as discussed above,
Pab pair probabilities. Using this definition, the nonequilib
rium free energies as a function of time in the point and p

n

o-

c-

FIG. 11. Morphological pattern formation and evolution durin
ordering in the point approximation. The gray levels represent
magnitude of the long-range order parameter squared. The c
sponding time for each picture in the unit of reduced time is in
cated in Fig. 10 on the dotted line.

FIG. 12. Morphological pattern formation and evolution durin
spinodal decomposition in the point approximation. The gray lev
represent the magnitude of the absolute value of the local com
sition deviation from the overall composition. The correspond
time for each picture in the unit of reduced time is indicated
Fig. 13.
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approximations are plotted in Fig. 14 for the case of ord
ing. It is shown that the short-range order relaxation res
in a significant drop in the total free energy~more than half
the total free energy decreases from the initially complet
disordered state to the equilibrium ordered state!. As a result,
the driving force for the development of long-range order
significantly reduced, resulting in a much longer incubat
time in the pair approximation. Similar to the case of ord
ing, the difference in the kinetics between the point and p
approximations for spinodal decomposition is also due to
difference in the driving forces. However, the effect of t
driving force on the incubation time is more dramatic in t
case of spinodal decomposition than ordering.

Kinetics of long-range order with slaved short-range order

As demonstrated above, the kinetics of short-range o
relaxation is much faster than the development of long-ra
order or compositional inhomogeneities. As a result, a
given state of long-range order or compositional distributi
the system is essentially at equilibrium with respect to

FIG. 13. The average absolute value of the local composi
deviation from the overall composition as a function of time for t
case of spinodal decomposition and point approximation in an
homogeneous system.

FIG. 14. Free energy as a function of time for the case of
dering in the point approximation~dotted line! and the pair approxi-
mation ~solid line! in an inhomogeneous system.
r-
ts

y

s
n
-
ir
e

er
e
a
,
e

short-range order. Therefore, one may describe the kine
of long-range order or compositional spinodal decomposit
by assuming instantaneous establishment of equilibrium w
respect to short-range order, i.e., the pair correlations o
affect the thermodynamic driving force. Figure 15 shows
kinetics of long-range order obtained by first minimizing t
CVM free energy with respect to the pair variables, th
expressing these pair variables in terms of point variab
and only solving the kinetic equations for the point variabl
Also included in Fig. 15 is the time dependence of avera
long-range order parameter obtained in the pair approxi
tion. Although there are differences in the kinetics obtain
from the true pair approximation and that with slaved p
correlations, the difference is quite small compared to
difference between the true pair approximation and point
proximation as shown in Fig. 10. It is expected that high
order correlation functions also relax much faster than po
distribution functions that characterize the long-range or
or compositional distribution. In principle, one can appro
mate the kinetics of long-range order and phase separa
by assuming that all the correlation functions are instan
neously established. Therefore, one could express the c
lation functions in terms of point variables by minimizing th
corresponding CVM free energy with respect to all hig
order correlation functions, and only the kinetic equations
the point variables needs to be solved for effectively tak
into account high-order correlations on the kinetics.

SUMMARY

We have developed a computer simulation techniq
based on microscopic master equations in the pair appr
mation for studying the kinetics of atomic ordering an
phase separation in highly nonequilibrium and inhomo
neous systems. We showed that for a homogenous syste
completely thermodynamic equilibrium, the kinetic equ
tions produce the same equilibrium states as the CVM
equilibrium statistical thermodynamics. We observed qu
different ordering and phase separation kinetics between
single-site point approximation and the pair approximatio
It is shown that the development of long-range order a
growth of concentration waves are significantly delayed d

n

-

-

FIG. 15. Long-range order parameter obtained by assuming
stantaneous equilibrium with respect to short-range order~pair
slaved!, the pair approximation~pair!, and the point approximation
~point!.
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to their coupling to the relaxation of short-range order in
pair approximation as compared to those obtained from
point approximation with the same initial conditions. W
also showed that the kinetics of long-range order and c
positional phase separation can be very well approxima
by assuming that the short-range order is instantaneousl
tablished, i.e., the short-range order is slaved by the lo
range order.
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