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Abstract 

An efficient and accurate numerical method is implemented for solving the time-dependent Ginzburg-Landau equation and 
the Cahn-Hilliard equation. The time variable is discretized by using semi-implicit schemes which allow much larger time 
step sizes than explicit schemes; the space variables are discretized by using a Fourier-spectral method whose convergence 
rate is exponential in contrast to second order by a usual finite-difference method. We have applied our method to predict 
the equilibrium profiles of an order parameter across a stationary planar interface and the velocity of a moving interface by 
solving the time-dependent Ginzburg-Landau equation, and compared the accuracy and efficiency of our results with those 
obtained by others. We demonstrate that, for a specified accuracy of 0.5%, the speedup of using semi-implicit Fourier- 
spectral method, when compared with the explicit finite-difference schemes, is at least two orders of magnitude in two 
dimensions, and close to three orders of magnitude in three dimensions. The method is shown to be particularly powerful for 
systems in which the morphologies and microstructures are dominated by long-range elastic interactions. @ 1998 Elsevier 
Science B.V. 
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1. Introduct ion 

There has been increasing interest in the last few 
years in using the diffuse-interface phase-field ap- 
proach for modeling the mesoscale morphological 
pattern formation and interface motion, see, for ex- 
ample, [ 1 ] and the references therein. Typical exam- 
ples include domain growth in a quenched system, 
crystal growth during solidification and vapor-phase 
deposition, morphological evolution in two-phase 
coherent systems, and grain growth in single-phase 
and two-phase systems. In the field approach, a given 

microstructure is specified by using a set of  spatially 
inhomogeneous field variables, or order parame- 
ters. The temporal evolution of  these field variables, 
and thus the temporal microstructural evolution, is 
described by systems of  time-dependent Ginzburg- 
Landau (TDGL) equations and Cahn-Hilliard (CH) 
equations. Since both the TDGL and CH equations 
are nonlinear, they can only be solved numerically 
through discretization in space and time. Due to its 
simplicity and small memory requirement, most of  the 
existing phase-field simulations employed the explicit 
forward Euler method in time and finite-difference in 
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space. To maintain the stability and to achieve high 
accuracy for the solutions, the time step and spatial 
grid size have to be very small, which seriously limits 
the system size and time duration of a simulation. The 
ability to performing reliable long-time simulation 
is critical in the fundamental understanding of  the 
scaling behavior of  morphological pattern evolution. 

In this paper, we implement an accurate and effi- 
cient semi-implicit Fourier-spectral method for solv- 
ing the phase-field equations. For the time variable, 
we propose to employ semi-implicit schemes in which 
the principal elliptic operator is treated implicitly to 
reduce the associated stability constraint, while the 
nonlinear terms are still treated explicitly to avoid 
the expensive process of  solving nonlinear equations 
at each time step. Thus, at each time step, we have 
to deal with a constant-coefficient elliptic problem 
which, in the case of  periodic boundary conditions, 
can be solved efficiently and accurately by the Fourier- 
spectral method whose convergence rate is exponen- 
tial (for smooth functions) as opposed to second or- 
der by a usual finite-difference method. This method 
enjoys the following advantages over the conventional 
explicit Euler finite-difference method: 
• Thanks to the exponential convergence of the 

Fourier-spectral discretization, it requires a signifi- 
cantly smaller number of  grid points to resolve the 
solution to within a prescribed accuracy, say I%. 
We refer to [2] for more details. 

• High-order semi-implicit treatment in time enables 
us to use considerably larger time step size while 
maintaining higher accuracy. 
It should be noted that the numerical scheme used 

in this paper, a combination of  a Fourier-spectral 
method with backward difference schemes, has previ- 
ously been employed in many different contexts, see, 
for instance, the books [2] and [3] and the refer- 
ences therein. However, to the best of our knowledge, 
this particular numerical scheme had not previously 
been applied to the phase-field equations, although 
a somewhat related approach was considered in [4] 
and [5] .  

In the next section, we will present our method and 
point out the main differences with commonly used 
methods. In Section 3, we will apply our schemes to 
predict the equilibrium profiles of  an order parameter 
across a stationary planar interface and the velocity of  
a moving interface, for which the accuracy of results 

can be easily determined. Wc will compare the accu- 
racy and efficiency of our results with those obtained 
by the commonly used explicit Euler finite-difference 
scheme. We will also apply our method to an exam- 
ple on strain-induced morphological transformation in 
two-phase systems, for which our method is shown to 
be particularly advantageous over real-space methods 
since the elasticity problem for an elastically homo- 
geneous system has an analytical solution in Fourier 
space. Some concluding remarks are presented in the 
last section. 

2. Semi-implicit Fourier-spectral method 

To fix the idea, let us first consider the TDGL equa- 
tion in reduced units which is written as 

07 
3~ = f ( ~ )  + ~72~, (1) 

subjected to the periodic boundary conditions and ap- 
propriate initial condition, where t is the time in re- 
duced unit, the unknown r/ is a nonconserved order 
parameter, and f ( r / )  = - ' q  ( r / -  1 ) ( r / +  1 ) for a sim- 
ple double-well local free energy density function. 

2.1. Explicit Euler finite-difference method 

In the two-dimensional case, the Laplacian op- 
erator in ( l )  can be discretized by using either a 
second-order five-point or fourth-order nine-point 
finite-difference approximation. For a five-point ap- 
proximation at a given time step n, we set 

2 n 1 
v~,,7~ (Ax)  2 ~--~(n7 - ~7) ,  (2) 

i 

where h = Ax is the spatial grid size and j represents 
the set of first nearest neighbors of i in a square grid. 
The explicit Euler finite-difference scheme can then 
be written as 

rff +' = rl7 + At [ ( f ( r l  n) )i + vzr/~ '] , (3) 

where At is the time step size. The above scheme is 
the most often used scheme in numerical simulations 
of the TDGL or Cahn-Hilliard equations (see, for in- 
stance, [6-10]  ). 
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It is well known (see, for instance, [ 11 ]) that 
the above scheme, and other higher-order explicit 
schemes, have a time step constraint dictated by 

At ~-~ ( A x )  2 , (4) 

which is the consequence of explicit treatment of 
the Laplacian operator. Thus, with the second-order 
five-point finite-difference approximation, there is no 
advantage to use a higher-order explicit scheme for 
which the time step is still restricted by (4). This 
remark and its extreme simplicity are the main rea- 
sons why the explicit Euler finite-difference scheme 
is widely used in practice. However, for relatively 
simple equations in simple geometries as we are in- 
terested here, it is possible to develop much more 
efficient numerical schemes. We will present below 
a semi-implicit Fourier-spectral method which is ca- 
pable of providing significantly more accurate results 
with less grid points and larger time step size. 

It should be noted that an explicit scheme for the 
CH equation has a much severer time step constraint 
dictated by (see, for instance, [ 11 ] ) 

At ..~ ( A x )  4 , ( 5 )  

which is the consequence of explicit treatment of the 
biharmonic operator in the CH equation. This con- 
dition will become prohibitively restrictive for small 
grid sizes and for three-dimensional problems. 

2.2. Semi-implicit Fourier-spectral method 

Instead of using a finite-difference approximation, 
we propose to use a Fourier-spectral approximation to 
( 1 ) by transforming the partial differential equation 
into a sequence of ordinary differential equations in 
the Fourier space 

d 
~ t ~ / ( k ,  t )  = { f ( r / ) } k  -- k2~(k, t ) ,  (6 )  

where k = (kl,  k2) is a vector in the Fourier space, k = 
x/k~ + k 2 is the magnitude of k, ~ (k ,  t) and { f ( r / )  }k 
represent the Fourier transforms of r/(x, t) and f ( r / ) ,  
respectively. Thus, the explicit Euler Fourier-spectral 
method is to approximate the above equations by the 
explicit Euler scheme 

This scheme has been extensively used in numeri- 
cal simulations of systems involving long-range in- 
teractions such as long-range elastic and coulombic 
interactions for which analytical expressions exist in 
Fourier space (see [ 12,13 ] ). Unfortunately, although 
this scheme provides excellent spatial accuracy, it is 
only first-order accurate in time and suffers from the 
same very restrictive time step constraint (4) with 
Ax = T/N, where T is the period of the function and 
N is the number of grid points in one direction. 

To remove the shortcoming with the small time step 
size associated with the explicit Euler scheme, we pro- 
posed the following semi-implicit scheme: 

(1 + Atk2)~n+l(k) =~n(k)  + A t { f ( ~ n ) } k ,  

1 - ½ N + l _ < k , ,  k2_<v_N, (8~ 

where N is the number of grid points in one direction. 
To reduce the computational cost, the nonlinear term 
{f( r /" )  }k should be evaluated by using the so-called 
transform method developed by Orszag (see, for in- 
stance, [ 2] ). 

It will be shown below that we can increase the time 
step size by about 10 times (assuming zXx = 1.0) by 
using semi-implicit scheme (8) as compared to the 
explicit one (7), yet still maintain the spatial accu- 
racy of the Fourier-spectral method. The increase in 
time step size would become about 100 times if we 
reduce the spatial grid size from 1.0 to 0.25. There- 
fore, scheme (8) is the ideal choice if one is mainly 
interested in the final equilibrium solution, e.g. in the 
equilibrium shape of a domain. However, it should 
be emphasized that (8) is still only first-order accu- 
rate in time, and hence is not sufficient if one is in- 
terested in time-dependent solutions. The accuracy in 
time can be significantly improved by using higher- 
order semi-implicit schemes. For instance, a second- 
order backward difference (BDF) for (d/dt)O and a 
second-order Adams-Bashforth (AB) for the explicit 
treatment of nonlinear term applied to (6) lead to the 
following second-order BDF/AB scheme: 

(3 + 2Atk2)~/n+l (k)  = 4Y/" (k)  - ~,,-1 (k)  

+2At [2{f(rl" ) }k -- { f ( ' q " - ' )  }k]. (9) 

~"+' (k) = #"(k) + At [{f(~")}~ - k2#"(k)]. 
(7) 

We may use (8) to compute r~ j, and hence f ( r l l ) ,  
which are needed to start the iteration in (9). 
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We can also construct a third-order semi-implicit 
B D F / A B  scheme, 

( I 1 + 6Atk2)¢/"+1 (k)  = 18¢f (k)  - 9¢/"-J (k )  

+2~/"-2(k)  + 6At [3{ f ( r f l )}k  - 3 { f ( r / n - ' ) } k  

+ { f(¢-2)  }k]. (1o) 

To start the iteration in (10) ,  we may use respectively 
(8) and (9) to compute ¢/1 and 42. 

Similar semi-implicit schemes of  fourth-order or 
higher can also be constructed, but our experiences 
suggest that the second- and third-order schemes 
above usually provide the best accuracy/cost  ratio. 
For many problems of  interest, the second-order 
scheme is sufficiently accurate. 

It can be shown, and is verified by our numerical 
experiments (see Table 2), that the above schemes 
are unconditionally stable in the sense that for a fixed 
set of  physical parameters there exists a critical Ate, 
independent of  the spatial grid size, such that for all 
At <Atc, the above schemes are stable for all spatial 
grid sizes. Thus we may choose time step size much 
larger than that allowed by an explicit scheme. 

Similar schemes can be designed for the fourth- 
order Cahn-Hilliard equation 

c9C = _ V 2 ( f ( ¢ )  + V2e)  , (1 1) 
cgt 

where c is a conserved order parameter, usually the 
local composition for a binary system. By using the 
Fourier-spectral method for the spatial variables, and, 
treating the linear fourth-order operators implicitly 
and the nonlinear terms explicitly, the first-order semi- 
implicit Fourier-spectral scheme is 

(1 + Atk4)gn+l(k) = ~n( k) + AtkZ{f(cn) }k. 
(12) 

A corresponding second-order BDF/AB scheme is 

(3 + 2Atk4)g n+l (k)  = 4pn(k) - ~ n - I  (k)  

+ 2 a t k  2 [2{f (cn)}k  - { / ( c n - ' ) ) k ]  . (13) 

Our preliminary numerical simulations indicate that 
by going from explicit to semi-implicit, the time step 
can be increased by two to three orders of  magnitude. 

Note that Copetti and Eliiott [ 14] recently proposed 
a semi-implicit finite-difference method for solving 

the CH equation as applied to the kinetics of  spinodal 
decomposition. In their scheme, the CH equation was 
first discretized using a second-order five-point finite- 
difference approximation, and then transformed to the 
Fourier space. Using their scheme, the TDGL equation 
becomes 

d 
~-7~(k, t) = { f ( r / )}k  - A(k)C/(k, t ) ,  (14) 

where 

a ( k )  = (2cos(2~-kx + 2cos(27rk~.) - 4 ) / ( A x )  2 , 

with k = (kx,ky) = (kl/Nx, k2/Ny), where Nx and 
Ny are respectively the number of  grid points along 
the x and y directions. They then discretized the above 
equation using a first-order semi-implicit scheme in 
time. It should be noted that although (14) and (6) 
appear to be similar, they are fundamentally different 
because the spatial discretization error of  (14) is still 
second order due to the finite-difference approxima- 
tion. 

3. Numerical simulations and discussions 

In order to compare the accuracy and stability of  the 
proposed semi-implicit Fourier-spectral method with 
other commonly used schemes, we calculated an one- 
dimensional equilibrium profile across a stationary flat 
interface and studied the shrinkage kinetics of  a two- 
dimensional circular domain. For both examples, the 
exact solutions can be obtained and the accuracy of  nu- 
merical solutions can be reliably assessed. To demon- 
strate the application, we also present a numerical sim- 
ulation of  strain-induced morphological evolution in 
two-phase systems. 

3.1. The equilibrium profile 

We consider the TDGL equation (1) in one dimen- 
sion. The system size is 128 in reduced units. At t = 0, 
half of  the grid points are assigned a value of  + 1 and 
the other half - 1 .  Since we applied periodic bound- 
ary conditions, there are two interfaces which separate 
regions with "q = + 1 and - l: one is at the origin and 
one at x = 64. It is found that, with a system size of  
128, the two interfaces are sufficiently far apart and 
they do not interact, i.e. the order parameter profile 
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Fig. 1. Equilibrium profiles across a stationary planar interface 
obtained from the finite-difference method for various grid sizes 
ranging from Ax = 0.125 to 4.0. 

Fig. 2. Equilibrium proliles across a stationary planar interlace 
obtained from the spectral method for various grid sizes ranging 
from Ax = 0.125 to 4.0. 

across an interface is not affected by the presence of 
a second interface in the system. 

It is obvious that the equilibrium profile is the same 
and independent of  the time step size, whether one 
uses an explicit  or the implicit  method. However, the 
accuracy of  the equilibrium profile obtained from the 
numerical computat ion does depend on the spatial grid 
size and on the accuracy of  the spatial discretization 
scheme. Therefore, we just  need to compare the pro- 
files obtained from the finite-difference discretization 
scheme and the spectral method. The equilibrium pro- 
files obtained from the finite-difference scheme (3)  
and from the spectral method (8 ) ,  are shown in Figs. 1 
and 2, respectively, for various grid sizes ranging from 
Ax = 0.125 to 4.0. Figs. 1 and 2 display only part 
of  the profile associated with the interface at x = 64. 
In Fig. 3, we compare the profiles obtained from the 
finite-difference method and the spectral method at 
Ax = 0.25. Notice that the profiles are visually the 
same, indicating that both methods provide satisfac- 
tory results at Ax = 0.25. We then compare the pro- 
files from the two methods for Ax = 1.0 in Fig. 4. 
One may notice that all the data points obtained from 
the spectral method are still very close to the accu- 
rate equilibrium profile (obtained with Ax = 0.01),  
whereas the four data points within the interfacial re- 
gion obtained from the finite-difference method are 
noticeably different. 

In order to have a better idea on the accuracy ob- 

Table 1 
Comparison of errors in calculating the order parameter pro- 
files across an interface using finite-difference and Fourier-spectral 
methods 

Ax Finite-difference method Fourier-spectral method 

0.25 0.5% 0.0% 
0.5 2.2% 0.0% 
1.0 10.4% 0.4% 
2.0 24.2% 7.6% 

tained from the two methods, we estimated the errors 
for the data points within the interfacial region for a 
number of  different grid sizes (Table 1 ). We assumed 
that the values obtained from the spectral method with 
Ax = 0.01 are as accurate. 

From Table 1, it is clear that Ax = 1.0 is more 
than sufficient to achieve an accuracy of 0.5% using 
the spectral method. On the other hand, to achieve 
the same spatial accuracy using the finite-difference 
scheme, Ax has to be reduced to 0.25 or smaller, i.e. 
the spatial grid size in the finite-difference scheme has 
to be at least four times smaller than that used in the 
spectral method. 

Very often it is meaningful to measure the grid size 
in terms of  the interface width which can be analyti- 
cally estimated (Fig. 5) to be 

L = 2 V ~  2.8.  
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Fig .  4.  Comparison o f  the order parameter profiles across a sta- 
tionary planar interface obtained from the finite-difference ( F D )  

method and the Fourier-spectral (FS)  method both using A x  = 1.0. 

Based on the estimate of  the interfacial width and 
Table 1, one can see that the error using three grid 
points to resolve the interfacial region is about 0.4% 
in the spectral method, whereas in the finite-difference 
method, to achieve the same accuracy, at least twelve 
grid points are required to resolve the interfacial width. 

We also compare the maximum size of  time step that 
one can use in various numerical schemes in Table 2. 

N u m e r i c a l  s c h e m e  Atmax Atmax 

( A x =  1 .0 )  ( A x = 0 . 2 5 )  

Explicit Euler finite-difference 0 . 2 5  0 .03  

Explicit Euler Spectral 0 . 0 9  0 . 0 0 6  

First-order semi-implicit  spectral 0 .9  0 .9  

Second-order semi-implicit  spectral 0 .6  0 .6  

Third-order semi-implicit  spectral 0 .4  0 . 4  

The maximum size of  time step was estimated from 
the numerical computations as the maximum value 
that one can use and still produces the same profile 
as those obtained using smaller size of  time steps. As 
discussed above, in order to achieve a similar level 
of  accuracy (e.g. 0.5%), the spatial grid size in the 
finite-difference method has to be at least four times 
smaller than that used in the spectral method. There- 
fore, in Table 2, we compare the maximum time step 
size for two different spatial grid sizes, Ax = 1.0 and 
0.25. According to Table 2, reducing the spatial grid 
size from 1.0 to 0.25, the corresponding time step size 
has to be reduced by about 10 times in the two ex- 
plicit schemes. On the other hand, in the semi-implicit 
schemes, the same time step size could be used with 
the two different spatial grid sizes. 

It is clear that semi-implicit schemes allow much 
larger time step sizes than explicit schemes do, and 
that higher-order semi-implicit schemes are slightly 
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Table 3 
Relative CPU per time step with a fixed number of grid points 

Numerical scheme Relative CPU 

Explicit Euler finite-difference 1.0 
Explicit Euler spectral 1.26 
Semi-implicit finite-difference 1.26 
First-order semi-implicit spectral 1.26 
Second-order semi-implicit spectral 1.39 
Third-order semi-implicit spectral 1.46 

less stable than lower-order semi-implicit  schemes. 
In Table 3, we list the relative computational times 

for each time step using different schemes, normalized 
by the value corresponding to the explicit  Euler finite- 
difference scheme ( ~  7 . 9 E - 3  second for each time 
step with a 256 x 256 2D lattice run on Cray C90).  
The Fourier transforms were performed using the Fast 
Fourier Transform routines on Cray C90. Notice that 
the semi-implici t  spectral schemes only cost 25% to 
45% more per time step (with the same number of  
grid points) than the explicit  Euler finite-difference 
schemes, but provide significantly more accurate re- 
sults and allow much larger time steps. Combining 
the results in Tables 1, 2 and 3, we can roughly es- 
timate the improvement  on computational efficiency 
using a semi-implici t  spectral method relative to the 
explicit  Euler finite-difference scheme. To solve a 2D 
TDGL system with an accuracy of about 0.5%, the rel- 
ative speedup for using the second-order semi-implicit  
scheme is 4 x 4 x 0.6 - 0.03 - 1.39 ~ 230. For a 3D 
system, the speedup would be ~ 920. 

3.2. The velocity o f  a circular moving interface 

In order to predict quantitatively the kinetics of  mi- 
crostructurai evolution, one has to calculate not only 
the accurate equilibrium profiles but also the accu- 
rate velocity of a moving interface. To compare the 
accuracy of  various schemes, we consider the TDGL 
equation (1)  in two dimensions and a system size 
256 x 256 (in reduced units).  At  t = 0, there is a cir- 
cular interface boundary with a radius of  100. The or- 
der parameter  values inside the circle are assigned + l 
and - 1  outside. Such a circular interface is unstable 
and the driving force for its motion is the mean curva- 
ture. Therefore, the circle will shrink and eventually 
disappear (Fig.  6) .  It can easily be shown that, in the 

153 

limit that the radius of  the circle is much larger than 
the interfacial thickness, the velocity of  the moving 
interface, V, is given by (see [ 151 ) 

dR 1 
V - d t  R ' (15)  

where R is the radius of  the circle at a given time t. The 
negative sign indicates the interface moves towards its 
center of  curvature. Integrating (15) ,  we find 

Ro 2 - R 2 = 2 t ,  (16)  

where R0 is the initial radius size, or 

A = A0 - 2¢rt,  (17)  

where A is the area of the circle at time t and A0 is 
the initial area. 

The areas of  a circle as a function of  time obtained 
from different numerical schemes are shown in Fig. 7 
using time step size At = 0.25, which is the maximum 
value that one can use to avoid numerical instabil- 
ity for the explicit  Euler finite-difference scheme. The 
grid size, Ax, is chosen to be 1.0. The area of  the cir- 
cle is calculated by counting the total number of  grid 
points at which the order parameter values are larger 
than 0. The explicit  spectral scheme was not included 
in Fig. 7, since, with this time step size, it is unstable. 
As we can see from Fig. 7, all the schemes result in a 
linear dependence of  the area on time. However, the 
slopes of  the lines are quite different. The thick solid 
line labeled as "theory" is a plot of Eq. (14)  with a 
slope of 27r. We may characterize the accuracy of  dif- 
ferent schemes by comparing the slopes of  the lines 
with the analytical Eq. (14) .  The resulting errors are 
shown in the third column of  Table 4. Notice that, with 
this time step size, the semi-implici t  finite-difference 
scheme leads to the worst accuracy as compared to the 
analytical result with an error of  ,~ 18%. On the other 
hand, there is no visible difference between the nu- 
merical results obtained from the second-order semi- 
implicit spectral method and the analytical solution on 
the sharp-interface limit (error ~ 0.033%).  The er- 
rors from the explicit  Euler finite-difference scheme 
and the semi-implicit  spectral scheme are similar ( 
9 .1-9 .2%) and somewhere in-between those obtained 
from the semi-implici t  finite-difference scheme and 
the second-order semi-implici t  spectral method. One 
may nntice that, with the finite-difference approxima- 
lion, reducing the time step size from 0.25 to 0.05 does 
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t = 1000  t =  2 0 0 0  t =  3000  t =  4 0 0 0  

Fig.  6. ~ m p o r a l  evolu t ion  o f  a c i r c u l ~  domain .  

m 
t =  5 0 0 0  

not improve the accuracy significantly (from 9.2% to 
9. I%) due to the limitation of the spatial resolution. 
On the other hand, with the spectral method, the pre- 
dicted interface kinetics is very accurate if a small 
enough time step size is employed (error ,~ 0.028 % 
with 2xt = 0.05).  In order to further improve the accu- 
racy of solution using the finite-difference approxima- 
tion, the grid size Ax must be reduced (by about four 
times according to the last section). The dependence 
of the areas of  a circular domain on time from differ- 
ent semi-implicit schemes are shown in Figs. 8 and 
9 for At = 0.5 and ~ t  = 0.9, respectively. The corre- 
sponding errors in the slopes, and hence in the veloc- 
ities, are listed in Table 3. Among the semi-implicit 
schemes, the finite-difference one is the worst at any 
size of time step and therefore the spectral method 
is preferred. The second-order semi-implicit spectral 
scheme seems to have the best accuracy/cost  ratio for 
this problem. According to Table 4, with a moderate 
accuracy requirement, there appears to be very little 
advantage to use a third-order semi-implicit spectral 
method. However, it may become preferable for prob- 
lems with high accuracy requirement. 

3.3. Strain-dominated microstructure evolution 

To demonstrate the wide applicability of  the semi- 
implicit Fourier-spectral method, we consider the mi- 
crostructure evolution in elastically homogeneous co- 
herent two-phase solids using the Cahn-Hiiliard equa- 
tion ( 11 ). In coherent systems, one of the main con- 
tributions to the total driving force for microstructure 
evolution is the elastic strain energy caused by the lat- 
tice mismatch between the two phases. It is safe to 
assume that the mechanical equilibrium in a system is 
established much faster than any diffusion processes. 
As a result, the system is always at mechanical equi- 
librium during phase separation or during coarsening. 

 5,o,1 jiL, ix i:i::! theory 
~ . ; ,  i ! .  : :i: i : t ~ F D  explicit I 

3 '° '  ] : . ~ i  :i::::: :! i :i ::i:: i :it + vD-,mp,~,:~t ] 

2 10 ~ 

1.5104 

1 104 

5O0O 

0 

0 1 103 2 10 ~ 3 10 ~ 4 10 ~ 5 10 ~ 

time 
Fig.  7. Areas  of  a c i rcular  d o m a i n  as a funct ion  o f  t i m e  obta ined  

f r o m  d i f fe ren t  numer i ca l  s c h e m e s  u s i n g  a t i m e  step s ize  ~ t  = 0.25.  

F D :  f in i te-di f ference;  FS :  Four ie r -spec t ra l .  

3.5 104 . . . .  " , " 
" " : ; : ~i theory 

~ i ~ . : . .  : - !~---~--FD implicit t 
104 3 :~L~i,.~ : : i • FS implicit 

1 1 0  4 

5000 

0 

0 1 10 ~ 2 1 0  ~ 3 10 a 4 10 ~ 5 I0 ~ 

time 
Fig .  8. Areas  o f  a c i rcu la r  d o m a i n  as  a func t ion  o f  t i m e  ob ta ined  

f r o m  di f ferent  numer ica l  s c h e m e s  u s ing  a t i m e  step s ize  At  = 0.5.  

F D :  f in i te-di f ference;  FS :  Four ie r - spec t ra l ,  
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Table 4 
The errors in the slopes of the area dependence of  a circular domain 
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Schemes At = 0.05 At = 0.25 At = 0.5 

Explicit Euler finite-difference 
Explicit Euler spectral 
Semi-implicit finite-difference 
First-order semi-implicit spectral 
Second-order semi-implicit spectral 
Third-order semi-implicit spectral 

9.1% 
0.028% 

9.2% not stable 
not stable not stable 
18.1% 25.5% 
9.1% 16.7% 
0.033% 0.033% 
0.033% not reliable 

Therefore, at each time step, the mechanical equilib- 
rium equations have to be solved either numerically 
or analytically. It was shown by Khachaturyan [ 16] 
that, in the homogeneous modulus approximation, the 
elastic energy of any arbitrary microstructure can be 
analytically calculated. However, the elastic energy 
is a double-volume integral of infinitely long-ranged 
elastic interactions in real space, and its contribution 
to the total driving force enters the right-hand side 
of Eq. (11) as a volume integral, a nonlocal term. 
Therefore, direct numerical solution of the CH equa- 
tion (11) in real space is prohibitively difficult. In 
Fourier space, the elastic energy is reduced to a single 
volume integral of the Fourier transform of the elastic 
interactions and its contributions enters CH equation 
as a single term. For example, for the first-order im- 
plicit scheme (12), it becomes 

(1  +Atk4)?n+l(k) = 6 n ( k ) ( 1  +B(e)) 

+Atk2{ f ( cn ) }k ,  (18) 

where e is a unit vector in Fourier space and B(e )  
is the Fourier transform of the long-range elastic in- 
teractions. For a cubic two-phase solid and assuming 
that the lattice parameter difference between the two 
phases is directly proportional to their compositional 
difference, i.e., Vegard's law, in a two-dimensional 
model, B(e )  is given by [ 17,12] 

B(e) = 2 2 ( 1 9 )  Belexey , 

where ex and ey are the x and y components of the unit 
vector e, and Bel is a material constant which depends 
on the elastic constants and misfit strain. A positive 
value for Be1 represents a system with negative elastic 
anisotropy. It is clear from Eq. (18) that the elastic 
energy contribution to the total driving force does not 

complicate the numerical solution of CH equation in 
the Fourier-spectral method. 

An example of microstructural evolution obtained 
from Eq. (18) is shown in Fig. 9. The system size is 
2048 × 2048 in reduced units with periodic boundary 
conditions along both x and y directions. The real 
space grid size, Ax, is equal to 1.0 and time step At 
is chosen to be 2.0 although as large as 2.5 can be 
used. The parameter Bel is set to 2.0. The nonlinear 
function, f ( c ) ,  is given by 

f ( c )  = c ( 1 - c ) ( l ÷ c ) ,  (20) 

which produces equilibrium compositions at - 1.0 and 
+1.0 in the absence of elastic interactions. The initial 
condition is a homogeneous composition distribution 
plus small random perturbations, i.e. at t = 0, 

c(r)  = Co + ( ( r ) ,  (21) 

where Co is the average composition which is chosen 
to be 0, and hence the volume fractions of the resul- 
tant two phases are 50% each. ( ( r )  is a small ran- 
dom perturbation at each grid necessary to evolve the 
initial homogeneous state. The gray levels in Fig. 9 
represent the magnitude of c at each grid point in 
real space. As one would expect, the initially homo- 
geneous phase separates into regions of low and high 
compositions followed by coarsening of the compo- 
sition domains (Fig. 9). The strong alignment of the 
composition domains along the x and y directions is 
entirely due to the long-range elastic interactions since 
the interfacial energy is isotropic. For a cubic alloy 
with negative elastic anisotropy, x and y directions 
are elastically soft directions and morphological align- 
ment along those directions results in decreases in the 
elastic energy. Just for comparison, the morphological 
evolution in the same system but without the elastic 
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t =  0 t = 9 5 0  t = 2 8 5 0  

t = 8550 t = 23750  t = 38000  

Fig. 9. Temporal evolution of strain-dominated morphological patterns during a spinodal decomposition aad subsequent coarsening. 

:.~ 

t = 0 t = 950  t = 2850  

t = 8550 t = 23750  t = 38000  

Fig. 10. Temporal evolution of morphological patterns during spinodal decomposition and subsequent coarsening without the elastic strain 
effect. 
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interactions is shown in Fig. 10. To determine the effi- 
ciency of the semi-implicit method, we also performed 
numerical simulations of the Cahn-Hilliard equation 
using the explicit Fourier-spectral method. We found 
that the maximum time step that one can use with- 
out developing numerical instability is 0.005 which is 
about 400-500 times smaller than that can be used in 
the first-order semi-implicit method. In most previous 
numerical simulations of strain-induced morphologi- 
cal evolution, the explicit method was employed, see 
the review article [18]. We also tested the second- 
order BDF/AB scheme (13). The maximum time step 
lhat we can use is 0.4 which is about 5 times smaller 
than the first-order scheme. Our preliminary results 
show that, for this particular problem, the difference in 
obtained results on domain growth kinetics from the 
first- and second-order schemes is on the same order 
of magnitude as the differences arising from different 
set of initial random perturbations, ( ( r ) ,  introduced 
to the initial homogeneous state, which seems to indi- 
cate that the first-order scheme already provides suffi- 
cient accuracy. For more general cases of using Cahn- 
Hilliar equation to predict time-dependent quantities, 
the accuracies of first- and higher-order schemes re- 
main to be studied. 

4. Concluding remarks 

We introduced an efficient and accurate numerical 
scheme, the semi-implicit Fourier-spectral method, for 
solving the TDGL equation and CH equation. 

For a single TDGL equation, it is demonstrated that 
for a prescribed accuracy of 0.5% in both the equilib- 
rium profile of an order parameter and the interlace 
velocity, the semi-implicit Fourier-spectral method is 
about 200 and 900 times more efficient than the ex- 
plicit Euler finite-difference scheme in 2D and 3D, 
respectively. 

For a single CH equation describing the strain- 
dominated microstructural evolution, the time step 
that one can use in the first-order semi-implicit 
Fourier-spectral method is about 400-500 larger than 
the explicit Fourier-spectral method. 

Although we have only considered the periodic 
boundary conditions here, the semi-implicit schemes 
can also be efficiently applied to the TDGL and 
CH equations with Dirichlet, Neumann or mixed 

boundary conditions by using the fast Legendre- or 
Chebyshev-spectral methods developed in [19,20] 
for second- and fourth-order equations. On the other 
hand, the proposed method has also its limitations. 
It is most efficient when applied to problems whose 
principal elliptic operators have constant coefficients, 
although problems with variable coefficients can be 
treated with slightly less efficiency, for instance, by 
an iterative procedure (see, e.g., [19]) or by a col- 
location approach (see, e.g., [3]).  Also, since the 
proposed method uses a uniform grid for the spatial 
variables, it may have difficult to resolve extremely 
sharp interfaces with a moderate number of grid 
points. In this case, an adaptive spectral method may 
become more appropriate (see, e.g. [ 21 ] ). 

As a final note, it should be pointed out that many 
previous numerical simulations using the TDGL and 
CH field equations are limited by the poor efficiency 
and accuracy of the explicit finite-difference schemes. 
As a result, the growth rates of the spatial scale of 
a morphological or microstructural pattern predicted 
from such numerical simulations cannot be trusted. It 
is also questionable that the so-called "scaling state" 
of a microstructure has ever been reached in these 
simulations because of the limit on simulation time 
and system size, as pointed out by Oono very re- 
cently [22], "...an honest numerical solution of the 
fourth-order nonlinear partial differential equation for 
very long time for very large systems is still pro- 
hibitively difficult. All the published numerical results 
on the Cahn-Hilliard equation should be interpreted 
as the numerical results due to inefficient or not op- 
timized cell-dynamics system (CDS) models". Al- 
though we feel that the latter statement might be too 
inclusive, but at least it indicates that many previous 
published numerical results were not quite reliable. 
By using the highly accurate and stable semi-implicit 
spectral methods proposed in this paper, it is now fea- 
sible to perform highly accurate numerical simulations 
on the TDGL and CH equations for much larger sys- 
tems and for much longer time. As demonstrated in 
our preliminary simulations using the CH equation, 
the proposed spectral method is particularly powerful 
for studying the temporal evolution of microstructural 
patterns influenced by long-range interactions such as 
long-range elastic interactions. 
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