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The majority of advanced engineering
materials contain multiphase and/or
multidomain structures. Their physical and
mechanical properties depend strongly on
the number of phases present and their mu-
tual arrangement; the volume fraction of
each phase; and the shape, size, and size
distribution of domains (or grains). This
article describes a continuum diffuse-inter-
face field approach to modeling microstruc-
tural evolution and its application to a num-
ber of different processes, including precipi-
| tation reactions through nucleation and
| growth, structural transformations involv-
ing symmetry changes, and curvature-driv-
en grain growth.

INTRODUCTION

Microstructures are thermodynami-
cally unstable features that evolve with
time. The driving force for the temporal
evolution of a microstructure usually
consists of one or more of the following:

* A reduction in the bulk-chemical
free energy.

* A decrease of the total interfacial
energy between different phases or
between different orientation do-
mains or grains of the same phase.

¢ Relaxation of the elastic-strain en-
ergy generated by the lattice mis-
match between different phases or
different orientation domains.

¢ External fields such as applied
stress, electrical, temperature, and
magnetic fields.

The phase changes and related micro-

structural development driven by the

tion of a microstructure is obtained by
solving a set of differential equations in
each phase and /or domain with bound-
ary conditions specified at the interfaces
that are moving with time. Such a mov-
ing-boundary or free-boundary prob-
lem for complicated microstructures is
impossibletosolveanalytically and very
difficult numerically. Moreover, differ-
ent processes (e.g., phase transforma-
tions, grain growth, and Ostwald ripen-
ing) haveusually been treated separately
using different physical models.

In order to overcome these difficul-
ties, there has been increasing interest in
the last few years in using the diffuse-
interface field model to model micro-
structural evolution. Different from the
conventional sharp-interface approach,
the field model describes a heteroge-
neous state consisting of phases and/or
domains asawholeby using a set of field
variables that are functions of spatial
coordinates. The most familiar example
of a field variable is the composition or
concentration field, which characterizes
compositional heterogeneities. The tem-
poral evolution of these field variables is
then described by time-dependent ki-
netic field equations.

The main objective of this article is to
give a brief account of the diffuse-inter-
face field model and its applications to
modeling microstructural evolution,
ranging from structural transformations
to grain growth in a number of different
processes in solids. It should be pointed
out that the references cited are just a

few examples of the recent applications
of the diffuse-interface field model to
various processes and are, by no means,
complete.

DIFFUSE-INTERFACE FIELD
MODEL

Description of Microstructures

Microstructures in the field model are
described by a set of spatially dependent
field variables from which the spatial
distributions of grains and/or domains
of different phases and the boundaries
between them can be analyzed. For the
purpose of demonstration, three rather
simple examples are schematically
shown in Figure 1: a homogeneous dis-
ordered phase described by a homoge-
neous composition field, (c); an iso-
structural two-phase mixture with com-
position differences between the two
phases described by an inhomogeneous
composition field, c(r); and an ordered
single phase with antiphase domain
boundaries characterized by an inho-
mogeneous long-range order parameter
field, n(r), and a homogenous composi-
tion field (assuming no segregation to
antiphase domain boundaries), c . In the
upper three figures of Figure 1, the mi-
croscopic-level morphologies are de-
scribed by the occupation probabilities
of one atomic species on a given lattice
site. The field variables c and 1 are con-
tinuous across the interfaces between
different phases or between structural
domains. Examples of one-dimensional
composition profiles before and after an

decrease of the bulk-chemical

isostructural decomposition are

‘ free energy are usually consid-

ered as phase transformations,

whereas, the microstructural

evolution driven by the reduc-

tion in the total interfacial free
energy is called coarsening.

In the conventional treatment

‘ of interface motion, amultiphase

and/or multidomain heteroge-

neous microstructure is charac-

l l l

schematically shown in Figure
2. Figure 2a represents a homo-
geneous single-phase described
by a homogeneous composition
profile with random small per-
turbations; Figure 2b shows a
two-phase mixture with equilib-
rium compositions ¢,and c;.

Thermodynamic Driving

’ terized solely by the geometry of
sharp interfacial boundaries be-
tween different phases and/or
between structural domains of
different orientations. These

c(ry=c,
nn=0

Force for Microstructural
Evolution

As mentioned, the driving
force for the temporal evolution
of a microstructure is usually a

boundaries are mathematical in-

sum of several contributions, in-

terfaces of zero thickness. The a
phasesand domains areassumed
to have a fixed composition and
structure. The dynamic evolu-

Figure 1. Schematics demonstrating the representation of
morphologies by field variables. (a) disordered single phase,
(b) two-phase mixture, and (c) ordered single phase.

cluding the reductionin thebulk-
chemical free energy (F, ), the
interfacial energy (F,_ ), the elas-
tic energy (F,,..), and the ener-
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gies(F_ ) dueto apphed fields. The total
free energy of a system is

F.,=F .+F.+F

tot bulk

+ Fapp, (1)

While the bulk-chemical free energy
depends only on the volume fractions of
each constituent phase, all other terms
are usually microstructure-dependent.
Since the microstructures are described
by field variables, in order to model their
evolution the free energies have to be
formulated as functionals of the field
variables; then, the driving forces are
defined as the first variational deriva-
tives of the free energies with respect to
the field variables. At equilibrium, the
total free energy is minimized and the
total variational derivative is zero.

elast

Bulk-Chemical Free Energy

In the field approach, the bulk-chemi-
cal free energy is described by a local
chemical free-energy density function,
usually formulated as a Landau-type of
polynomial as a function of field vari-
ables. At equilibrium, the local free-en-
ergy density function is minimized with
respect to the field variables. If the initial
state is not at equilibrium, there is a bulk
driving force for phase transformations,
which is best illustrated for the case of
simplest isostructural decomposition in
which the initial state is a homogeneous
single phase; at equilibrium it is a two-
phase mixture. The bulk-chemical driv-
ing force (per unit volume) for decom-
position of the initially homogeneous
single phase with composition c into an
equilibrium two-phase mixture of com-
positions ¢, and ¢, is Af as indicated in
Figure 3. The total bulk driving force is
the volume integral of Af.

Interfacial Free Energy

To illustrate how the interfacial en-
ergy is introduced into the field model,
consider a system that can be described
by a single inhomogeneous field, ¢. The
total chemical free energy (F, . =F, . +

) N s chem bulk
F,,) is then given by~

Fom = [ @) +k(VORIAV  (2)

where f is the local free-energy density
function and k is a positive constant

called the gradient-energy coefficient.
The gradient term is introduced as an
energy penalty on field inhomogene-
ities such as those that occur at an inter-
face. Therefore, the total excess free en-
ergy associated with interfaces, or the
total interfacial energy, in the diffuse-
interface descriptionis givenby theequa-
tion

E, = j [£(0)~£,(0) + k(V$)!ldV  (3)
where f (¢) is the equilibrium free-en-
ergy density of a two-phase mixture,
which, for the case of isostructural de-
composition, is represented by the com-
mon tangent line through ¢, and ¢; in
Figure 3.

Elastic-Strain Energy

To incorporate the elastic-strain en-
ergy contribution to the total driving
force for microstructural evolution, the
strain energy must be formulated as a
functional of the field variables. This can
beaccomplished by expressing the stress-
free strain field, £(r), through c(r) if the
strain is predommantly caused by the
concentration heterogenelty4 or through
n, (r) if the strain is mainly due to the
structural-order parameter heterogene-
ity,* for example,

ed(r) = (c(r)-T)ey 4)
&)= En(er(p) )

where € is the average composition, v is
the number of different orientation
variants,

w-da
i ade

(6)
is a tensor of the concentration expan-
sion coefficient and

e (p)= L 5% @)
(o) 2

where 1 is the equilibrium value of the
structural order parameter for the prod-
uct phase and a_ and a, are the lattice
parameters of the equilibrium product
and matrix phases at the stress-free state,
respectively. The tensors € and 800(p)

describe the stress-free

c(x, 0) c(x, 1)

s

transformation strains
that transform the par-
ent phase intonew phase
particles in a stress-free
state.

By assuming that the
parent and product
phases have the same

elastic constants, close
analytical expressions

a b

for the strain energy

Figure 2. Schematic one-dimensional composition profiles of (Few) asafunctionof c(r)
(a) a homogeneous phase with small random noise and (b) a or 1_(r) can be obtained

two-phase mixture of equilibrium compositions ¢, and Cp-

in tEi'le Fourier space

initial state

f (free energy density)

Ca CB

C

Figure 3. A schematic free-energy density
curve as a function of composition showing
the driving force for decomposition of a homo-
geneous solution at composition ¢, into a two-
phase mixture with equilibrium compositions
¢, and ¢, is Af.

based on the elasticity theory of
Khachaturyan for arbitrary distributions
of precipitates.® Therefore, all of the in-
formation concerning a morphology or
microstructure is contained in the field
variables ¢(r) and (1), while all of the
information on the Crystallography of a
phase transformation is described by the
stress-free strains.

Evolution Equations

Thereare two types offield variables—
conserved or nonconserved. The most
familiar example of a conserved field
variable is the concentration or compo-
sition field, which distinguishes the dif-
ference in compositions between two
phases. An example of a nonconserved
field is the long-range order parameter
field that describes the local degree of
order in ordered alloys with antiphase
domains. If @is the conserved concen-
tration field (c), its temporal evolution is
governed by a diffusion equation thatis,
in the diffuse-interface context, usually
referred to as the Cahn-Hilliard equa-
tion’

dc

Koy 8

5 *] ®)
where
] = _MV(“' chem + uclast) (9)
Hohem = Low _g (@-kVze (10)
dc
SF,

= elast ll

p’chcm SC ( )

It can be shown that the curvature ef-
fect on the chemical potential (i.e., the
Gibbs-Thompson effect) is automatically
included through the gradient term. In
particular, it can be shown that
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Define the initial microstructure
o(r, t=0),n;(r, t=0)

'

Calculate the driving forces
dF/dc, dF/dn;

v

Integrate the field equations to obtain
c(r,t+At), Ni(r,t+At)

+

Figure 4. A schematic of the main steps
involved in a field simulation.

fB - fu oK
Mchem = - =
C;3 - Co( Cl3 - Ca
o oK
Hem = (12)
CB _Ca

where c,—, is the change of concentra-
tion across the interface, ¢ is the interfa-
cial energy per unit area, K is the local
mean curvature of an interface, and fB—f(x
is the difference between the free ener-
gies of the two bulk equilibrium phases.

On the other hand, if a system can be
described by asingle nonconserved field
(e.g., the long-range order parameter
field for describing the congruent order-
ing and antiphase domain coarsening)
its evolution is described by a relaxation
equation, often called the time-depen-
dent Ginzburg-Landau equation:

on(r, t) -L oF
ot n(r,t)

where L is the relaxation constant.

In general, however, for a given inho-
mogeneous system, more than one field
variable is required to describe a micro-
structure. The temporal and spatial evo-
lution of field variables are then de-
scribed by coupled nonlinear diffusion
equations for conserved fields c(r,t) and
relaxation equations for nonconserved
fields. With random thermal noise, both
types of equations become stochastic,
and their applications to studying criti-
cal dynamics have been extensively dis-
cussed.”1

(13)

Computer Simulation Procedure

In order to carry outa computer simu-
lation of microstructural evolution em-
ploying the field approach, four steps
must be taken.

¢ Determine the physically proper
field variables for a system under
consideration.

* Formulate a local free-energy den-

sity function as a function of the
chosen field variables that should
correctly describe the symmetries
and basic thermodynamic behav-
iors of the system.

* Choose the phenomenological co-
efficients entering the kinetic equa-
tions from experimental measure-
ments or more fundamental calcu-
lations.

* Set-up the appropriate initial and/
orboundary conditionsand numeri-
cally solve the field kinetic equa-
tions.

Figure 4 illustrates the main steps in-

volved in a computer simulation.

APPLICATIONS

Since the field approach is phenom-
enological, it can potentially be applied
to simulating the microstructural devel-
opment in a rich variety of material pro-
cesses by choosing different field vari-
ables. Examples of some recent applica-
tions are summarized in Table I.

Precipitation of Ordered
Intermetallics

Figure 5 shows an example of micro-
structural evolution during precipita-
tion and coarsening of ordered interme-
tallic precipitates in an initially meta-
stabledisordered solid solution, obtained
fromatwo-dimensional computer simu-
lation with 256 x 256 grid points.?> Two
fields—a concentration field and a long-
range order parameter field—were in-
troduced. The local free-energy density,
f(c, m), was assumed to be a polynomial
with second-order incand six-orderinm

f(c,m)= %A(c—c’)2 +%B(c"-c)n2 -
1,1
L 2 14
4Cn +6Dn (14)

where A, B,C, D, ¢’, and ¢” are phenom-
enological constants. The free energy of
the disordered phase can be obtained by
setting the value of the long-range order
parameter equal to zero [i.e., f(c,n = 0)].
The free energy of the ordered phase can
be calculated by replacing n by using the

0.1 |-disodered] /TN ordered
) ijah,a,s,e/ | . N\..phase |

B

0 0.2 0.4 0.6 0.8 1
C

Figure 5. A two-dimensional projection of the
local free-energy minima with respect to long-
range order parameter on the f-c plane. AB
designates the typical driving force Af.

equilibrium long-range order parameter
as a function of composition, n,(c) [ie,
f(c, n,(c)l. Their common tangent deter-
mines the equilibrium compositions of
the two coexisting phases as shown in
Figure 6 for a specific set of constants,
A=75,B=4.0,C=1.0,D=0.5(measured
in an energy unit equal to the typical
chemical driving force |Afl), ¢’ = 0.1,
and ¢”=0.5. The gradient-energy coeffi-
cients were chosen insuch a way that the
interphase and antiphase domain bound-
ary energies are isotropic. The elastic
modulusisassumed tobe homogeneous
with a negative cubic elastic anisotropy;
the elasticstrain is assumed to be mainly
due to the compositional inhomogene-
ities. In addition, the stress-free strain is
assumed tobe purely dilatational. Nucle-
ation of the ordered precipitate particles
was simulated by thermal fluctuations
introduced through the noise terms
added to the right sides of the kinetic
equations.

The microstructures were visualized
by gray levels representing different
values of the local composition, c(r,t),
except for Figure 6a, where the values of
N(r,t) were represented. At the initial
stage, two kinds of ordered domains,
represented by black and white forn >0
and 1 <0, nucleate as near-circular par-
ticles with a near-random distribution
(Figure 6a). As the particles grow insize,
they gradually transform into square-
like shapes, and spatial correlation be-

Table I. Examples of the Field Model Applications

1996 December « JOM

Types of Processes Field Variables References
Isostructural Spinodal Decomposition c 4,9,11, 12
Ordering and Antiphase Domain Coarsening n 13,14
Solidification in Single-Component Systems n 15-19
180° Ferroelectric Domain Formation P (polarization) 20
Solidification in Alloys c,n 21-24
Precipitation of Ordered Intermetallics with

Two Kinds of Ordered Domains () 25-27

Four Kinds of Ordered Domains ¢, Ny, My My 27,28
90° Ferroelectric Domain Formation pP,P,P, 29,30
Cubic—Tetragonal Displacive Transformation My Ny My 31,32

or Martensitic Transformation
Tetragonal Precipitates in a Cubic Matrix C, My, Ny N, 33,34
Ordered Precipitate Morphology under Stress My My My 35
Grain Growth in a Single-Phase Material Ny, Myreer Mg 36
Grain Growth in a Two-Phase Mixture S, My, Nyyeer Mg 37
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tween particles (alignmentalong theelas-
tically soft <10> directions) starts to de-
velop. It may be pointed out that both
the shape transition and spatial correla-
tion are entirely caused by the morphol-
ogy-dependent anisotropic elastic inter-
actions since the interfacial energies are
isotropic. Subsequent coarsening of the
precipitates takes place via two different
mechanisms—coalescence between
neighboring particles and normal Ost-
wald ripening. Finally, a rafting struc-
ture consisting of chains of alternating
square- or rectangular-shaped precipi-
tate particles is formed (Figure 6d). Al-
though the simulation was performed in
two dimensions, the predicted micro-
structures show remarkable qualitative
agreement with experimental observa-
tions® (Figure 7).

Martensitic Transformations

A second example is shown in Figure
8 for the case of a martensitic transfor-
mation, obtained from a three-dimen-
sional simulation.” A cubic — tetragonal
transformation in an elastically isotro-
picmodel system was considered, which
results in three orientation variants of

the tetragonal phase with the tetragonal
axes along [100], [010], or [001] direc-
tions of the cubic phase. Therefore, three
nonconserved order parameter field—
M, N, and n,—are introduced to de-
scribe the three orientation variants (Fig-
ure9). Thelocal free-energy density func-
tionis approximated by a six-order poly-
nomial with respect to the three struc-
tural order parameters, which charac-
terizes a first-order transition. It has a
localminimum atm = 0and six degener-
ated global minima at n=4n¢,4m},£ny.
Interfacial energies are assumed to be
isotropic.

The simulation was started from a
homogeneous cubic solid solution de-
scribed byn, (r) = 1,(r) = n,(r) = 0, which
is metastable with respect to the forma-
tion of the tetragonal orientation do-
mains. The nucleation process was mod-
eled by the Langevin noise terms added
into the kinetic equations.

Since the field approach does not im-
pose any constraint on the transforma-
tion path, it allows the system itself to
choose the optimal evolution path and
to adopt the optimal structural configu-
rations corresponding to a critical

Figure 6. The microstructural evolution during precipitation of an ordered intermetallic phase from
a disordered matrix when (a) 1= 10; (b) T = 20; (c) T = 300; (d) T = 5,000, where tis measured in
a reduced time unit, T = t™M|Af|, M is defined in Equation 9, and Af is the typical driving force. The
white and black particles in (a) are in antiphase relation to each other.

2um

Figure 7. A comparison between experimen-
tal observation and simulation prediction of
the discontinuous rafting structure in nickel-
based superalloys showing (a) a transmis-
sion electron microscopy micrograph of Ni-Al-
Mo aged 2,330 hours at 775°C (courtesy of M.
Fahrmann) and (b) the simulation prediction
shown in Figure 6d.

nucleus. Todetermine the critical nucleus
configuration, the noise terms were arti-
ficially turned off after a certain period
of time in the simulation. Under this
condition, all heterogeneities corre-
sponding to the noncritical fluctuations
will eventually disappear and the sur-
viving heterogeneities are the critical or
operational nuclei.

Figure 8a shows the morphology of a
survived nucleus after switching off the
noise terms. For the sake of simplicity,
only two of the three orientation vari-
ants—n, and n,—were considered in this
simulation. The nine small squares in
eachmicrographare the consecutive two-
dimensional cross sections of a three-
dimensional cube with 64 x 64 X 64 mesh
points. The sections are perpendicular
to the [010] axis of the cubic phase and
are equally spaced. The gray level de-
scribes IM,(r) [-In,(r)|, with high val-
ues represented by white. Therefore, the
white and black regions represent two
different orientation variants of the tet-
ragonal martensitic phase and the gray
background represents the cubic matrix.
It can be seen in Figure 8a that all the
nuclei are polydomains consisting of
twin-related two-orientation variants.
This transformation path is drastically
different from that usually assumed by
the classical nucleation theory in which
nucleation is considered as a single par-
ticle event. This simulation result dem-
onstrates that the homogeneous nucle-
ation in a martensitic transformation is
most likely a multiparticle event with
the nucleus consisting of several orien-
tation domains arranged into a spatially
correlated group (polytwin structure) to
accommodate the elastic strain.

Figures 8b through 8d show how these
polydomain nuclei evolve into marten-
sitic plates during subsequent growth
and coarsening. Two intersecting mar-
tensitic plates with different habit
planes—(110) and (101)—are formed at
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sformation through homoge-

neous nucleationwhen (a) 1= 2, (b) t= 6, (¢) t= 10, and (d) t = 20, where t =tLIAfl. The nine smali
squares in each micrograph are the consecutive two-dimensional cross sections of a three-

dimensional cube along the [010] axis.

late stages. They are at equilibrium with
the cubic parent phase matrix. Extend-
ing the aging time did not change the
volume fraction of the martensite. The
habit planes are determined by the ratio
of the volume fractions of the two-orien-
tation variants composing the plates, and
they coincide with the habit planes pre-
dicted from the invariant plane strain
condition.

Grain Growth

The final example is an application of
the field model to grain growth in a
single-phase system, in which grains of
a given crystallographic orientation are
represented by a large set of non-
conserved order parameter fields.* An
example of microstructural evolution
obtained from a two-dimensional simu-
lation with 512x 512 grid pointsis shown
in Figure 10, in which 36 nonconserved
field variables were introduced. The lo-
cal free energy fis chosen such thatit has
p degenerate minima with equal depth
located at(n, n,,..m,,)=(1,0,...,0),(0,1,...,0),
s (0,0,...,1). The grain-boundary ener-
gies were assumed to be isotropic. The
initial condition was specified by as-
signing small random values to all field
variables at every grid point (e.g., -0.001
< n; < 0.001), simulating a liquid. The
microstructure was represented by de-
fining the field variables

o(r) = Sn2(r) (15)

which were displayed by gray levels
with low and high values represented
by dark and bright colors, respectively.
Since the values within the domains are
high while those at the boundaries are
low, the bright regions are grains and
the dark lines are grain

all the statistical information about the
microstructuresuchas the average grain
size, size distribution, average number
of sides, side distribution, and local to-
pological changes can be obtained.® In
addition to grain growth in single-phase
materials, the continuum-field method
has also been applied to modeling the
coupled grain growth and Ostwald rip-
ening in two-phase solids*” and coarsen-
ing of a solid-liquid mixture at high vol-
ume fractions of solids.®

DISCUSSION

One of the main advantages of the
field approach is that any arbitrary mi-
crostructure can be easily treated since
the interfaces are not singular surfaces
requiring imposition of special bound-
ary conditions, butare justregions where
the fields have very high gradients. In
addition, different thermodynamic driv-
ing forces for microstructural evolution,
including bulk-chemical free energy,
interfacial energy, elastic-strain energy,
magnetic energy, electrostatic energy,
and applied fields, and, hence, different
processes such as nucleation, growth,
coarsening, and field-induced domain
switching can be described within the
same physical and mathematical model.
Finally, in the diffuse-interface field
model, it is straightforward to take into
account long-range diffusion, which
takes place, for example, during precipi-
tation of second-phase particles, solute
segregation, and second-phase precipi-
tation at grain boundaries in a polycrys-
talline material.

It should be pointed out that, similar
to the conventional sharp-interface ap-
proach, the field model gives no direct
information on the atomic structure of
different equilibrium and nonequilib-
rium phases and interfacial boundaries.
Computationally, simulations using the

boundaries. Since the ini-
tial values for n; are es-
sentially zero, the very
early stage of the simu-
lation corresponds to
crystallization (i.e., the
growth of m, values at
differentlocations driven
by the bulk free-energy

change). A well-defined
grain structure was
formed after ashort time,
and all the bulk driving

forcewas consumed very 3,
rapidly. Further micro-
structural evolution was
driven by the excess free
energies associated with
the grain boundaries, re-
sulting in growth of over-
all microstructure scales

¢ t N
a
—— )
c

a

or grain size.
With the temporal mi-

crostructural evolution, parameters.

Figure 9. Cubic — tetragonal transformation producing three
orientation variants represented by three nonconserved order
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field model are still quite intensive. For
example, a typical grain-growth simula-
tion with 512 x 512 uniform grid points
and 36 orientation variables using the
simple, forward Euler technique for nu-
merical integration takes about five hours
of computer processor unit (CPU) time
ona Cray-C90 supercomputer, and for a
typical simulation of Martensitic trans-
formation using 64 x 64 x 64 uniform
grid points, it requires about two hours

Figure 10. The microstructural evolution dur-
ing grain growth using 36 nonconserved field
variables and a two-dimensional simulation
with a512 x 512 grid points. t = the number of
time steps in the simulation. (a) t = 1,000, (b)
t = 3,000, (c) t = 5,000, and (d) t = 8,000.

of CPU time and 48 megabytes of
memory. Therefore, new fastalgorithms
and techniques for solving the kinetic
equations will be very beneficial for the
practical applications of the field model
to large-scale simulations.

Finally, as demonstrated in the ex-
ample of precipitation of ordered inter-
metallic precipitates and others, excel-
lent agreements between predicted and
experimentally observed microstruc-
tures can be achieved, at least qualita-
tively, using the field model (e.g., in
terms of the sequence of phase transfor-
mations, shape evolution, and mutual
arrangement of precipitate particles) as
long as the model incorporates the es-
sential physics involved in a given pro-
cess. Even some quantitative informa-
tion such as the growth exponent of the
average particle size as a function of
time and particle size distributions in
the scaling regime seems to be rather
insensitive to the specific parameters
employed in thesimulation. However, if
quantitative information on the abso-
lute coarsening rate of a microstructure
is desired, the effect of the accuracy of
the time and spatial discretization of the
kinetic field equations might be signifi-
cant and must be considered.
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