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Computer Simulation Model for Coupled Grain Growth and
Ostwald Ripening—Application to Al,O,—ZrO, Two-Phase Systems

Long-Qing Chen and Danan Fan

Department of Materials Science and Engineering, The Pennsylvania State University,

A Kkinetic model based on generalized continuum time-
dependent Ginzburg-Landau (TDGL) equations is proposed
for studying coupled grain growth and Ostwald ripening
in multiphase systems. In this model, an arbitrary multi-
phase microstructure is described by many orientation field
variables which represent crystallographic orientations of
grains in each phase and by n — 1 composition field vari-
ables which distinguish the compositional differences among
n phases. Microstructural development during simultane-
ous grain growth and Ostwald ripening is predicted by the
temporal evolution of these field variables by numerically
solving the TDGL equations. A particular example, Al,O,—
ZrO, particulate composite, was considered. The effects of
the volume fraction of ZrQ, on the microstructural features
and their evolution were studied and compared to experi-
mental observations and previous thermodynamic analysis.

I

GRAIN growth is a process in which the average grain size of
a single-phase polycrystalline material increases with time,
driven by the reduction in the total grain boundary energy. The
driving force for a given boundary to move is the difference in
the chemical potentials of an atom on the opposite sides of the
grain boundary, which may be written as

Ap =0, MH, + H,)
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where A is the chemical potential change for an atom going
from one side of the grain boundary to another, o, is the grain
boundary energy, () is the atomic volume, and (H, + H,) is
the local mean curvature. The velocity of boundary migration
is determined by the rate at which atoms jump across the
boundary.

V =BAwn 2

where V is the grain boundary migration velocity and B is
the boundary mobility. The typical diffusion distance for atoms
involved in a grain boundary migration is, therefore, on the
order of the boundary width which, for a pure material, is about
two or three lattice parameters.

On the other hand, Ostwald ripening usually refers to a
process during which large second-phase particles grow while
small particles dissolve in a matrix, resulting in a reduction in
the total interfacial energy between the precipitates and matrix.
The driving force is the difference in the chemical potentials of
atoms in large and small second-phase particles, which results
in a difference in the compositions of solute atoms in the matrix
immediately outside the second-phase particles.
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where A is the chemical potential difference of a solute atom
in two particles with respective radii of r, and r,, o, is the
interfacial energy between the precipitate (o) and matrix (8),
and () is the atomic volume of a solute atom. In order for a large
particle to grow, however, solute atoms outside a small particle
have to diffuse through the matrix to regions near the large
particle. Therefore, the typical diffusion distance for atoms
involved in the Ostwald ripening process is on the order of the
separation distance between second-phase particles.

Due to their different characteristics, grain growth and
Ostwald ripening were usually treated as two separate pro-
cesses. For example, essentially all classical mean-field and
statistical theories of normal grain growth as well as recent
computer simulations considered only pure single-phase sys-
tems,' whereas theoretical models of Ostwald ripening consid-
ered only single crystals and thus avoided the complexity due
to grain boundaries.>

In many ceramics and metallic alloys of practical application,
in particular, in multiphase polycrystalline materials, grain
growth and Ostwald ripening may take place simultaneously.
Important examples include the ZrO,—Al,0; two-phase par-
ticulate composite in ceramics® and the two-phase (¢ + B)
titanium alloys in metallic systems.*” Even in single-phase
materials, second-phase precipitates were often observed at
grain boundaries, and they may undergo Ostwald ripening dur-
ing grain growth. In fact, pores may be treated as a second
phase during sintering.

There have been numerous theoretical attempts to study the
effect of second-phase particles on grain growth kinetics. Most
of the theoretical models™® and Q-states Potts model simula-
tions'* considered small and immobile second-phase particles
which cannot coarsen. Recently, the thermodynamics of a two-
phase microstructure, in which the volume fractions of the two
constituent phases are not conserved, have been analyzed by
Cahn,” and the corresponding kinetics of grain growth and
microstructural evolution were studied by Holm et al.'* using
the Potts model.

The main purpose of this paper is to propose a new approach
for simulating the kinetics of coupled grain growth and Ostwald
ripening in systems in which the volume fractions are con-
served. It is based on our recent computer simulation model for
grain growth in single-phase systems,'>™” in which the grain
boundaries are described in the spirit of the diffuse-interface
theory of Cahn and Hilliard."* Computer simulations using this
model will allow one not only to monitor the detailed micro-
structural evolution during coupled grain growth and Ostwald
ripening but also to obtain information about the average grain
size and size distribution of all the phases. As an example, the
Al,0,~Zr0O, system was considered. The emphasis will be on
the microstructural features predicted from the computer simu-
lation and on their comparison to experimentally observed
ones. The unique features of topological changes observed dur-
ing coupled-grain growth and Ostwald ripening, as compared to
single-phase normal grain growth, will be discussed. The
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detailed kinetics of grain growth in Al,0,—Zr0O,, such as the
time dependence of grain size and size distributions, the topo-
logical changes and distributions, and the effect of different
diffusion paths (boundary or lattice diffusion), will be reported
in a future publication.

II. The Model

(1) Description of the Microstructure of a Two-Phase Solid

The microstructure of a fully dense two-phase solid is sche-
matically shown in Fig. 1, which comprises two phases: o and
B, with different compositions, and very often, different crystal
structures. There are, in principle, an infinite number of differ-
ent crystallographic orientations in space for the grains of the
two phases, and, roughly speaking, there are three different
boundaries: grain boundaries in «, grain boundaries in (3, and
the interphase boundaries between a and (3. These boundaries
may be viewed as material regions with certain thicknesses,
within which atoms are not in perfect crystal lattice positions.
We assumed that across a boundary the composition or crystal-
lographic orientation continuously varies from one grain to
another; i.e., we treat grain and interphase boundaries as diffuse
interfaces with finite thickness.

Within this diffuse-interface context, we describe an arbitrary
two-phase polycrystalline microstructure using a set of continu-
ous field variables,

LmEMC(r) @

where n¢(i = 1,...,p) and mP(j = 1,..., ¢) are called orienta-
tion field variables with each representing grains of a given
crystallographic orientation of a given phase. Those variables
change continuously in space and assume continuous values
ranging from —1.0 to 1.0. For example, a value of 1.0 for
m5(r), with values for all the other orientation variables 0.0 at r,
means that the material at position » belongs to an o grain with
the crystallographic orientation labeled as 1. Within the grain
boundary region between two o-grains with orientation 1
and 2, 5 (r) and m35(r) will have absolute values intermediate
between 0.0 and 1.0. C(r) is the composition field which takes
the value of C, within an o grain and C, with a 8 grain. C(r)
has intermediate values between C, and Cg across an o/
interphase boundary.

Following Cahn and Hilliard,'® the total free energy of a two-
phase system, F, can be written as

MM,y (r),ME (), mE (),

M4

Fig.1. Schematic description of a two-phase microstructure.
(i =1,...,p) and n®(j = 1,...,q) are orientation field variables
with each representing grains of a given crystallographic orientation of
a given phase (denoted as a or 3).
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where f, is the local free energy density, k., k¢, and k? are the
gradient energy coefficients for the composition field and orien-
tation fields, and p and g represent the number of orientation
field variables for o and (. The cross-gradient energy terms
have been ignored for simplicity.

The energy of a planar grain boundary, og,, between an
a-grain of orientation i and another o-grain of orientation j may
be calculated as follows:

+oo

2
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where fo(n{,,m;.,C,) represents the free energy density mini-
mized with respect to m{ and m at the equilibrium composition
of a, C,. The grain boundary energy for § can be calculated
similarly. The definition of grain boundary energy (6) includes
the composition gradient term and automatically takes into
account the effect of solute segregation to grain boundaries.
The interphase boundary energy between an o-grain with
orientation i and a (3-grain with orientation j is given by
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(2) Kinetic Equations

By defining orientation and composition field variables, the
kinetics of coupled grain growth can be described by their
spatial and temporal evolution. In the present model, the evolu-
tion kinetics of these field variables are described by the time-
dependent Ginzburg—Landau (TDGL) equations, which are the
continuum Allen—Cahn'® and Cahn—Hilliard"® equations.

ety _ . OF o
T = —LS (D) i=1,2,....,p (10a)
dm®(r, t) . SF o
ar L b LT 1,2,...,q (10b)
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where L, L®, and L. are kinetic coefficients related to grain
boundary mobilities and atomic diffusion coefficients, which
may be functions of local orientation and composition field
variables, ¢ is time, and F is the total free energy. It may be
noticed that the cross terms in the right-hand side of (10) have
been neglected. The difference between kinetic equations for
orientation fields and concentration fields comes from the fact
that concentration is a conserved field which satisfies local
and global mass conservation or conservation of phase—volume
fractions in a system, whereas an orientation field is noncon-
served, since the volume fraction of grains of a given orientation
is not conserved.

Substituting the free energy functional F in (5) into the
kinetic equation (10) gives

dne 9
% = —L?[Wfi - Kfvzn?] i=1,2....p (lla)
dmP 9
% = —L?[Wf‘g - K?Vz'ﬂ?:| i=1,2...,q (11b)
ac 9
5 = VL V[ fo _ Cvzc] (11¢)

(3) Construction of the Local Free Energy Density
Function of a Homogeneous Phase

In order to solve the kinetic equations and thus simulate the
coupled grain growth and Ostwald ripening for a given system,
the thermodynamics of the system need to be specified. For this
purpose, we need to construct the free energy functional, f;. f,
should have the following characteristics: (a) If the values of all
the orientation field variables are zero, it describes the depen-
dence of the free energy of the liquid phase on composition.
(b) The free energy density as a function of composition in a
given a-phase grain is obtained by minimizing f, with respect
to the orientation field variable corresponding to that grain
under the condition that all other orientation field variables are
zero. (c) The free energy density as a function of composition
of a given B-phase grain may be obtained in a similar way.
Therefore, all the phenomenological parameters in the free
energy model, in principle, may be fixed using the information
about the free energies of the liquid, solid a-phase and solid
[B-phase.

Another main requirement for f; is that it has p degenerate
minima with equal depth located at (m§,m5,...,m;) = (1,0,...,0),
©,1,...,0), ..., (0,0,...,1) in p-dimension orientation space at
the equilibrium concentration C,, and has ¢ degenerate minima
located at (mf,m%5,....,m%) = (1,0,...,0), (0,1,...,0), ...,
(0,0,...,1) at Cy. This requirement ensures that each point in
space can belong to only one crystallographic orientation of a
given phase.

(4) Determination of Other Thermodynamic and Kinetic
Parameters

Once the free energy functional, f;, is obtained, the gradient
energy coefficients can be fitted to the grain boundary energies
of o and 3 as well as the o/B boundary energy by numerically
solvmg Eqgs. (6) and (8). The kinetic coefficients, L, L?®, and
L, in principle, can be fitted to grain boundary mobility and
atomic diffusion data.

III. Application to A1,0,~ZrQO, and Discussions

For the purpose of illustrating the application of the pres-
ent model, a particular system, Al,0,—ZrO,, in which the
microstructural evolution has been extensively investigated
experimentally, is considered. Unfortunately, however, the ther-
modynamics of this system are not well characterized. There-
fore, since we do not have the free energy information about the
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AL O,—ZrO, two-phase system, we construct the following free
energy functional:
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where C, and C, are the equilibrium compositions of « and
phases or solubilities, C,, = (C, + Cy)/2, A, B, D,, Dy, Y,» Y,
8,,dg, and € are phenomenological parameters

It should be emphasized that since we are not interested in
phase transformations between « and {3, the exact form of the
free energy density function may not be very important in
modeling microstructural evolution in a two-phase solid. The
reason is that the driving force for grain growth is the total grain
and interphase boundary energy. Other important parameters
are the diffusion coefficients and boundary mobilities. In other
words, we assume that the values of the grain and interphase
boundary energies together with the kinetic coefficients com-
pletely control the kinetics of microstructural evolution, irre-
spective of the form of the free energy density function.

It should also be pointed out that the absolute values of
the grain and interphase boundary energies may not be very
important, whereas their ratios actually play a key role in
determining the microstructural features of a two-phase solid,
and it is the ratios that can be experimentally measured. In the
Al,0,Zr0O, system, it was reported® that the ratio of grain
boundary energy in Al,O, (denoted as o phase) to the inter-
phase boundary energy between ALO, and Z1O, is R, =
o%,/o® = 1.4, and the ratio of grain boundary energy in ZrO,
(denoted as (3 phase) to the interphase boundary energy is:
Ry = 8. /o% = 0.97. Because of the anisotropy of grain
boundary energies and the interphase boundary energy, there
are actually distributions of R, and R, instead of a single value.
However, in this paper, for simplicity, we ignored the distribu-
tions. To adjust the gradient coefficients (k., k%, and k?) and
phenomenological parameters in the free energy density func-
tion to produce these experimentally determined ratios, the
equilibrium profiles of the orientation fields and the composi-
tion field across a flat boundary (either grain boundary or an
interphase boundary) were first obtained, and then substituted
to Eq. (6) or (8) to calculate the grain or interphase boundary
energy. We also assumed that the solubilities are 1% of one
phase in another (C, = 0.01, C; = 0.99). It is found that
parameters A = 2.0, B = 983, D, = Dy = 1.52,y, = vy, =
1.23,8,=98,=10,e =1.0,e = 7.0, k. =1.5, k# = 2.5, and
k= 2.0 give the experimentally determined energetic ratios
for the Al,0,—ZrO, system. The grain boundary energies and
the interphase boundary energy were assumed isotropic. Fur-
thermore, we also assume isotropic grain boundary mobility,
and the chemical diffusion coefficient is assumed to be the
same in the two phases. Since we can always normalize the
length and time scales of kinetic equations with the diffusion
coefficient and boundary mobilities, we simply choose
Ly=LE=10andL.=05.

To solve the set of kinetic equations (11), the Laplacian was
discretized by the following equation:

PLAGIEHON (12)

uM\:

Mlm

20 — 1 l _ 1 B

where ¢ is a field variable, Ax is the grid size, j represents the
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Fig.2. (a) Profiles of orientation field variables across a grain boundary separating two grains with orientations labeled as 1 and 2 in the o phase.
Solid line—the profile of orientation field variable 1 (n{); dotted line—the profile of orientation field variable 2 (m3). (b) The composition profile
across a grain boundary showing significant segregation in a single phase with overall average composition 0.01.

set of first nearest neighbors of i, and j' is the set of second
nearest neighbors of i. The kinetic equations were then solved
using the simple explicit Euler technique.

All the results were obtained by using Ax = 2.0 and Az (the
time step for integration) = 0.25. For simplicity, the computer
simulations were carried out in two dimensions with 256 X 256
points and with periodic boundary conditions applied along
both directions. The total number of orientation field variables
(p + ¢q)is 30.

To initiate a computer simulation, one may either input a
predefined initial two-phase microstructure or generate one by
assigning small random values to all the orientation field vari-
ables and the overall average composition to the composition
variable at all grid points, which simulates a liquid at a high
temperature. In this paper, the initial microstructures were gen-
erated from fine grain structures produced by a normal grain
growth simulation, and then by randomly assigning all the
grains to either « or B according to the desired volume frac-
tions. We assumed that the microstructural evolution takes place
isothermally.

To visualize the microstructures produced from the computer
simulation, the following function is defined:

¢m=&%@hmmﬂ+2mww (14)

For example, {s(r) may be displayed by using gray-levels with
low and high values represented by dark and bright, respec-
tively. With this definition, the values of () within a  grain
are close to 1.0 and within an a grain close to 0.75, while those
at the boundaries are close to zero or significantly less than 1.0.
Therefore, the bright regions will be B grains (Zr0O,), gray
regions are a grains (Al,0,), and the dark lines are grain or
interphase boundaries.

The equilibrium profiles of orientation fields and composi-
tion field across a flat grain boundary in « are shown in
Figs. 2(a) and (b). It can be seen that, across a grain boundary,
the values of an orientation field continuously change from one
grain to another. The composition profile (Fig. 2(b)) shows
significant segregation at the grain boundaries. The composi-
tion profile across an interphase boundary between o and {3 is
shown in Fig. 3.

The microstructural evolutions in systems with 10%, 20%,
and 40% of ZrQ, are shown in Figs. 4, 5, and 6, respectively.

The simulated microstructures appear to have a strik-
ing resemblance to those observed experimentally.*>** More
importantly, the main features of coupled grain growth and
Ostwald ripening, as observed experimentally and discussed
in,>* are predicted by the computer simulations. At low volume
fraction of ZrO,, the ZrO, grains are mainly located at trijunc-
tions and grain boundaries of Al,O;, and coarsening of ZrO,
grains is controlled by the Ostwald ripening process; i.e., rela-
tively large ZrO, grains grow at the expense of smaller ones by
long-range diffusion. The motion of Al,O, grain boundaries is
essentially pinned by the ZrO, grains, and the grain size of
AL, grains is more or less fixed by the locations and distribu-
tions of ZrO, particles. Once a ZrO, particle disappears at a
given trijunction or grain boundary, the coarsening of Al,O;
grains and the readjustment of the grain topology around that
junction takes place quite rapidly. The number of Al,O; grain
boundaries pinned is determined by the number of ZrO, parti-
cles and the volume fraction of ZrQO,. At low volume fraction
of ZrO,, the number of ZrO, particles available for pinning is
small; as a result, the rate of grain growth is greater than in
systems with relatively high volume fractions (compare Figs. 4,
5, and 6). At high volume fraction of ZrO, (Fig. 6), grains of
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i |
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Fig. 3. Composition profile across an interphase boundary between «
and .
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the two phases are more or less interconnected and mutually
pinned.

Although the thermodynamic analysis by Cahn" was made
on a system in which the volume fraction of the second phase is
nonconserved, Alexander® was able to predict, using the same
analysis, some of the topological features in Al,0,—Zr0,, in
which the volume fractions are conserved. In Al,O,—Zr0O,, the
grain boundary energy in Al,O, is much higher than that of
Zr0, (R, = 1.4, Ry = 0.97). Therefore, the thermodynamic
equilibrium angles at the trijunctions formed by two « grains
and a B grain (aaf) are different from those formed by one o
grain and two 3 grains («33). At a trijunction o33, the equilib-
rium angle (¢, ) in the « phase is given by 2 cos (¢,/2) = R,
and that in the B phase at a trijunction o3 is given by 2 cos
(ds/2) = R,."” Using the values of R, and R, for Al,O,—Zr0O,,
we have ¢, = 121.98° and ¢, = 91.19°. As aresult, an isolated
Al,0; (o) grain (surrounded by ZrO, grains) will have convex
boundaries if the number of grain edges is equal to or less
than 6. On the other hand, an isolated ZrO, (3) grain is concave
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until the number of grain edges is less than 4. It is reminded
that in single-phase grain growth with isotropic grain boundary
energies, grains with less than 6 edges tend to be convex and
shrink.

From Figs. 4 and 5, it can be seen that most of the isolated
Zr0, grains with 4 and more edges have concave boundaries,
which is consistent with the thermodynamic analysis.*® How-
ever, some isolated ZrO, grains in Figs. 4 and 5 have mixed
concave and convex boundaries, even though they have more
than 4 edges. The direction of curvatures can change during a
microstructural evolution. This can be clearly seen from the
evolution of the grain labeled A in Fig. 4. This grain initially
had 6 concave edges. It then transformed to a 5-sided and
then 4-sided grain with mixed concave and convex boundaries.
There are two possible reasons for the departure from the ther-
modynamic prediction. First, the balance of surface tension is
determined by the tangents of those boundaries meeting at a
trijunction; hence, the balance can be accomplished either by a

(a) (b)

() (d)

Fig. 4. Temporal microstructural evolution in Al,0,~10% ZrO, system. (a) Time step = 6000; (b) time step = 12000; (c) time step = 21 000;

(d) time step = 30 000.

(@) (b)

() (d)

Fig. 5. Temporal microstructural evolution in Al,0,—20% ZrO, system. (a) Time step = 3000; (b) time step = 12000; (c) time step = 21 000;

(d) time step = 30000.

(@) (b)

() (d)

Fig. 6. Temporal microstructural evolution in Al,0,—40% ZrO, system. (a) Time step = 3000; (b) time step = 12000; (c) time step = 21 000;

(d) time step = 30 000.
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concave and a convex boundary, or two concave boundaries, as
long as the tangents of these two boundaries provide the same
angle at the trijunction. Second, the topological change of a 3
grain is due to the coarsening of neighboring a grains, which
results in the shape change and the mass redistribution of the B
grain to accommodate the space-filling requirement. The mass
redistribution requires the diffusion of atoms along the inter-
phase boundaries or through volume diffusion, which is driven
by the chemical potential difference at different boundaries
with different curvatures around the (3 grain. Hence, it is the
local shape adjustment and mass redistribution that lead to the
formation of mixed concave and convex boundaries. It should
be noted that the area of this § grain changes very slowly,
because the coarsening of this grain is governed by the long-
distance diffusion or Ostwald ripening, while the topological
transformation and mass redistribution occur relatively rapidly,
which is controlled by the local boundary diffusion.

During microstructural evolution, there is a tendency to elim-
inate Al,Q, grain boundaries, because the energy of a Al,O,
grain boundary is much higher than that of a ZrO, grain bound-
ary and that of the interphase boundary energy between Al O,
and ZrO,, which has been discussed by Alexander ez al.’ One
way to eliminate Al,O, grain boundaries is by coarsening or
grain growth of Al,O, grains. However, if Al,O, grain bound-
aries are pinned by ZrO, grains, the second mechanism, grain
boundary switching, occurs. This can be seen from the evolu-
tion of grains in Fig. 5 labeled as B. In this region, an initial
Al,0, grain boundary is replaced by a ZrO, grain boundary
during the microstructural evolution. The driven force for this
grain boundary switching is the grain boundary energy differ-
ence between two phases. This is different from the grain
boundary switching in single-phase grain growth with isotropic
grain boundary energies, in which the grain boundary between
two smaller grains would disappear. However, in this system,
the grain boundary between two larger Al,O, grains disap-
peared because of its higher energy. As a result, as the volume
fraction of ZrQ, increases, the Al,O, grains become increas-
ingly separated by ZrO, grains. For example, at 40% of Z1O,,
most AL, O, grains are isolated by ZrO, grains.

Finally, it should be mentioned that one of the popular
existing computer simulation techniques for grain growth is the
Monte Carlo simulation technique based on the Q-state Potts
model, in which the grain orientations are labeled by integer
numbers from 1 to Q.** Therefore, it is worthwhile pointing
out some of the differences between the present model and the
Q-state Potts model. First of all, both grain boundaries and
interphase boundaries are diffuse in the present model, as
opposed to Monte Carlo simulations of normal grain growth,
which assumed that grain boundaries were sharp with zero
thickness. Secondly, unlike the Monte Carlo simulations based
on the Q-state Potts model, in which grain and interphase
boundaries are made up of kinks, all boundaries in the present
model are smooth. Third, in the present model the anisotropy
resulting from the discretization of the kinetic equations can be
minimized by using enough grid points to resolve the interfacial
regions, whereas in Monte Carlo simulations, interactions
beyond the nearest neighbors can be introduced to reduce the
effect of lattice anisotropy.? Finally, in the present model, the
atomic diffusion process is automatically described by the
Cahn-Hilliard nonlinear diffusion equation, while in Monte
Carlo simulations, it is rather tricky, although it is not impossi-
ble, to describe the long-range diffusion process such as Ost-
wald ripening.>

With the addition of a heat conduction equation, the present
model can also be employed to simulate the microstructural
evolution during solidification and subsequent grain growth and
Ostwald ripening. As a matter of fact, the phase-field model
widely employed in solidification modeling uses one phase-
field variable (called orientation-field variable in this paper) and
the composition-field variable to describe the dendritic growth
morphology.**

IV. Conclusions

A computer simulation approach based on the continuum
Ginzburg-Landau model with many orientation fields, and a
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composition field is developed for investigating coupled grain
growth and Ostwald ripening in two-phase systems. Its applica-
tion to the ZrO,—Al,O, particulate composite shows that it can
reproduce essentially all the microstructural features observed
experimentally. Although the general feature of a two-phase
microstructure can be predicted from a thermodynamic analysis
based on the grain boundary energy to interphase boundary
energy ratios, the details of the topology, the number of sides, and
curvatures of the boundaries of a second-phase grain depends
also on the local environment, the size, and spatial distribution
of neighboring matrix grains. While grain boundary switching
in a single-phase grain growth with isotropic grain boundary
energies results in the disappearance of the grain boundary
between two smaller grains, in Al,0,~ZrO, grain switching
leads to elimination of Al,O, grain boundaries as a result of
their high energy as compared to ZrO, grain boundaries.
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