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Abstract--The non-linear spinodal decomposition kinetics of a quenched homogeneous ternary alloy 
within three- or two-phase fields is modeled using a computer simulation technique formulated in the 
reciprocal lattice. Based on two-dimensional computer simulations, it is shown that, similar to binary 
alloys, spinodal decomposition in a ternary system usually produces interconnected morphologies at 
the very early stages of decomposition. For most of the compositions investigated, a decomposition of 
a homogeneous phase into three phases takes place in two stages. For some compositions, the two 
stages are the phase separation of an homogeneous phase into two phases, followed by further phase 
separation of one of the two phases into another two phases, resulting in a three-phase mixture. For other 
compositions, the first stage is a phase separation of an initially homogeneous phase into a two-phase 
mixture followed by a second stage, the appearance of a third phase along the existing interphase 
boundaries. This sequential phase separation in a ternary alloy can be justified from a thermodynamic 
stability analysis combined with the knowledge of the thermodynamic driving force for phase separation. 
It is also demonstrated that a third minor component strongly segregates to interphase boundaries during 
spinodal decomposition and subsequent coarsening of a homogeneous ternary alloy into two phases. 

INTRODUCTION equations for the local composition and for the 
pair correlation functions in a ternary system were 

A fundamental understanding of the kinetics of obtained [9] based on a non-linear kinetic theory 
solid-state decomposition or precipitation reactions derived from the Macroscopic Master Equations [10] 
during an alloy aging is crucial for controlling micro- and the very early stages of decomposition kinetics 
structures and thus the properties of technologically was analyzed by employing the linearized kinetic 
important multi-phase materials. It is generally equations [11]. However, to the author's knowledge, 
believed that, depending on the aging temperature the nonlinear dynamics of inhomogeneous morpho- 
and alloy composition within a two-phase field, there logical evolution during spinodal decomposition 
are two different modes of decomposition reactions including the subsequent coarsening process in a 
in alloys. One proceeds through nucleation and ternary system has not been extensively investigated. 
growth of second phase precipitate particles which Therefore, the main objective of this work is to 
occurs when an initial homogenous phase is stable model the microstructural evolution dynamics during 
with respect to small compositional variations but spinodal decomposition in ternary alloys by humeri- 
unstable with respect to large ones. The other is cally solving the non-linear microscopic diffusion 
spinodal decomposition which develops as a result equations [12]. To reach this objective, I will employ 
of the loss of the intrinsic stability of a quenched a computer simulation technique recently developed 
homogeneous single-phase. Since the classical work for ternary systems [13]. Due to the microscopic 
of  Cahn and Hilliard [1] and Cahn [2], there have nature of the kinetic model, it can be applied to 
been extensive experimental and theoretical works model either ordering or phase separation as well as 
on the thermodynamics and kinetics of spinodal simultaneous ordering and phase separation. More- 
decomposition in binary systems and most of the over, the coarsening kinetics of a two- or three-phase 
early investigations were summarized in the 1969 mixture of a ternary alloy can be easily modeled using 
paper of Hilliard [3]. However, there have been this technique. In this paper, computer simulation 
only a few investigations concerning decomposition of isostructural spinodal decomposition in a ternary 
reactions in ternary alloys despite the fact that the alloy is performed for several representative compo- 
most technologically important alloys are multi- sitions in a simple two-dimensional model system 
component. Among these, most of the early works with a square lattice. Some important aspects of the 
were mostly concerned with thermodynamic stability decomposition reaction in ternary systems, which 
and phase diagrams of model ternary systems [4-8]. cannot be observed in binary systems, will be particu- 
Only recently, nonlinear spinodal decomposition larly emphasized. The microstructural evolution for 
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various modes of spinodal decomposition as well as marion, the free energy F for a ternary system is 
the coarsening kinetics will be discussed by analyzing given by 
computer-generated morphological patterns. 

1 

THE KINETIC MODEL + VBc(r- r')nB(r)nc(r') 

Following [13], atomic structures and mor- 
+ VAc(r - r')nA(r)nc(r')] phologies of a ternary alloy system are described by 

single-site occupation probability functions, nv (r, t ), + k B T ~ [nA(r)ln(nA(r)) 
defined at each lattice site r for a given moment of r 
time, t, where v denotes the kind of species in a +nB(r)ln(nB(r))+nc(r)ln(nc(r))] 
ternary alloy. For instance, nA(r, t) is the probability 
of finding A atoms at lattice site, r, for a given where kB is the Boltzmann constant, T is the 
moment of  time, t, nB(r, t) is the probability of temperature and 
finding B atoms at lattice site r for time t, and nc(r, t) 
is the probability of finding C atoms at lattice site r VAa(r -- r') = WAA(r -- r') + WBB(r -- r') 
for time t. At very high temperatures, the equilibrium 
state of a system corresponds to a homogeneous - 2 W A B ( r -  r') 
disordered state described by n,(r, t) = c~ where cv is 
the overall composition for component v. When such Vac(r - r') = WBa(r - r') + Wcc(r - r') 
an homogeneous phase is quenched to low tern- - 2 W a c ( r -  r') 
peratures, it will become unstable with respect to 
atomic ordering, or compositional clustering, or both VAc(r -- r') = WAA(r -- r') + Wcc(r - r') 
(I ignore the displacive transformations) depending 
on the interatomic interactions within the system. - 2 W A c ( r -  r') 
The evolution of the initially unstable state to a stable 

in which W~,( r - r ' )  are the pairwise interaction one is a highly nonlinear and complex process. It is 
assumed in this paper that such a process may be energies between a pair of atoms, v (=  A, B or C) 
described by the Onsager-type microscopic diffusion and # (=  A, B or C), at lattice site r and r'. 

One can eliminate nc(r) in the free energy ex- equations which was first proposed by Khachaturyan 
[12]. Recent kinetic studies by the author and his pression by substituting nc(r ) with 1 -nA( r  ) --n~(r) 

and ignoring terms which do not depend on the coworkers indicated that those equations described 
inhomogeneous distribution of single-site occupation adequately the sequence of  diffusional phase trans- 

formations in binary alloys [14]. Since for ternary probability functions 
systems nA(r, t) + ha(r, t) + nc(r, t) ----- 1,0, only two I 
equations are independent at each lattice site. If  one F = ¼ ~ [ ( -  VAB(r-- r') + VBc(r-- r') 
assumes that the independent valuables are nA(r, t) ~ r  r' 

and nB(r, t), there will be two independent kinetic + VAc(r-r'))na(r)na(r') 
equations at each lattice site for species A and B, 
respectively. Then, one can write the microscopic + VAc(r--r')nA(r)n^(r') 
kinetic equations for ternary systems as 

+ Vac (r - r')n~ (r)nB (r')] 

dan(r, t) = 1 L ~L^A(r _ r') fi______~F + k. T Z [nA(r)ln(nA(r)) 
dt k~ I  ,, [_ 6nA(r' , t) 

+ na (r)ln(n B (r)) + (1 -- n a (r) 
,, 6F -] 

+ LAa(r --r)--3nB(r, ,  t )J  -- n,(r))ln(l -- na(r)-- na(r))]. (2) 

and The variational derivatives in the kinetic 
6F equation (1) can, then, be written as t) X [ L . a ( r - , ' ) - -  

dt kBT r" L 6nA(r', t) 6F 1 
= ~ ~ [(- Va~(r - r') + V ~ ( r  - r') 

6na(r') T 
+ VAc (r -- r'))]nB (r) 

where L ~ , ( r - r ' )  are the exchange probabilities +~VAc(r - - r ' )nA(r )  
between a pair of atoms, v and #, at lattice site r 
and r' within a time unit, and Fis the total Helmholtz + kB T In (1 -- nA(r') -- ns(r' ) 
free energy of the system. In the single-site approxi- 
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and and the condition that the total number of atoms is 
6F 1 conserved [equations (4) and (5)]. the Fourier trans- 

- 2 ~ -  [ ( -VAB(r -  r') form of the L-matrix can be calculated as follows 
~nB(r') Since 

+ Vac(r - r') + VAC(r -- r'))]nA (r) ~ Lv,(r) = Lye(0) + ~ '  Lye(r) -- 0. 
• t 

+ ~ Vac (r -- r')nB (r) 
, one has 

nB(r') .1. ff'~u(k) = ~ L~u (r)e-'kr 
+ kBTln (1 _ nA(r.) _ nB(r.))j (3) r 

Since the total number of A. B and C atoms are = - ~ '  Lye(r ) (1-e  -'~r) 
fixed, one has the condition 

= - 2 ~ '  L~u(r)sin2(½kr) (7) 
dn~(r) dN~ 0 (4) 

, d----~ - d--T - where the summations are over all nearest-neighbor 
where Nv is the total number of v (=  A, B or C) atoms sites r and prime in the summation indicates that 
in the system. Equation (4) implies that r = 0 term is omitted. 

The computer simulation is performed through 
Lv, ( r )=  0, v, # = A or B. (5) a numerical solution of kinetic equation (6), given 

r initial single-site occupation probability distribution 
and interatomic interactions. 

Fourier transform of the kinetic equations (1) with 
the variational derivatives (3) gives 

THE INSTABILITY SURFACE FOR A TERNARY 
dt~A (k , t) /~.AA (k) dt ka T (l'TAc(k)r~A(k' t) SYSTEM (T-c INSTABILITY DIAGRAM) 

At equilibrium, by definition, the variational 
+ ½[- I~AB (k) + l~ac (k) + ITAC (k)]fi a (k. t) derivatives of the total Helmholtz free energy with IF nA(r,t)_ -l~'~ respect to the occupation probabilities should be 
+kBT~ Lln il--ng(r,t)--nB(r,t))JJkJ zero, i.e. 

6F 6F 
+/SA,(k ) PBc(k)r~B(k, t) 6nA(r, ) = 0 and 6 n , ( r ' ) -  0. (g) 

+½[-17x. (k)+ 17Bc(k)+ I?^c(k)]fiA(k, t) At high temperatures, the equilibrium state for 
{ [ nB(r, t) .].~ .~ a ternary alloy is a homogeneous disordered state. 

Therefore, at high temperatures, nA(r)=c^ and 
+k.T In (1--nA(r, t )--na(r ,  t))_[JkJ n.(r) = c ,  is the solution to equation (8). At low 

and temperatures, let us examine the solution, 
nA(r) = cA + 6nx(r) and nB(r) = ca + 6nB(r). Using the 

dfiB(k, t) /]Bx(k) ~ ~ expressions for the variational derivatives in equa- 
dt kaT I.Vxc(k)fia(k' t) tion (3) and expanding them to the first order of 

+ ½[- lTAa(k) + lPac(k)+ IPAc(k)lfia(k, t) 6nA(r ) and ann(r), one gets 

+kBT{in[(l nA(r.t)l] ~ ~[_VA.(r_r,)+VBc(r_r, ) - nA(~, t-~--n.(r, t ) )JJ ,  J 

+/S,.. (k)~'ITac(k)r~a (k, t) + VAC(r -- r')]~in.(r) + ~ VAc(r -- r')fina(r ) 
( r 

+ ½ [ -  1TAB (k) + l~ac (k) + ITAC (k)]~A (k. t ) -I-kBT[l+l]t~nA(rt)+kBT~sna(r')=O Cc 

and +kBT In (1--nA(r,t)--na(r,t)) k 

(6) ~ [_ VAB(r_ r,) + Vac(r -- r') 
where fiA(k, t), fiB(k, t), {ln[nA(r, t)/(l -- nA(r , t) 
--nB(r, t))]}k, {ln[na(r, t)/(l --na(r, t) --nB(r, t))]}k, 

+ VAC(r -- r')]fnA (r) + ~ VBc(r -- r')rnB(r ) ITAa (k), 17ac (k), I~AC (k), /~AA (k), /~A, (k), /~BA (k), and 
Eaa (k) are Fourier transforms of corresponding func- 
tions in the real space. Under the assumption of +kaTFl+llfnB(r,,+kBT~nA(r,)=O. (9) 
atomic exchange between nearest neighbor sites only mcAccJ cc 
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Fourier transforming these two equations into The solutions to (13)are 
reciprocal space, one has 

(CAC B + CACc + CaCc) + x/(CAC B + CACc + CBCc) 2 -- 3CACBC c 

"C + ~-- 2 
(16) 

½[- VAs(k) + Vsc(k) + I?Ac(k)]6~B(k) If Cc = 0, z+ = CACs, Z_ = 0 (binary case). 
[ 1  1 ]  Let us look at some particular alloys in which the 

+ ITAC (k)3r7 A (k) + k a T + 6t~ A (k) compositions for A and B are equal, i.e. c A = cB = c, 
then 

+ k a T 6a s (k) = 0 
Cc c c =  1 - CA-- Ca = 1 --2C. 

and 
Substituting these relations into equation (16), one 

½[-- VAa(k) + VBc(k) "4- [~Ac(k)]3/'~A(k ) obtains 

+ V B c ~ ) 6 ~ B ( k ) + k B r  + ~JqA(k) ~+=~C(1--2C) and ~ _ = ~  

+ ksTs r~A~)=0 .  (10) where z+ and z_ correspond to two branches of 
Cc the instability surface of  a ternary alloy along the 

Nontrivial solutions for 3~A (k) and 3~s (k) exist when composition space in which CA = CB. 

~ ' A c ( k ) + k a T ( l + l ~ ,  ½[-- 1TAB(k) + 17"ac(k) + PAC(k)] + kaT 
\CA Cc/ Cc ----0 (11) 

½[-PAs(k)+ PSC(k)+~Ac(k)I+--, ~sc(k)+ksr + - -  
¢C 

which defines the instability surface of the original COMPUTER SIMULATION RESULTS 
homogeneous disordered alloy with respect to the AND DISCUSSIONS 
growth of concentration wave amplitudes, &iA(k ) 
and &is(k ). Expanding the above determinant, one As an example, we employ a two-dimensional 
obtains the equation square lattice to study the spinodal decomposition 

kinetics of  a homogeneous disordered ternary alloy 
(ks  T ) 2 + k s T [ V s c ( k ) c s c c +  I~Ac(k)CACc into a three- or two-phase mixture of disordered 

+ iTm(k)CACsl + ~.Ac(k)~Bc(k)CACsC c phases. 
To obtain spinodal decomposition in ternary 

-- ¼[-- tVAS(k) + ITAc(k) alloys, it is sufficient to assume nearest neighbor 
+ Vsc(k)]2cACsCc = 0 (12) interaction only. In particular, I chose the following 

interaction parameters 
where CA, CS and cc are average compositions for 
component A, B and C, respectively. The same result WAS = -- 1.0; Wac = -- 1.0; 

was obtained in [7]. WAC = --1.0. (18) 
When Cc = 0, it is reduced to the binary case 

ks T = --CAC s ~AB(k). It is emphasized that the computer simulation tech- 
nique formulated in previous sections is valid for 

The limit of stability for spinodal decomposition any range of  interactions. Moreover, since the kinetic 
corresponds to k = 0. Therefore, the spinodal surface equations are solved in the reciprocal space, the 
is given by computation time required for a system with a 

(ka T)2+ksT[~,ac(O)cscc+ ~AC(0)CACc long-range interaction will be the same as those 
with short-range interactions. For  a two-dimensional 

-{- ~'~AB(0)CACB] square lattice, the Fourier transform of WAS, Wsc 

+ ~,Ac(O)~sc(O)CACsC c and WAC are given by 

_ 1[_ VAS(0) + 17AC(0) + ~'ac(O)12CACsCc = 0. (13) 17As(k) = 2WAs[COS 2xh + cos 2x/] 

Assume the symmetric case where IVAS (0) = I~BC(0) = I?sc (k) = 2 Wsc [cos 2uh + cos 2~l] 

ITAC(0 ) = [7(0) < 0, then VAc(k) = 2WAc[COS 2uh + cos 2~ll 

(kB T)2 + ks T[cscc + CACc -[- CACB]~'~(0) where h and l are related to the reciprocal lattice 

+ -~ I~2(0)CA Ca C¢ = 0. (14) vector by k = 27t ~as (hi + lj) in which a0 is the lattice 

Let ks T/117(0)[ = z, one has parameter of the real space square lattice, i and j are 
the unit vectors along the two-dimensional Cartesian 

Z2--(CACa+CACc+CsCc)Z +~CACsCc=O. (15) coordinate axes. 
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An isothermal section of the phase diagram derived C 
from the set of interaction parameters (18) and the A I I I  
free energy model (2) is shown in Fig. 1. It is / i  ~ 
calculated by using Kikuchi's Natural Iteration 
Method (NIM) [5]. In the diagram, the A-rich phase 
is labeled as ~, B-rich phase as fl and the C-rich 
phase as 7- The temperature for this phase diagram / / ~  
is chosen to be kBT=0.4,  or in reduced unit, ? = kBT/~(O) = 0.1. All the following computer 
simulations were performed at the reduced tempera- 
ture T = 0.1. At temperature z = 0.1, the equilibrium 
compositions of ~, fl and y phases in a three-phase / / " " " ' J ~ I  
mixture are (CA = 0.9852, CB = 0.0074, CC = 0.0074), 
(c A = 0.0074, c, = 0.9852, Cc = 0.0074) and / ~ "  x+ < ~4x- lJ 
(c A = 0.0074, cB = 0.0074, Cc = 0.9852), respectively, m / ~"~ ~ 5 B 

The spinodal instability surface sectioned at d 
= 0.1 is schematically shown in Fig. 2. In region I, Fig. 2. An isothermal section of the spinodal instability 

both eigenvalues of the matrix formed by the second surface at z = 0.1. I and II represent regions in which an 
, alloy is unstable along any direction and a limited range of 

derivatives (Fxy, where F is the free energy, x, y = CA composition directions, respectively, in the composition 
or c B, and the double prime represents second space. III represents stable regions. 
derivative) of the free energy with respect to CA and 
c B are negative and therefore alloys with region I 
are unstable with respect to composition fluctuations solution z = c/2 and the parabolic line corresponds 
along any directions in the composition space or to z = (3/2)c(1 - 2 c )  in equation (17). As shown in 
called the negative definite region. In region II, Figs 2 and 3, systems with composition 3 and 4 at 
only one of the eigenvaues is negative and alloys z = 0.1 are located below both the straight and 
within region II are unstable only along certain parabolic instability lines (z ~< z + ,  z - )  and there- 
directions in the ternary composition triangle or fore they are all-round unstable as defined by 
called the positive indefinite region. Alloy within Meijering [4]. For composition 1, the system is 
region III are stable with respect to any small compo- initially unstable with respect to the decomposition 
sitional fluctuations and spinodal decomposition is along the direction C-d ( z  < z < z+ ) while for com- 
impossible in this region or it is called the positive positions 4 and 5, the systems are initially unstable 
definite region, with respect to the decomposition along the direction 

The compositions which are considered in the parallel to A-B (z+ < z < z_). In the region where 
computer simulation are chosen to be along the line z > z+, z_ in Fig. 2, no spinodal decomposition is 
C~l  shown in Fig. 2. The inability surface along this expected. 
line is shown in Fig. 3 where c = CA = CB and I chose the following coefficients for the L-matrix, 
cc = 1 - 2c. The straight line corresponds to the Lye, (arbitrarily chosen with the condition that it has 

to be positive definite) as 
C 

Y 1 - 1 / 2  - 1 / 2  

- 1 / 2  1 - 1 / 2  

--1/2 - 1 / 2  1 

1 . 0 0 0  . . . . . . . . . . . . . . . . . . . .  

0.800 

0.600 

0.400 
A/ 

+ p p 0.200 

Fig. 1. An isothermal section of the ternary phase diagram 
calculated from the set of interaction parameters given in 0.000 . . . . .  ! . . . .  ~ . . . .  t . , , , ~ . . . 

equation (18). ~, fl and ~, are single-phase fields, ~ + fl, fl + y, 0 0.1 0.2 0.3 0.4 0.5 
and • + y are two-phase fields, ~ +/~ + y is the three-phase c 

field. Fig. 3. The instability surface along the line C<I. 

AM 42/10~Q 
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Employing equation (7),/~,vv(k) for a two-dimensional instability along the A-B direction eventually devel- 
square lattice is given by oped in the A and B rich regions as C atoms continue 

to be depleted from those regions. We call the 
/7,v,(k ) = - L v v [ 2 -  cos 2~h - c o s  2~l]. (19) decomposition of the A-B rich regions into A-rich 

In the computer simulation, the kinetic equations and B-rich regions as secondary decompositions. 
are solved using the Euler technique It results in the appearance of both ~ and fl phase 

drTv(k, t) particles. It is interesting to point out that the 
rT~(k, t + At) = ~(k,  t) + ~ At. (20) secondary decomposition occurs almost exclusively 

within the A- and B-rich particles and it is expected 
The size of the time step for integration, At, in the that spinodal decomposition in very small grains in 
above equation is 0.005. The time is expressed in a polycrystalline solid might be very similar to what 
terms of a reduced time, i.e. t* = LAA t where t is the is observed in this simulation. Most of the A- and 
real time and LAA is the exchange probability between B-rich particles first decompose to approximately 
A atoms at nearest neighbor sites at a time unit. The half ~ phase and half fl phase. Different particles 
initial state corresponds to a completely disordered in the system decompose at slightly different times. 
state with uniform occupation probabilities at each Since simultaneous coarsening takes place during 
lattice site. The maximum amplitude of the random decomposition, some of the particles still contain half 
perturbation to the initially completely disordered ~ and half fl while others have become either com- 
state is 0.005. Since we solve the kinetic equations in pletely ~t phase or completely fl phase (see t* = 50). 
the reciprocal space, periodic boundary conditions The decomposed morphology consists of ~ and fl 
are implied, phase particles embedded in a continuous matrix. 

The morphological evolutions predicted from the During further coarsening, some of isolated ~t and fl 
computer simulations for four compositions, 1, 2, 4 phase particles may coalesce to form a large particle 
and 5, shown in Figs 2 and 3 are exhibited in with roughly half ~ and half fl as it can be seen in 
Figs 4-7. The morphological evolution for compo- Fig. 4 for t* = 100. 
sition 3 has been published previously [13]. In those 
figures represented by black-and-white, the local C o m p o s i t i o n  2: c = cA = cB = 0 .25;  c c  = 0 . 5  

composition profile is represented by gray-levels; the In this case, the system is below both the straight 
brighter the gray-level, the higher a local compo- instability line and the parabolic instability line and 
sition. Column hA(r, t) represents the time evolution it is expected compositional modulations should 
of  the concentration profile of  component A, column develop along all directions. However, the driving 
nB(r, t) represents component B and column nc(r, t) force for decomposition along the C-d direction is 
represents component C. In the color figures, the larger than that along the direction A-B for this 
red color represents the ct phase, the green color composition as it is shown in Fig. 3. Therefore, at 
represents the fl phase and the blue color represents short times, decomposition is primarily along the C-d 
the ~ phase. For example, color levels from com- direction as demonstrated in Fig. 5 that morphology 
pletely white to completely red represent CA from 0.0 is an interconnected two-phase mixture at time, 
to 1.0 and the same representation applies to fl and t* = 10. At a later time, the secondary decomposition 

phase, of the interconnected A and B rich regions into 
A-rich and B-rich regions results in discrete ~ and fl 

C o m p o s i t i o n  1: c = cA = c B =  0 .15;  C c =  0 . 7 0  phase particles as shown in Fig. 5 for t* = 25. Even 
The morphological evolution for this composition after long-time annealing, the ct and fl phase particles 

is shown in Fig. 4. The initial stage decomposition form a beautiful bamboo-like structure. The ), phase 
is similar to that in binary systems; composition is interconnected as it can be expected from the 
modulations with regions rich in C and with regions volume fraction which is about 50%. 
rich in both A and B (almost equal amount of A 
and B) develop from an initially homogeneous phase. C o m p o s i t i o n  4: c = cA = CB = 0 .45;  CC = 0 . 1 0  

At reduced time t * =  10, a careful examination of The initial decomposition is primarily along the 
the morphology shows that it is more or less inter- A-B direction and the C atoms segregate to the 
connected even though one can hardly see any interphase boundaries between the ~ and fl phases 
morphology in the printed picture in Fig. 4. As the as shown in Fig. 6. This is again consistent with the 
decomposition proceeds, the A and B rich regions instability surface shown in Figs 2 and 3 because 
disconnect themselves into isolated regions (t* = 25) composition 4 is above the parabolic instability line 
which is still a two-phase morphology. The results but below the linear instability line. Later discrete 
indicates that the initial decomposition takes place particles appear along the cuf f  interphase boundaries 
primarily along the direction C-d in Fig. 2, which by barrierless nucleation and growth (see Fig. 6 for 
is consistent with the stability analysis as the system t* = 20). If  the precipitation of V particles involves 
is above the linear instability line and below the nucleation barrier, then they would not appear 
parabolic instability line in Fig. 3. Although initial since in the present computer simulation technique 
decomposition is mostly along the C-d direction, the the total free energy always decreases during the 
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TIME = 10.000 TIME = 25.000 

TIME = 50.000 TIME = 100.(100 

m 

Fig. 4. Temporal  evolution of morphologies during a spinodal phase separation of a ternary alloy with 
average composition c A = 0.15, cB = 0.15 and c c = 0.70. 
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TIME = 10.000 TIME = 25.000 

m 
T I M E  = 5 0 . 0 0 0  T I M E  = 100 .000  

Fig. 5. Temporal  evolution of  morphologies during.a  spinodal phase separation o f  a ternary alloy with 
average composit ion CA = 0.25, Ce = 0.25 and Cc = 0.50. 
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morphology evolution. In other  words, the present case, the minor  component  C strongly segregates to 
technique can not describe activated process. The the ~/fl interphase boundaries. The composit ion of  C 
decomposed morphologies shown in Fig. 6 for at the boundaries are about  6 times higher than that 
t* = 50 and 100 are interconnected structures of  within the ~ and fl composit ion domains (the compo-  
continuous a and fl phases with y phase particles sition of  component  C at the interphase boundaries 
sitting on the ~/fl interphase boundaries, is about  0.03 whereas the composit ion of  component  

C inside the ~ and fl particles is about  0.005). This 
C o m p o s i t i o n  5." c = CA = Cn = 0 . 4 9 5 ;  CC = 0 . 0 1  segregation profile moves as the ~/fl two-phase mix- 

Spinodal decomposit ion for this composit ion is ture coarsens (Fig. 7). As a result of  segregation, even 
very similar to the spinodal decomposit ion with though the overall average composition of  this alloy 
a 50-50% composi t ion with interconnected mor- falls within the three-phase region but near to the 
phologies in binary alloys. However,  in this ternary phase boundary, the composition inside the ~ and 
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nA (r ' t )  na(r,t) nc(r,t)  

Fig. 6. Temporal evolution of morphologies during a spinodal phase separation of a ternary alloy with 
average composition c A -0.45, c a = 0.45 and Cc - O .  I0. Column nA(r , t )  represents the time evolution of 
the concentration profile of component A, column na(r , t) represents that of component B and column 
nc(r,t) represents that of component C. Row a reduced time t*=5.0;  row b - - t* -20 .0 ;  row 

c t*=50.0; row d t * =  100.0. 
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fl particles fall outside the three-phase region. There- alloys is investigated using a computer simulation 
fore, no V phase particles are observed. It should technique based on a microscopic diffusion theory. 
be emphasized that the phase diagram of Fig. 1 Even though I chose a particular system with sym- 
is calculated for completely homogeneous phases metric interactions among different species and the 
whereas from the computer simulation, the alloy same kinetic coefficients for interatomic interchanges, 
is inhomogeneous with interphase boundaries, the results obtained are generic to real ternary sys- 
Inhomogeneity can cause shift of phase boundaries, terns in terms of the morphological patterns and the 

sequence of phase transformations. For all the com- 
SUMMARY positions investigated, there are at least a very short- 

time period in the beginning that the morphologies 
The nonequilibrium and highly nonlinear appear to be interconnected. Very often decompo- 

dynamics of spinodal phase separation in ternary sition of a homogeneous alloy into a three-phase 

a 

: ? 

m 0 

nt 
nA(r,t) nB(r,t) nc(r,t) 

Fig. 7. Temporal evolution of morphologies during a spinodal phase separation of a ternary alloy with 
average composition c A = 0.495, c B = 0.495 and Cc = 0.01. Column nA(r, t) represents the time evolution 
of the concentration profile of component A, column nB(r, t) represents that of component B and column 
nc(r, t) represents that of component C. Row a--reduced time t*= 10.0; row b~t*  = 20.0; row 

c--t* = 50.0; row d--t* = 100.0. 
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mixture takes place in two different stages corre- sity for his help in making those color pictures presented in 
this paper, sponding to the relaxation of the total free energy 

with respect to two conserved order parameters, 
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