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Abstraet--A computer simulation technique based on microscopic master equations is developed for 
modeling the dynamics of morphological evolution during diffusional phase transformations in binary 
solid solutions including barrierless nucleation of ordered domains, subsequent domain growth and 
coalescence, coarsening of antiphase domains, compositional phase separation, Ostwald ripening, and 
kinetics of simultaneous ordering and phase separation. Assuming a direct exchange mechanism for 
atomic diffusion and using the single-site approximation, the kinetic equations produce equilibrium states 
closer to the Bethe approximation than the Bragg-Williams approximation. Computer simulation 
examples of microstructural evolution during ordering, spinodal decomposition, and simultaneous 
ordering and phase separation in a binary solid solution are presented using a second-neighbor interaction 
model. 

INTRODUCTION 

Understanding the temporal and spatial evolution of 
the morphology of a quenched system is not only of 
fundamental interest to physicists, materials scientists 
and applied mathematicians but is also important in 
the processing of technologically advanced materials. 
The highly nonlinear and nonequilibrium dynamics 
of phase transformations have been extensively stud- 
ied by employing continuum Ginzburg-Landau- or 
Cahn-Hilliard-type kinetic equations [1]. More re- 
cently, one of us has used a microscopic kinetic 
model, which employs the Onsager-type microscopic 
diffusion equations developed by Khachaturyan in 
1968 [2], for investigating the dynamics of ordering 
and phase separation [3], formation of virtual phases 
[4] and strain-induced morphological transformation 
during decomposition [5-6] in quenched binary alloy 
systems. Both the continuum and microscopic 
equations are based on a free energy functional which 
depends on inhomogeneous distribution of local 
order parameters in the continuum model or the 
single-site occupation probabilities in the microscopic 
model. Both approaches describe the rate change of 
the order parameter or occupation probabilities with 
respect to time as linearly proportional to the thermo- 
dynamic driving force. Therefore, in principle, the 
description of kinetics by these two approaches are 
only valid when a system is not too far from 

equilibrium state, i.e. the driving force for phase 
transformation is small. Furthermore, the propor- 
tionality constants in both the continuum and micro- 
scopic equations are assumed to be independent of 
the values of the local order parameter or the occu- 
pation probabilities. Therefore, even though they 
predict correctly the qualitative sequence of the evol- 
ution dynamics of an inhomogeneous unstable sys- 
tem, they might be in error in describing the 
quantitative rates of such transformations. 

In this paper we apply a new microscopic kinetic 
model [7] which utilizes a general inhomogeneous 
cluster expansion formalism to make tractable the 
microscopic Master Equations as suggested for diffu- 
sional ordering by Vineyard about 30 years ago [8]. 
In this model, free energy functionals do not enter 
into the kinetic equations of motion. The kinetic 
equations are written with respect to one-particle 
cluster, two-particle cluster or n-particle cluster cor- 
relation functions (where n is the number of particles 
in a given cluster), depending on the level of approxi- 
mation. Rates of change of those cluster correlation 
functions are proportional to the exponential of an 
activation energy for atomic diffusion jumps. This 
model is called the cluster activation method [7, 9]. 

Cluster activation method may be used to describe 
the kinetics of phase transformations of a system far 
from equilibrium because it does not suffer from the 
approximation that the rate of change of an order 
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parameter is linearly proportional to the thermo- 
dynamic driving force. The dependency of atomic 
diffusion or exchange on the local atomic configur- 
ation is automatically taken into account in the 
evaluation of the total activation energy for a 
given atomic interchange. Therefore, it is a substan- 
tial improvement over the continuum and micro- 
scopic equations derived from a free energy 
functional in terms of describing the rate of 
transformation. 

Recently Ducastelle [10] has shown that, in the 
spin-flip dynamics context, kinetic master equations 
are equivalent to those of the Path Probability 
Method (PPM) [11] which has been applied to de- 
scribe homogeneous ordering kinetics in alloys 
[12, 13]. In cluster activation method the maximum 
probability assumption of PPM is replaced with the 
mean value of a Bernoulli probability distribution. 

The earliest application of  a Master-Equation- 
based approach to diffusional transformations in 
solids appears to be the work of Iida on short- and 
long-range order in homogeneous Ni 3 Fe alloys [14]. 
The kinetics of both short- and long-range order in 
Cu3 Au were discussed by Roberts and Vineyard [15]. 
Subsequently, homogeneous short-range order kin- 
etics in f.c.c, were studied by Kidin and Shtremel [16], 
Welch [17] and Radelaar [18]. More recent works 
include the theoretical analysis of the linearized short- 
and long-range order kinetic equations by Yamauchi 
and de Fontaine [19], discussion of short- and long- 
range order as well as phase separation by Van Baal 
[20], and the derivation of kinetic equations for 
homogeneous ordering in the tetrahedral approxi- 
mation for b.c.c, and f.c.c, systems [21]. In a series of 
papers, Fultz described B2 and D03 order in binary 
and ternary Fe-A1 alloys [22, 23]. We emphasize that 
virtually all previous works required translational 
symmetry and were concerned with homogeneous 
systems. They were almost exclusively devoted to 
order-disorder transformations as is necessitated in 
that context. The only exception seems to be the 
investigation of one-dimensional ordering and phase 
separation by Van Baal [24]. 

In this paper, we study inhomogeneous ordering 
and phase separation in a two-dimensional square 
lattice by assuming a direct exchange mechanism 
(Kawasaki Dynamics) and employing the single-site 
approximation, thereby eliminating many complex 
issues involving atomic clusters. The input infor- 
mation required for cluster activation method is the 
initial atomic configuration of an alloy and the 
effective interaction energies between atoms. It will be 
shown below that, using this technique, we can 
successfully model various kinetic phenomena includ- 
ing ordered domain nucleation and growth, antiphase 
domain coarsening, spinodal phase separation, com- 
position domain coarsening, as well as simultaneous 
ordering and phase separation. It is demonstrated 
that the single-site approximation in the present 
kinetic model yields a dependence of long-range order 

parameter closer to the Bethe approximation than the 
Bragg-Williams (BW) approximation. 

MULTIPARTICLE DISTRIBUTION FUNCTIONS 

Let us consider a binary alloy with two kinds of  
atoms, A and B, on a crystal lattice. The structural 
state of an alloy at a given temperature and pressure 
can be completely described by a set of multiparticle 
distribution functions or cluster probabilities [8]. 
Define P~ . . . . . . .  (rl . . . . .  r.; t ) as the probability that 
at a given moment of time, t, the n lattice sites, 
r~ . . . .  , r. ,  be simultaneously occupied by n atoms 
of type ~1 . . . .  , ~. (ct = A or B for binary systems). 
These multiparticle distribution functions satisfy the 
following normalization conditions 

P,, (r) = 1 

P~,~(rl,rE) = P~, (rl) 
~2 

P~l~2(rlr2) = P~2(rz), etc. (1) 

Summing the single-site distribution function over all 
lattice sites in the crystal gives 

P, (r) = N, 
r 

where N~ is the total number of or-type atoms in the 
crystal. 

THE KINETIC EQUATIONS 

Away from equilibrium all of the multiparticle 
distribution functions will change with time as the 
atomic exchange takes place on the lattice. Many 
different diffusion mechanisms are possible, but we 
will assume a direct exchange mechanism and an 
isothermal environment to make the discussion 
simple. 

Let us consider a pair of interchange sites at r and 
a nearest-neighbor site, r + 5, and a set {x} of nearby 
influence sites which can affect the interchange reac- 
tion. If we have an A atom at r, a B atom at r + 6, 
and a set of atoms {X} at {x}, we denote by 
RAB({X}) the rate at which the AB pair interchanges 
under the influence of the set of neighboring atoms 
{X }. Similarly, RBA ({X }) is the rate at which the BA 
pair will interchange under the same environment 
when the B atom is at r, and the A atom is at r + 6. 
Then the rate of change of the probability that the site 
r be occupied by an A atom is given by 

dPA (r) 
dt - Z ~ PaAIx}( r,r + 6,{x})RBA({X}) 

,~ {x} 

-- ~ Y', PA.{X; (r,r + 6,{x} )RAB({X }) (2) 
{x} 
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t 

Fig. 1. A schematic draw showing the AB pair and the 
surrounding atoms which are affected by the pair inter- 

change in a two-neighbor interaction model. 

where the first and second terms on the right-hand 
side are the average rates at which, on site r, A atoms 
are appearing and disappearing, respectively, Y6 de- 
notes the summation over all the nearest neighbor 
sites, 6, of r, and PAB~x/(r,r + 6,{X}) is the probability 
of finding an A atom on r, a B atom on r + 6, and 
the set {X} on the neighboring sites {x} simul- 
taneously. A similar equation can be written down 
for dPa(r)/dt which is simply the negative of 
dPA(r)/dt since PA(r) + PB(r) = 1. 

In order to carry out the sum in the right-hand side 
of equation (2), we need the joint probability distri- 
bution, PAs~x~(r,r + 3,{x}). In this paper, we use the 
simplest way to approximate this joint distribution by 
assuming statistical independence among occupation 
probabilities. In this approximation 

PABIxI(r,r+f,{X}) 

= PA (r)Ps (r + 6 )Px, (x,)Px2 (x2). .-  Px. (x,) (3) 

where xj . . . . .  x, are the individual sites in the set of 
neighboring sites around the pair, r and r + 6, and 
X~,. . . ,  X, are the types of atoms occupying those 
sites. 

THE RATE CONSTANTS 

To calculate the reaction rates under the exchange 
mechanism we need only be concerned with AB 
interchanges, since AA and BB interchanges do not 
affect the atomic configuration. For a two-dimen- 
sional square lattice with a two-neighbor interaction 
model, we have to consider an atomic cluster of total 
12 sites with an AB interchange pair surrounded by 
the influence set, X as shown in Fig. 1. In the pairwise 
interaction model, we may represent the activation 
energy associated with the interchange pair as 
the sum of contributions from each of the nearest- 
neighbor and next-nearest neighbor sites of the 
pair 

~ U(AB,X,) 
In Rm {X } = In v - (4) 

i=l k T  

where v is the vibrational frequency associated with 
the AB interchange and U (AB, Xi) is the contribution 
to the activation energy from site i occupied by atom 
X. Expression (4) is a form of the cluster activation 
approximation [7]. 

Symmetry considerations show that nearest neigh- 
bor and next-nearest neighbor sites, which are related 
by the horizontal mirror plane through the cluster 
center, have equivalent effects on the activation pro- 
cess, i.e. 

U(AB,Xt) = U ( A B , ~ ) ( i , j )  or 

(j , i)  = (2,10); (3,9); (4,8); or (5,7). 

For example, an A atom occupying site 2 will make 
the same amount of contribution to the total acti- 
vation energy for the AB pair interchange as an A 
atom at site 10. 

Using similar symmetry arguments, we have that 
for the sites which are related by the vertical mirror 
plane through the cluster center, which is affected by 
the atomic interchange 

U (AB,X~) = U (BA,X/) (i, j )  or 

(j,i) = (1,6);(2,5);(3,4);(7,10); or (8,9). 

For example, an A atom occupying site l will make 
the same contribution to the AB pair interchange as 
an A atom at site 6 will make to the BA pair 
interchange. 

Accordingly, for any vertical mirror plane sym- 
metry-related pair of indices, i and j, we define the 
symmetric activation contribution, Q, as 

1 
Q (AB,Xi) = Q (AB,~) = ~ [U (AB,X 0 + 

U(AB,~)I  = Q(BA,Xi) = Q(BA,Xj), (5) 

and the antisymmetric activation contribution, E, as 

1 
E (AB,X~) = ~ [U (AB,X~) - U (AB,X/)] 

= - E (AB,Xj) (6) 

where (i, j )  = (1,6);(2,5);(3,4);(7,10);(8,9). 
Therefore 

Q (AB,Xi) + E (AB,X,) 
In RAa{X} = l n v  -- 

i=l k T  

= l n v -  ~ Q(AB'Xi)  ~ E(AB'Xi) 
i~l k T  k T  (7) i = 1  
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Q (AB,X) = X~°lQ (AB,Xi) can be understood as an 
interdiffusion activation energy for AB interchange in 
an atmosphere of atoms of type X. Thus, the Q's 
represent background activation energy contri- 
butions from symmetrically equivalent sites while 
the E 's  give the more inhomogeneous dependence 
of the activation energy on local atomic configur- 
ations. 

We now separate U(AB, X~) into two contri- 
butions: one is the energy of breaking bonds 
between Xi and A or Xi and B and the other is 
the energy of the AB complex at the activated 
position. For example, for an atom A at point 1, we 
write 

U(AB,A0 = ViA = V% 

and for an A atom at point 6, we have 

U(AB,A~) = Via + V* B 

Q (AB,X~) 
i=l kT  

is set to be equal to a constant, U0, which is indepen- 
dent of local atomic arrangement, X, regardless of  
the relative magnitudes of VAA and VBB. In 
the following computer simulations, we chose 
ViA = v l s  and V ~ =  V2aa, so that the rate 
constant takes a form equivalent to that given by 
Vineyard 

0 ) 
RAs{X} =v exp(  - U °  "~exp(-  X E(AB,X~) 

\ k T }  \ , . ,  kT  . (8) 

Since v exp( -  Uo/kT) occurs in all configurations, it 
can be combined with the time, t, in the kinetic 
equations of motion to give a dimensionless reduced 
time, t * 

where V ~  and VIB are the first-neighbor bond 
energies between two A atoms and between an A 
atom and a B atom respectively, and V% is 
the contribution of each influence site to the total 
energy of the AB complex at the activated pos- 
ition. For example, the expressions for Q and E at site 
1 and 6 when both of them are occupied by A atoms 
a r e  

vk~ + vk~ ~ v% Q (AB,A,) = Q (AB,A6) = 2 

and 

E (AB,AI) = 
vk~- VkB 

t* = tv e x p ( - ~ )  (9) 

which will be used in the computer simulation results 
presented below. 

Examination of the possible antisymmetric, E, 
values that can arise from any assignment easily 
shows that they depend only on first- and second- 
neighbor interchange energies, Et and Q, which are 
given by 

E, = VkA + V~B - 2 r i b  

E2 = v~,^ + v~B - 2 v ~ B .  

Both 

and 

E (AB,A6) = 
Vk~- Vi^ 

~ Q (AB,X~) 

i = l  kT 

~ E(AB,X~) 

iffil kT  

depend on the local atomic configuration. 
However, if V ~ =  V[B and V~,A= V2a, where 

ViA and V2B are second-neighbor bond energies 
between two A atoms and between two B 
atoms, 

Q (AB,X~) 
i f f i l  kT  

does not depend on which type of atoms occupy the 
influence sites, {x}. In Vineyard's treatment 

COMPUTER SIMULATIONS 

To illustrate the application of  the microscopic 
cluster activation method to various diffusional phase 
transformation kinetics we have chosen, as discussed 
above, a binary alloy on a two-dimensional square 
lattice with first- and second-neighbor pairwise 
interaction. 

Since the summation on the fight-hand side of 
equation (2) is over all possible arrangements of A 
and B atoms on the sites which are affected by the 
atomic interchange at r and r + 6, there are a total 
number of  2 l° possible terms in the summation. For 
each of the 2 l° different configurations, the rate 
constants RAB and RBA have to be calculated. The 
number of configurations will increase dramatically if 
a longer range interaction model is employed. How- 
ever, in the single-site approximation, the tedious 
and computationally slow summation with respect 
to the configurations, {X}, can be replaced by a 
much more computationally efficient product of 
sums, i.e. 
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Z PABIX} (r,r + 6,{x}) RAB ({X }) = PA (r) PB (r + 6 ) 
{x) 

{ [ 1 1 ] [ 1 1 ]} 
(VAB-- VAA) + PB(1)exp (VBB-- VBA) 

PA(1)exp ~-77 2k-77 

(VAB-- VAA) + PB(2)exp (VBB-- VBA) 
PA (2)exp -2-~7~ 2~-7 7 

(V kB -- V 1 A) + PB (9)exp 
PA(9)exp 2kT -2kT 

(VBB- VBA) (VAB- VAA ) 
PA (I 0)exp ~Tv + PB (I 0)exp )_T77 
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(10) 

where P~ (k)  and PB(k ), k = 1,10, are the values of 
single-site distribution functions PA and Pa at site k 
around the pair r and r + 6. 

To solve the kinetic equations, we apply the simple 
Euler technique 

dPA(r) PA(r,t+At)=eA(r,t)+~At. (11) 

APPLICATIONS 

Ordering 
In this case, only nearest neighbor interaction is 

assumed with the bond energy values given by 

V~A = 1.0,V~B = 1.0,V~B = 0.5. (12) 

Since the effective interchange energy El = V i A +  
V~B--2V~,B= 1 .0>0,  ordering is expected for a 
quenched disordered state below the ordering tran- 
sition temperature. The time step in equation (11) is 
chosen that the numerical solution to the kinetic 
equation is stable. In the present case, a value of 0.1 
for At is chosen. The initial state at t* = 0 is gener- 
ated for a completely disordered state with single-site 
distribution function values, PA(r), equal to 
0.5 + ~ ( r )  where if(r) is a random noise between 
-0 .01 and 0.01. The aging temperature is 0.5 (E t /k) .  

The evolution of the single-site distribution func- 
tion is shown in Fig. 2 for a computational cell of 
32 × 32 lattice sites. The different gray levels rep- 
resent values of the single-site distribution function at 
each lattice site. A completely black circle represents 
a value of 1 and completely white circle represents a 
value of 0. Shown in Fig. 2(a) is the initial disordered 
state where values of the single-site distribution func- 
tion at each lattice site are close to the average 
composition e = 0.5. The barrierless homogeneous 

nucleation and subsequent growth of ordered do- 
mains are shown in Fig. 2(b) which is a snapshot of 
the instantaneous single-site distribution function at 
reduced time t* = 1.5. A single-phase ordered state 
with antiphase domain boundaries is formed at re- 
duced time t * = 2 . 0  as shown in Fig. 2(c). The 
morphological evolution following ordering is an- 
tiphase domain coalescence and coarsening resulting 
in the single domain state shown in Fig. 2(d). 

Figure 3 shows the evolution of the long-range 
order parameter values squared with the same initial 
condition but with a larger computational cell of 
256 x 256 lattice sites. The long-range order par- 
ameter is calculated from the single-site distribution 
functions through 

1 q(r)=~I~PA(r+d)--4PA(r)](--1)U+") (13) 

where I and m define the lattice vector r = a0 (li + mi), 
a0 is the lattice parameter of the square lattice, and 
i and j are the unit vectors along the two Cartesian 
axes in two-dimensional space. The definition of 
long-range order parameter by expression (13) elim- 
inates the necessity of sublattice assignment. The 
values of It/(0] 2 is represented by different gray-levels. 
Bright regions are ordered regions with [r/(r)] 2 close 
to 1.0 and dark regions are disordered phases with 
[r/(r)] 2 close to 0.0. Therefore, the dark lines in 
Fig. 3 are antiphase domain boundaries. The mor- 
phologies generated show a remarkable similarity to 
experimental Transmission Electron Microscopy 
(TEM) observations in ordering systems. 

The kinetics of ordering can also be characterized 
by the temporal evolution of the degree of order as 
measured by the average value of the long-range 
order parameter over all the lattice sites. This par- 
ameter is plotted in Fig. 4 as a function of reduced 
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Fig. 2. Temporal evolution of the single-site distribution function at each lattice site for a computational 
cell of 32 x 32. The values of the single-site distribution function are represented by gray-levels with the 
completely black circles representing 1.0 and completely white circles representing 0.0. (a) t* =0.0; 

(b) t* = 1.5; (c) t* = 2.0; (d) t* = 10.0. 

t ime for different system sizes f rom a completely 
homogeneous  system to a system with 256 x 256 
lattice sites. It is seen that ,  regardless of  system size, 

I 

there is an  incuba t ion  period of  abou t  1 uni t  of  
reduced time before significant order ing occurs. Or-  
dering occurs between reduced time t * =  1.0 and  

a b c d 

Fig. 3. Temporal evolution of square of the spatial long-range parameter distribution for a computational 
cell of 256 × 256. The values of the long-range order parameter are represented by gray-levels with the 
completely black representing 0.0 and completely white representing 1.0. (a) t* =0.0; (b) t * =  1.5; 

(c) t * =  2.0; (d) t * =  10.0. 
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Fig. 4. The average long-range order parameter as a func- 
tion of time for four systems with different system sizes. 

t * =  2.0. After t * =  2.0, the evolution of  single-site 
distribution functions corresponds to coalescence and 
coarsening of  ordered domains. It is quite clear that 

even though the qualitative picture of  the ordering 
kinetics is the same for all different system sizes, the 
32 x 32 system size is insufficient if  antiphase domain 
coarsening kinetics is to be investigated. 

Spinodal decomposition 
In this example, we also assume a nearest-neighbor 

interaction model. The bond energy values are taken 
to be 

V~,A = -- 1.0,V~B = -- 1.0,V~B = --0.5. (14) 

The effective interchange energy E 1 calculated with 
these bond energies is negative, so phase separation 
is expected for a quenched disordered state. An 
average composit ion c = 0.5 and annealing tempera- 
ture 0.5 (El/k ) are chosen for the study. The time step, 
At, is chosen to be 0.1. The initial state at t * =  0 is 
generated in exactly the same way as in the ordering 
example. 

Fig. 5. Temporal evolution of the single-site distribution function at each lattice site for a computational 
cell of 32 × 32. The values of the single-site distribution function are represented by gray-levels with the 
completely black circles representing 1.0 and completely white circles representing 0.0. (a) t * =  0.05; 

(b) t* =4.0; (c) t * =  10.0; (d) t* =200.0. 
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Fig. 6. Temporal evolution of the single-site distribution function at each lattice site for a computational 
cell of 256 x 256. The values of the single-site distribution function are represented by gray-levels with 
the completely black circles representing 1.0 and completely white circles representing 0.0. (a) t* = 0.05; 

(b) t*= 4.0; (c) t* = 10.0; (d) t* = 200.0. 

The evolution of the single-site distribution func- 
tion for a 32 x 32 computational cell is shown in 
Fig. 5. Figure 5(a) represents the initial disordered 
state which has an average composition 0.5 with 
random perturbations. Figure 5(b) shows the devel- 
opment and growth of A-rich and B-rich regions. At 
t * =  10, the decomposition process is essentially 
completed. After t * =  10, the morphological evol- 
ution corresponds to coarsening or Ostwald ripening. 

The morphological evolution during a spinodal 
decomposition generated from a computer simu- 
lation with a larger system, 256 × 256, is shown in 
Fig. 6. 

We can also define an order parameter for the case 
of spinodal phase separation, namely, the average 
value of [c ( r ) -  Co], where c (r) is the local compo- 
sition and co is the average composition, over all the 
lattice sites. Three curves are plotted in Fig. 7 for 
system size 32 x 32, 128 x 128 and 256 x 256, re- 
spectively. At the temperature 0.5~, it appears that a 
computational cell of 32 x 32 lattice sites produces 
essentially the same results as a system with 256 x 256 
lattice sites. It starts with an incubation stage fol- 
lowed by decomposition and coarsening. Whether the 
system size is sufficient or not largely depends on the 
wavelength of the concentration domains which in 
turn depends on the annealing temperature and 
annealing time. A system size is reasonable as long 

as the wavelength of the composition domain is 
significantly smaller than the system size. 

Simultaneous ordering and phase separation 

To produce simultaneous ordering and phase sep- 
aration, interatomic interactions have to be extended 
at least into the second neighbor shell. We chose the 
following values for the bond energies 

v~=o.o,v~=o.o,v~=o.o 

V~h = O.O, VgB = O.O,V~a = 0.5. (15) 

The equilibrium phases at the ground state derived 
from this set of parameters include pure A, pure B 
and an ordered phase AB with ordering wave-vector 
(2~z/a0) l l (~,5) where a0 is the lattice parameter of the 
square lattice. Since we have presented no algorithm 
for determining the equilibrium phase diagram for 
the single-site approximation in cluster activation 
method, an equilibrium phase diagram derived from 
the true mean-field free energy is shown in Fig. 8 [3]. 

In the computer simulation, a disordered alloy with 
an average composition 0.25 is quenched to tempera- 
ture 0.75 (e2/k) which is within the two-phase field of 
ordered and disordered phases and represented by a 
circle in the phase diagram. The time step At is chosen 

0.300 

0.250 

0.500 , , ' ' 0.200 

0.150 
0.400 I S  T* 

_A 0.100 

3 2 x 3 2  

. . . . .  1 2 8 x 1 2 8  

- - . - 2 5 6 x 2 5 6  

0.300 
i 

_~ 0.200 
V 

I I I I - -  

f / "  o 

0.100 

0.000 L , I , I , i , I , 

0 40 80 120 160 200 
time 

Fig. 7. The average deviation of local composition from the 
overall composition as a function of time for three systems 

with different system sizes. 

/ 
/ 

0.050 / 

0 . 0 0 0  t . 

0 0.1 
i , I ~ I i 

0.2 0.3 0.4 0.5 
C 

Fig. 8. The mean-field equilibrium phase diagram calculated 
with the set of energy parameters given in (12). • is the 
disordered phase and fl is the ordered phase. The solid line 
represents the equilibrium solvus line of the disordered 
phase. The solvus line for the ordered fl phase is almost 
vertical. The dot-dashed line is the order-disorder transition 
line and the dotted line is the conditional spinodal line [25]. 
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Fig. 9. Temporal evolution of the single-site distribution function at each lattice site for a computational 
cell of 32 × 32. The values of the single-site distribution function are represented by gray-levels with the 
completely black circles representing 1.0 and completely white circles representing 0.0. (a) t*= 0.05; 

(b) t* = 1.5; (c) t* = 10.0; t* = 50.0. 

to be 0.1. The temporal evolution of the inhomo- 
geneous single-site distribution function for a compu- 
tational cell of 32 x 32 lattice sites is shown in Fig. 9. 
Similar to previous investigations of precipitation 
kinetics of ordered intermetallics using the Onsager- 
type microscopic diffusion equations [3], the first 
process during annealing of a disordered state below 
the ordering instability line but within the two-phase 
field of ordered and disordered phases is a congruent 
ordering after an incubation stage. The congruent 
ordering produces an ordered single-phase with an- 
tiphase domain boundaries [Fig. 9(b)]. However, this 
single-phase is unstable with respect to the sub- 
sequent decomposition into a two-phase mixture of 
ordered and disordered phases [Fig. 9(c, d)]. 

The morphological evolution of a larger compu- 
tation cell, 256 × 256, is shown in Fig. 10 where the 
square of the long-range order parameter profiles is 

AMM 42/9--D 

represented by gray-levels. Figure 10(a, b) represent 
the ordered domain nucleation and growth while 
Fig. 10(c, d) display the decomposition of the ordered 
single-phase. The decomposition is shown to start 
from the antiphase domain boundaries of the 
congruently ordered single-phase. 

In systems with both ordering and phase separ- 
ation, the kinetics may be described by two order 
parameters. One is the long-range order parameter as 
defined in the ordering example and the other is the 
compositional order parameter as defined in the 
spinodal decomposition example. Both parameters 
are plotted in Fig. 11 as function of time for a 32 × 32 
system and a 256 × 256 system. Four stages of trans- 
formations are clearly seen for both system sizes. The 
period between t* = 0 and 1.0 is the incubation stage; 
between t* = 1.0 and 2.0 is the ordering stage; be- 
tween t* = 2.0 and 18.0 is the decomposition stage; 
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Fig. 10. Temporal evolution of square of the spatial long-range parameter distribution for a computational 
cell of 256 x 256. The values of the long-range order parameter are represented by gray-levels with the 
completely black representing 0.0 and completely white representing 1.0. (a) t*=0.0; (b) t*= 1.5; 

(c) t* = I0.0; (d) t* = 50.0 

and after t* = 18.0 is the coarsening stage. It seems 
to be the case that the decomposition process is faster 
in the 256 x 256 system than the 32 x 32 system. By 
examining the morphologies for the two cases, it is 
quite obvious that the difference in the decomposition 
kinetics is due to the density of antiphase domain 
boundaries. For  the 32 × 32 system, almost a single 
domain is formed before significant decomposition 
occurs because of antiphase domain coarsening and 
the small system size. It appears that the rate of 
decomposition of an ordered phase into a mixture of  
ordered and disordered phases is significantly 
enhanced by the existence of  antiphase domain 
boundaries in the congruently ordered single-phase. 

DISCUSSION 

Two of the major assumptions in the Onsager- and 
Langevin-type kinetic equations are the linear pro- 
portionality of the rate of change to the thermodyn- 
amic driving force and the constant value of the 
proportionality coefficient. Ludwig and Park com- 
pared the kinetics derived from the Langevin-type 
equations to kinetic Ising models with Monte-Carlo 
dynamics and thermally activated dynamics using a 
magnetic spin model [26]. They concluded that when 
the driving force is large, there are significant differ- 
ences in the kinetics described by the Langevin 

equations and kinetic Ising models. The difference 
can be significantly reduced, however, in the small or 
intermediate-driving force regime if the proportional- 
ity constant is chosen to depend on the magnetization 
in a specific way. Recently, Martin [27] and Gouyet 
[28] showed that the proportionality constant or 
mobility term in the Cahn-Hilliard equation depends 
not only on local composition, but also on the local 
composition gradient. 

By examining the long-range kinetics derived from 
the Onsager-type microscopic diffusion equations 
and that from the present cluster activation method, 
we also found significant differences not only in 
the ordering kinetics but also in the equilibrium 
state even though in both cases the single-site 
approximation is employed. 

From Onsager-type diffusion theory using a mean- 
field free energy, the kinetic equation of homo- 
geneous order for the ordered phase described in the 
ordering example is given by 

- - =  + lnk-i--~_ ~ 
d t  - 

(16) 

where t / i s  the long-range order parameter, E l is the 
nearest neighbor interchange energy given in (11) and 
L is the probability of atomic interchange within a 
time unit. The kinetic equation of homogeneous 
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Fig. 11. Average long-range order parameter and average 
deviation of local composition from the overall composition 
as functions of time for two systems with different system 

sizes. 
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Fig. 12. Long-range order parameter as a function of time 
derived from the Onsager-type microscopic diffusion 
equation (the dotted line) and the cluster activation method 

in the single-site approximation (the solid line). 
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Fig. 13. The rate, dq/dt, as a function ofq for the two kinetic 
models. Dotted line--the Onsager-type microscopic diffu- 
sion equation; solid line---the cluster activation method in 

the single-site approximation• 

order 
activation method is given by Vineyard [8] 

dr/ - ~ Ko(1-r/)2-~ Kd(l + r/)2 
dt 

where K 0 and K d are given by 

f Uo "~ f 3el 
K a =4.0v expt-  )expt 

× { l + ~ ( l  + r / ) I e x p ( - 3 ~ k T ) -  1 ]}  6 

for the same ordered phase from cluster 

(17) 

f Uo "~ f 3q ,,o: 4.ov expt- )exp t-  ) 

x { 1 + ~ (1 + r / ) [ e x P ( 2 @ T ) - -  1 ] }  6. 

We assume that 

corresponds to L in equation (16) since both of them 
are interchange probabilities per unit time. The time 
dependence of long-range parameter r/from the two 
kinetic equations are given in Fig. 12 for a tempera- 
ture 0.5 el/k. It is shown that ordering kinetics from 
the two different equations are quite different. Order- 
ing occurs at an earlier time in the cluster activation 
equation than the Onsager-type equation. Moreover, 
the ordering occurs faster in cluster activation 
method than that described by Onsager-type 
equation. This difference can also be clearly seen in 
the plot of the rate of long-range development as a 
function of long-range order parameter as shown in 
Fig. 13 for both kinetic models. 

Only those order parameters which correspond to 
a positive value of dr//dt in Fig. 13 can grow. The 
interception of dr//dt with the line dr//dt = 0 gives the 
equilibrium long-range order parameter values 
(dr//dt = 0 at r /=  0 corresponds to the unstable sol- 

ution). It is apparent from Figs 12 and 13 that the 
equilibrium values of the long-range order parameter 
at the same temperature 0.5el/k are considerably 
different. The equilibrium solution for homogeneous 
order in the single-site approximation in cluster acti- 
vation method has been derived by Yamauchi who 
also compared the results with the Bethe and 
Bragg-Williams approximation [29]. 

The equilibrium long-range order parameter de- 
rived from the condition dq/dt = 0 in equation (17) 
is given by 

1 f 3e 1 ' ~ f .  
1 - ~exP t  2 ~ ) )  t - 7 1 - 4 e x p ( - ~ T ) }  3 

~ e q  - -  

(18) 

The critical temperature for ordering, T c, is deter- 
mined by the condition that the term inside the 
square-root is zero, i.e. 

4exp - ~  l - -  ( k l ¢ ) = 0 .  (19) 

An approximate value of 0.72135 is obtained for T c 
with T = 1.0. This is exactly the same value for critical 
temperature that one would obtain from the Bethe 
approximation in which 

E l  

where z is the coordination number which is 4 in the 
case of square lattice. The critical temperature in the 
Bragg-Williams approximation is 

E 1 
T~ = ~-. (21) 

A plot of the equilibrium long-range order par- 
ameter as a function of temperature in cluster acti- 
vation method from equation (18) together those 
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Fig. 14. Equilibrium long-range order parameter as a func- 
tion of temperature derived from cluster activation method 
in the single-site approximation (the thick solid line), the 
Bethe approximation (the thin solid line) and the 

Bragg-Williams approximation (the dotted line). 
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derived from the Bethe and Bragg-Williams approxi- 
mation shows that the single-site approximation in 
cluster activation method produces equilibrium states 
much closer to the Bethe approximation than the 
Bragg-Williams approximation (Fig. 14). However, 
the equilibrium states derived from the single-site 
approximation in cluster activation method are not 
exactly the same as the Bethe approximation as one 
would expect. 

The reason that the equilibrium states derived from 
the single-site approximation of cluster activation 
method are different from the B-W approximation is 
due to the fact that in cluster activation method, the 
nearest neighbor pairs have to be considered for the 
atomic interchange, which is not consistent with the 
B-W approximation in which a single-site is con- 
sidered. For example, the number of bonds which 
are broken around a given point during an atomic 
exchange is three in a two-dimensional square lattice 
in the cluster activation method description whereas 
it is four in the B-W approximation. Therefore, the 
transition temperature obtained from cluster acti- 
vation method in a nearest-neighbor interaction 
model will be approximately (z - 1)/z times the tran- 
sition temperature obtained from a true single-site 
mean-field model. However, the configuration en- 
tropy description in the single-site approximation of 
the cluster activation method is different from the 
pair approximation. As a result, even though the 
critical temperature in the single-site approximation 
of cluster activation method is the same as the Bethe's 
approximation, the dependence of the equilibrium 
order on temperature is not. 

SUMMARY 

A simple computer simulation technique applying 
the microscopic master equations to diffusional phase 
transformations has been exhibited. It can success- 
fully describe ordered domain nucleation and growth, 
antiphase domain coarsening, compositional phase 
separation, Ostwald ripening, and simultaneous or- 
dering and phase separation. It is shown that anneal- 
ing of a disordered phase within a single-phase field 
of an ordered phase in a phase diagram goes through 
three stages of transformations which include incu- 
bation, homogeneous nucleation and growth of or- 
dered domains, and domain coalescence and 
coarsening. In the case of spinodal decomposition, 
the three stages are incubation, decomposition and 
Ostwald ripening. Annealing of a quenched alloy 
below a tricritical point of a phase diagram results in 
four stages which are incubation, ordering, decompo- 
sition and Ostwald ripening. It is demonstrated that 
the antiphase domain boundaries formed at the or- 
dering stage speed up the subsequent decomposition 
process significantly. 

The present technique assumes a direct exchange 
mechanism for atomic diffusion and a single-point 

probability approximation for the description of 
structural states. Nonetheless, the single-site approxi- 
mation in this kinetic model produces a thermodyn- 
amic description closer to the Bethe than the 
Bragg-Williams approximation. Computer simu- 
lation of diffusional transformations using a vacancy 
mechanism and higher order clusters will be described 
in future publications. 
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