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Abstract---A computer simulation of the kinetics of precipitation of an ordered intermetallic phase from 
a disordered solid solution in a model binary two-dimensional alloy is considered. All diffusion processes, 
the concentrationffl delamination (clustering), ordering, antiphase domain boundary movement and 
coarsening, are described by the microscopic kinetic equations. The ordering transition of the first and 
second kinds are considered. It is shown that the conventional precipitation mechanism through 
nucleation and growth of an equilibrium ordered phase occurs only in a very narrow "strip" of the 
two-phase field in the phase diagram. In the remaining part, the decomposition always starts from a 
congruent ordering, which produces a transient nonstoichiometric ordered single-phase state with the same 
composition as the parent disordered phase and the same symmetry as the product intermetallic phase. 
Decomposition of the transient ordered phase occurs predominantly at the antiphase domain boundaries 
(APBs), which results in a two-phase morphology with layers of disordered films separating antiphase 
domains of the ordered phase. This decomposition is a result of a concentration instability on APBs, which 
is more substantial than the conventional homogeneous spinodal instability. Further morphological 
evolution after decomposition is controlled by coarsening, which reduces the order/disorder interfacial 
area. The predicted precipitation mechanism through a formation of a single-phase transient ordered state 
is general. It is expected in the most part of a two-phase field of a phase diagram of any alloy systems with 
intermetallic precipitates related to the parent one by ordering. 

Rt, snm& On consid6re une simulation par ordinateur de la cin6tique de precipitation d'une phase ordonn6e 
interm6tallique fi partir d'une solution solide dt~sordonn~c dans un mod61e d'alliage binaire fi deux dimen- 
sions. Tousles processus de diffusion, la d61amination de concentration (formation d'amas), l'ordre, le 
mouvement de patois d'antiphase et le grossissement des domaines sont d&:rits par des 6quations cin6tiques 
microscopiques. Les transitions d'ordre du premier et du second ordre sont consid6r6es. On montre que le 
m~canisme habituel de pr6"cipitation par germination et croissancc d'une phase ordonn~ en 6quilibre se 
produit dans une tr6s 6troite "bande" du domaine biphas~ du le diagramme d'6qullibre. Darts la partie 
restante, la d6"composition part toujours de l'ordre congruent qui produit un ¢~tat transitoire de phase unique 
ordonn6"e non stoechiom6trique de m6me composition que la phase m6re d6sordonn~ et de m6me sym6trie 
que la phase interm6tallique produite. La d&~omposition de la phase transitoire ordonn~e a lieu pr6f6ren- 
tiellement sur les parois d'antiphase (PAP), ce qui produit une morphologie ~i deux phases avec des couches 
de films d~ordonn6s s~parant des domaines d'antiphase de la phase ordonn~c. Cette d~omposition cst le 
r6sultat de rinstabilit6 de la concentration sur les PAP, instabilit6 qui est plus importante que celle cor- 
respondant ~i la transformation spinodale homo#he  classique. Une 6volution morphologique ultt~rieure 
apr6s la d~composition est contr61~e par le grossissement qui r&tuit la surface de rinterface ordre-d6"sordre. 
Le m~anisme de precipitation pr6vu qui s'op~re par la formation d'un 6tat ordonn6 transitoire monophas~ 
est g~n6ral. I1 est attendu dans la plus grande pattie du domaine biphas~ du diagramme d'6quilibre d'un 
alliage quelconque ayant des pr~cipit6s intermc~talliques licks fi la matrice par la raise en ordre. 

Zusammeafas~mg--Die Kinetik der Ausscheidung einer geordneten intermetallischen Phase aus einem 
entordneten Mischkristall wird in einer bin~iren zweidimensionalen Modell-Legierung mit dem Rechner 
simuliert. Sfimtliche Diffusionsprozesse, die konzentrationsm~iBige Abl6sung (Clusterbildung), die Ordnung- 
seinstellung, die Bewegung der Antiphasengrenzen und die Vergr6berung werden mit mikroskopischen 
Kinetik-Gleichungen beschrieben. Die Ordnungsfibergange erster und zweiter Art werden benicksichtigt. 
Es wird gezeigt, dab die konventionelle Ausscheidung 0ber Keimbildung und Wachstum einer geordneten 
Gleichgewichtsphase nur in einem sehr engen "Streifen" im Zweiphasenfeld des Phasendiagrammes auftritt. 
Im fibrigen Bereich beginnt die Entwicklung mit einer kongruenten Ordnungseinstellung, welche 
iibergangsweise einen nicht-st6chiometrischen geordneten einphasigen Zustand mit derselben 
Zusammensetzung wie die entordnete Mutterphase und derselben Symmetrie wie die intermetallische 
Produktphase erzeugt. Der Zerfall dieser Phase lauft ~berwiegend an den Antiphasengrenzen ab, welches 
zu einer zweiphasigen Morphologie fiihrt mit Schichten aus entordneten Filmen, die die Antiphasenbere- 
iche der geordneten Phase trennen. Der Zerfall r0hrt her von einer Konzentrationsinstabilitat an den 
Antiphasengrenzen, welche bedeutender ist als die konventionelle homogene spinodale Instabili~t ist. Die 
weitere morphologische Entwicklung nach dem Zerfall wird gesteuert durch die Vergr6berung, welche die 
Gesamtflfiche der Ordnungs-/Entordnungs-Grenzen verringert. Dieser vorausgesagte Ausscheidungs 
mechanismus durch Bildung eines einphasigen Obergangs-Ordnungszustandes gilt allgemein. Er wird im 
iiberwiegenden Teil eines zweiphasigen Feldes eines Phasendiagrammes einer jeden Legierung mit inter- 
metallischen Ausscheidungen, die mit der Mutterphase iibcr Ordnungseinstellung verwandt sind, erwartet. 
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I. INTRODUCTION (a) 

The problem of structural transformations during the 
alloy aging is of paramount importance for the 
materials design of advanced engineering materials 
since different structural states, formed along the 
transformation path, are utilized for achieving special 
properties. Very often the decomposition of a homo- 
geneous parent phase produces two effects, the con- 
centrational delamination due to atomic diffusion 
and the crystal lattice symmetry changes associated 
with the composition change. The crystal symmetry 
changes may occur due to either ordering or a crystal 
lattice rearrangement. In both cases the composition 
alone is not sufficient to describe all possible phase 
states and a structural parameter (or parameters) 
characterizing the degree of the symmetry distinction 
between coexisting phases should also be introduced. 
The structural parameter is different for different 
systems. It is a long-range order (l.r.o.) parameter if 
the intermetallic precipitate phase is an ordered phase 
(for example, in Ni-based superalloys such as Ni-AI 
and Ni-Ti, or in AI-Li system). It is a displacive 
mode if a product phase is formed by a crystal lattice 
rearrangement like the f.c.c. --* b.c.c. Bain distortion 
(for example, precipitation of the B2 y phase in the 
f.c.c, ct phase in Cu-Be alloys). When the free energy 
depends on both the composition and the structural 
parameter, the nonequilibrium free energy can be 
imaged as a 3-D surface, defined on the composition- 
structural parameter coordinate plane. The trans- 
formation path is determined by two factors, the 
thermodynamic driving force "pushing" the trans- 
formation towards structural states with lower free 
energy and the kinetics determining the relative speed 
of compositional and structure parameter relax- 
ations. The kinetics "selects" one between many 
possible paths that reduce the free energy. 

In this paper we consider a situation when one of 
the product phases formed due to decomposition of 
a disordered solid solution is an ordered intermetailic 
phase. In this case the structural parameter is a l.r.o. 
parameter. For the ordering transition of the first 
kind, a typical geometry of the free energy surface of 
a system is shown in Fig. l(a). For the important 
case of the f.c.c. AI-Li alloys, in particular, the low 
temperature thermodynamic stability analysis by 
Khachaturyan et al. [1] predicted a cascade of struc- 
tural transformations during decomposition of a 
disordered alloy into a mixture of a disordered matrix 
and an ordered intermetallic. The transformation 
starts from the congruent ordering occurring either 
by nucleation and growth of the ordered phase 
domains with the same composition as the disordered 
phase matrix or by homogeneous barrierless order- 
ing. The resultant single-phase nonstoichiometric or- 
dered state decomposes into a mixture of two ordered 
phases with the solute-lean ordered phase later spon- 
taneously disordering. The conventional nucleation- 
and-growth mechanism of the precipitation of the 

c/ 

(b) F 
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Fig. 1. Schematic dependence of free energy on composition 
and l.r.o, parameter. (a) The case of the ordering transition 
of the first kind; (b) The case of the ordering transition of 

the second kind. 

3'(L12) phase from the disordered f.c.c, solution is 
also possible but it may occur only within a certain 
narrow part of the two-phase field. These predictions 
are confirmed by Sato, Tanaka and Takahashi [2], 
and Rudmilovich et al. [3] who observed a transient 
nonstoichiometric ordered single-phase on the high 
resolution electron microscopic images after quench- 
ing AI-Li alloys into the low temperature part of the 
two-phase region. Shaiu et al. also concluded that the 
congruent ordering occurs prior to the decomposition 
by measuring the composition across the ordered 
domains [4]. 

The original paper [1] was based on the mean-field 
approximation. The mean-field approximation works 
well at low temperatures which is an area of interest 
for essentially all practically technological appli- 
cations. The approximation becomes more accurate 
if interatomic interaction is long-range. However, 
all qualitative conclusions obtained in [1] are valid 
regardless of the approximation as long as the 
mean-field free energy provides qualitatively correct 
geometry of the free energy surface shown in 
Fig. l(a). The same conclusions also follow from a 
very elegant geometrical approach by Laughlin and 
Sofia [5]. This approach emphasizes the general 
rather than specific geometrical characteristics of the 
free energy surface shown in Fig. l(a) and, thus, is 
applied to arbitrary systems. Therefore, the cascade 
of reactions along the decomposition path predicted 
for a particular case of LI 2 formed by ordering 
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transition of the first kind in [1] and for more general 
cases in [5] should be expected for any decomposing 
system where the ordering is of the first kind. It is 
expected even for a system where an ordered phase is 
metastable and does not appear on the equilibrium 
diagram at all. 

In the case where the ordering is an ordering 
transition of the second kind, a similar but simpler 
transformation path describing formation of a non- 
stoichiometric ordered phase prior to the secondary 
decomposition in a two-phase field of the diagram, 
is expected [6, 7]. A typical free energy vs composition 
and l.r.o, parameter hypersurface is shown in 
Fig. l(b). The thermodynamics of phase transform- 
ations involving both ordering transition of the sec- 
ond kind and conditional spinodal decomposition of 
the ordered phase have been discussed by Semen- 
ovskaya [8], Allen and Cahn [6], Kubo and Wayman 
[9] and Sofia and Laughlin [7]. 

Although the thermodynamic stability analysis 
supplemented by some simple qualitative assump- 
tions concerning the transformation kinetics gives the 
general features of the decomposition path, its detail 
description can be obtained only in the framework of 
a kinetic theory. The kinetic theory should be able to 
describe different concurrent processes such as order- 
ing, antiphase domain boundary movement, concen- 
tration delamination and coarsening in terms of a 
temporal evolution of composition and l.r.o, par- 
ameter profiles. Such a theory formulated in terms of 
the crystal lattice site diffusion in a nonideal solid 
solution, which is actually a random walk problem 
for a system of interacting atoms, has been proposed 
by Khachaturyan [10, I1]. The kinetic equations 
obtained in [10] are microscopic counterparts of 
the continuum Cahn-Hilliard equations [12]. They 
describe simultaneously the diffusion kinetics of 
decomposition and ordering in a spatially inhomo- 
geneous system where composition and l.r.o, par- 
ameter are coupled by a nonequilibrium free energy. 
The problem is that the microscopic kinetic equations 
formulated in [10] are actually nonlinear finite differ- 
ence differential equations which can be solved only 
numerically using a computer simulation technique. 
The purpose of this paper is an investigation of 
temporal structural transformations of a parent dis- 
ordered phase quenched into a two-phase field of the 
equilibrium diagram by solving the nonlinear micro- 
scopic diffusion equations. It is an attempt to simu- 
late such different diffusion processes as ordering, 
decomposition and coarsening simultaneously within 
the framework of the same physical model. We start 
our investigation considering two two-dimensional 
(2-D) binary alloy systems since it dramatically 
reduces the computational time but nevertheless 
reasonably well describes all principal features of the 
process. Three-dimensional extension does not 
introduce any additional mathematical or physical 
difficulties. It just requires longer computational time. 
The corresponding work is under way. 

2. THE DECOMPOSITION KINETICS MODEL 

In our kinetic model, the atomic structure and 
alloy morphologies are described by a single-site 
occupation probability function, n(r, t), which is 
actually an average of the occupation number, c(r), 
over the time-dependent ensemble n(r, t ) =  (c(r)), 
where ( . . . )  denotes averaging 

= 1, if a site r is occupied by a 
c(r) = solute atom 

= 0, otherwise. 

Following [10], we present the microscopic kinetics 
equations as Onsager equations in which relaxation 
parameters are occupation probabilities, n(r, t), for a 
solute atoms to be in a crystal lattice site, r, at the 
time, t. Then the evolution rate, dn(r, t)/dt, is pro- 
portional to the thermodynamic driving force, 
6F/6n(r, t), where F is the free energy 

6F 
dn(r,dt t) = Z,, L(r - r') 6n(r', t) (1) 

where L ( r -  r') are kinetic coefficients proportional 
to the probability of an elementary diffusional jump 
from site r to r' during the time unit. Kinetic co- 
efficients, L ( r -  r') are assumed to be independent 
of occupation probabilities, n(r). It is actually equiv- 
alent to an assumption that atom mobilities or diffu- 
sion coefficients are independent of composition. This 
is a conventional approximation for diffusional kin- 
etics. It may affect the transformation rate but not a 
sequence of the structural transformations which is 
our primary concern here. 

The Fourier transform of equation (1) gives its 
reciprocal space representation 

dh(k,dt t ) = / ~ ( k ) l  6 ~ } k  (2) 

where ~(k, t),/~(k), {6F/6n(r)}s are the Fourier trans- 
forms of the relevant functions, n(r, t), L(r) and 
6F/6n(r), defined as 

~(k) = ~ f ( r )  exp ( - ikr). 
r 

From equation (2), we can see that equation (I) 
describes evolution of both macroscopic and atomic 
scale concentration inhomogeneities. For a macro- 
scopic scale inhomogeneities, a longwave limit tran- 
sition transforms equation (1) into the conventional 
Cahn-Hilliard continuum equation of the macro- 
scopic diffusion with 6F/6n(r, t)-*/~(r), where/~(r) is 
a local value of the chemical potential. The diffusion 
coefficient appears as the first nonvanishing term of 
the long wave expansion of E(k) ( / -~0 t )~-Bk  2 
where B is the diffusional mobility of a solute atom 
related to its diffusivity, D, by the Einstein equation, 
B = Dc(1 - c)/kBT, k B is the Boltzmann constant, T 
is the temperature and c is an average solute atom 
composition; the zero expansion term, ~ (0), vanishes 
because of the conservation of the number of atoms 
[11]). Equation (1), being microscopic, also describes 
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the long-range order which is actually an atomic scale 
modulation of the ayerage alloy composition, c, with 
the superstructure periods. 

For the computer simulation we must specify 
the parameters of the phenomenological kinetic 
equations (1) and (2), and the nonequilibrium free 
energy functional, in particular. We are primarily 
interested in qualitative rather than quantitative 
physical results. Because of that, it is sufficient to 
choose the free energy in a simplest possible form if 
this form provides the qualitatively correct geometry 
of the free energy surface defined on the composition- 
l.r.o, parameter plane as shown in Fig. 1. Such a 
geometry gives the qualitatively correct temperature 
dependence of the 1.r.o. parameters above and below 
the ordering transition temperature, a two-phase field 
at low temperatures and properly describes the insta- 
bility lines and lines of the metastable equilibrium 
within the two-phase field of the phase diagram. 
These instability ranges are the most important fea- 
tures for characterization of the sequence of struc- 
tural states formed during a decomposition of a 
quenched disordered alloy. The mean-field free en- 
ergy functional 

F = ½ ~ W(r '  - r") n ( r ' ) n  (r") 
r ' r "  

+ kaT ~, [n (r')ln n(r') 
r '  

+ (1 - n (r ' ) ) ln( l  - n (r'))] (3)  

[ W ( r '  - r") is the interaction energy between a pair of 
atoms at r' and r"], meets the above-formulated 
requirements in spite of its simplicity. It correctly 
determines the sequence of structural states along the 
transformation path although the rates of the trans- 
formations of these states are not necessarily very 
accurate. 

The free energy (3) is actually a good approxi- 
mation for the case of a long-range interaction and at 
low temperatures [13]. Using the free energy (3), the 
kinetic equation (2) reads 

driot, t) = LOt) r got)riot, t) 
dt L 

+kT,{ln(1 n(r't, ~ 1  
- n(r, t)]Jt j (4) 

where {In(n(r, t)/1-n(r, t)}t is the Fourier trans- 
form of In(n(r, t)/l -n(r, t)), and 

VOt) = ~ W(r)exp(- ikr)  (5) 
r '  

is the Fourier transform of the interaction energies 
W(r). Equation (4) is a nonlinear equation with 
respect to the concentration wave amplitudes, riOt, t), 
where the interaction between amplitudes is described 
by the nonlinear term in the square brackets. It is 
valid for an arbitrary long-range interaction model 
where all information concerning interaction energies 
enters the Fourier transform (5). It should be empha- 

sized that the conventional Cahn-Hilliard equation 
with a constant coefficient at the gradient term can be 
obtained only in the mean-field approximation using 
a long-wave limit. Any correlation effects would 
immediately result in a dependence of the gradient 
term coefficient on composition and l.r.o, parameter. 

At small k (long-wave limit) ri(k,t) describes 
concentration inhomogeneities while at k close to the 
superlattice vector, k0, ri(k, t) describes I.r.o. par- 
ameter heterogeneities [14]. In the case of precipi- 
tation of an ordered phase, the function riot, t) 
assumes large values only around k = 0, with Ikl of 
the order of 2n/d, where d is a typical size of a 
concentration segregation, and around k = ko. The 
fact that riOt, t) assumes considerable values only 
around k = 0 and k = k0 allows one, in principle, also 
to use an alternative continuum aproximation of 
equation (1) considering only temporal evolution of 
smooth composition profiles, c(r) and l.r.o, profiles, 
r/(r). They well approximate the function riot) near 
k = 0 and k = k0, where riOt) is substantial. Then the 
free energy, F, can be presented in the form of a 
Landau expansion. 

In the simplest case, when the homogeneous or- 
dered phase is described by the only concentration 
wave with k = k0, where k0 is a superlattice vector 
which is a half of a fundamental reciprocal lattice 
vector of the parent disordered phase, the ordering 
results in a development of the only concentration 
wave amplitude, riot0)= No?, where r/ is a l.r.o. 
parameter. The resultant ordered phase is then 
described by occupation probabilities [11] 

n(r) = c + cr/exp(ik0r ). (6) 

Equation (6) describes many typical ordered struc- 
tures such as B2, LI 0, Ll 1. 

In this computer simulation study, the set of N 
nonlinear microscopic kinetics equations (4) are 
solved for a 2-D lattice model for a supercell with 
n-crystal lattice sites. Periodic boundary conditions 
are applied in each of the directions. The initial 
disordered distribution of solute atoms is described 
by an occupation probability profile, n (r, 0), which is 
generated by random number generators. The N 
differential equations [equation (4)] are solved using 
the Euler technique 

riOt, t + At) = riOt, t) x ~ At (7) 

where d,qot, t)/dt is expressed in terms of riot, t) 
through the right-hand side of equation (3). The value 
of the time increment, At, in equation (7) is chosen in 
such a way to ensure the stability and accuracy of the 
numerical integration. Solution of N microscopic 
diffusion equations with respect to riot, t) allows us 
to find its back-Fourier transform, which is the 
occupation probability profile, n(r, t), and record its 
temporal evolution. The function, n(r, t), contains all 
the information concerning the microstructurai trans- 
formation along the decomposition path including 
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congruent ordering, formation of antiphase domains, 
homogeneous and heterogeneous decomposition and 
coarsening of ordered phase particles. 

3. M O D E L  SYSTEMS FOR D E C O M P O S I T I O N  

Below we consider a 2-D binary alloy which is a 
disordered phase at high temperatures and assumes a 
two-phase equilibrium between a solute-lean dis- 
ordered phase and a solute-rich ordered phase at low 
temperatures. We consider two cases, the first of 
which is that ordered phase is formed by an ordering 
transition of the second kind, and the second of 
which is that the ordered phase is formed by an 
ordering transition of the first kind. 

3. I. Decomposition accompanied by an ordering tran- 
sition of  the second kind 

A 2-D binary alloy in a square lattice and a 
particular set of the interchange energies describing 
the interactions between atoms 

w l = l . 0  w , = - - 0 . 8  w~=- -0 .55  (8) 

are chosen, where w~, w 2, and w 3 are the first, second, 
and third neighbor interchange energies. Interactions 
beyond the third coordination shell are neglected. 
The characteristics of the system, ordering or phase 
separation, or both, upon quenching a homogeneous 
disordered solid solution, can be determined by an 
investigation of V(k), which is the Fourier transform 
of the interchange energy (5) [11, 14]. For a 2-D 
square lattice, it is 

V(k) = 2w 1 (cos 2nh + cos 2hi) 

+ 4w 2 cos 2nh cos 2n/ 

- 2w~(cos 4nh + cos 4~l) (9) 

w h e r e k = 2 n / a ( h , l ) ,  - ½ ~ h ~ < ~ a n d  - ~ < l ~ < ~ a r e  
coordinates of the reciprocal lattice sites within the 
first Brillouin zone and a is the crystal lattice par- 
ameter. For the set of energies (8) the absolute 
minimum of the function V(k) falls at k = k 0 = 2rGa 

I I (5 i). According to the concentration wave method 
[14], this means that the disordered solution should 
order at low temperatures, and the atomic structure 
of the ordered phase is described by occupation 
probabilities given in equation (6) with 

k 0 ~ - -  . a 

Substituting 

and r = a (m, n), where (m, n) are dimensionless in- 
teger coordinates of crystal lattice sites, into (6) gives 
the occupation probabilities as a function of site 
coordinates, (m, n) 

n(r) = c + c~ cos g(m + n) (10) 

0.3 

0.25 

0.2 

T* 0.15 

O. I 
0.05 / ~t + [3 

I/" 
0 I I I I 

0. I 0.2 0.3 0.4 0.5 
C 

Fig. 2. Reduced equilibrium phase diagram for the ordering 
transition of  the second kind. ,, designates the disordered 
phase field,/~ designates the ordered phase field, solid lines 
are the phase boundaries of the low temperature two-phase 
field, dot-dashed line is the ordering transition line of  the 
second kind extended into the a + ~ field, thin line is the 
stable ordering transition line of the second kind, dotted line 
is the conditional spinodal and letters a, b and c represent 
the alloy compositions and temperatures chosen for the 

computer simulation. 

which describes the atomic distribution of solute 
atoms in the ordered phase. Substituting (10) to (3) 
yields 

c 2 N 
F(c, ~1, T) = N ~ V(O) + -~ V(k0)(c-,/) 2 

+ N ~ [ ( c  + cq)ln(c + o/)  

+ ( I  - c - cq)ln(!  - c - cr/) 

+ (c - o / ) ln (c  - o/)  

+ ( I -  c + cq) ln(I  - c + ol)] (11) 

where N is the total number of lattice sites. Minimiz- 
ing the function F(c, q, T) with respect to q at a given 
composition, c, gives the equilibrium I.r.o. parameter 
q(c, T) 0 at the congruent ordering. Its substitution to 
(11) yields the equilibrium free energy, F[c,q(C)o], 

0.25 ~ , 

{).2 
O{ . -/ ";/ 

0.15 ~ "(i \ T* x 
0.1 / / ' b  o ' ,  

e ~ +  + , ,  
0.05 / /  ~ + 13 ,, 

d / '  
o I 

0 0.111 0.222 0.333 
¢ 

Fig. 3. Reduced equilibrium phase diagram for ordering 
transition of  the first kind. ,, is the disordered phase, ~ is the 
ordered phase, thick solid lines are phase boundaries, 
dot-dahsed line is the ordering instability curve ( T ) ,  dashed 
line is the conditional spinodal, dotted line is the disordering 
instability curve (T+), and the thin solid line is the T o line 
where the free energies of  the ordered and disordered phases 

are equal. 
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which becomes a function of composition only. The 
conventional common-tangent  construction for the F 
vs c curves at different temperatures determines the 
equilibrium compositions of the disordered ,, phase 
and the ordered fl phase and allows one to draw the 
solubility lines. The calculated phase diagram is 
presented in Fig. 2. The diagram shows an ordering 
transition line of second kind terminated by the 
tricritical point at c =0.255 and T * = 0 . 1 9  below 
which there is a two-phase field describing equi- 
librium between a disordered and an ordered phase. 
Reduced temperature T* =kBT/I V(k0)[ is used in 
the phase diagram representation. This phase dia- 
gram is topologically very similar to the upper part 
of the Fe--AI diagram describing the two-phase field, 
the disordered + ordered B2 phase [15]. 

3.2. Decomposition accompanied by an ordering tran- 
sition o f  the first kind 

A binary alloy in a 2-D close-packed triangle lattice 
and a particular set of  interchange energies 

w ) = l . 0 ,  w 2 = - 1 . 0 ,  w 3=0.5 ,  w(=0.25 ,  

w5 = - 0 . 5 ,  w6 = - 0 . 2 5  (12) 

solute atoms at site r as a function of the integer site 
coordinates, (m, n) 

2n 
n(r) -- c + 2cr/cos -~- (m - n). (14) 

Equation (14) describes the atomic structure of the 
ordered phase. The corresponding mean-field free 
energy is given by 

C 2 

F(c, ~l, T) = N--f V(O) + NV(k0) (~ )  2 

+ -~---~ [(c + ~ ) l n ( c  + 2o/) 

+ (1 - c - 2cr/)ln (I - c - 2o/) 

+ 2(c - c~/)ln(c - cr/) 

+ ( l - c + c r / ) l n ( l - c - c r / ) ] .  (15) 

The calculated phase diagram based on the free 
energy (15) is shown in Fig. 3. Reduced temperature 
in Fig. 3 is defined as T * =  kBT/I V(ko)l. The free 
energy provides an ordering transition of the first 
kind. The completely ordered compound has a stoi- 
chiometric formula of A 2 B. 

are chosen where w~ is the ith neighbor interchange 
energies (i = 1, 2 . . . .  6), respectively. Interactions be- 
yond the six coordination shell are assumed to be 
zero. V(k), the Fourier transform of the interchange 
energy, in a 2-D triangular lattice is then presented as 

V0c) = 2wl [cos 2nh + cos(2nl) + cos(h - 1)] 

+ 2w2[cos 2n(h + 1) + cos 2•(h - 2l) 

+ cos 2n(2h - l)] + 2w3[cos 4nh 

+ cos 4hi + cos 4n(h - I)] 

+ 2w4[cos 2n(2h + 1) + cos 2n(h + 21) 

+ cos 2rt(h - 3•)] + 2ws[cos 6rch 

+ cos 6hi + cos 6n(h - l)] 

+ 2w6[cos 4n(h + I) + cos 4n(h - 21) 

+ cos 2n(2h - I)] 

k = 2n(ha? ,  la~), h and l are dimensionless coordi- 
nates of the reciprocal lattice sites within the 
r a n g e , - ~  ~< h ~< ½ and - ~  ~< I ~< ~,~ a~ and a~ are unit 
vectors in the reciprocal space forming an angle 120 ° 
to each other. With interaction parameters (12) the 
absolute minimum of the function V0t) falls at 
k = +_-ko = +2n/3 (a* - a~'). Therefore, occupation 
probabilities describing the ordered phase are 

n(r) = c + cr/[exp(ik0r) + exp(- ik0r) ]  (13) 

where r = (real, na2), m, n are dimensionless integer 
coordinates of crystal lattice sites and a~, as are unit 
cell vectors in the real space. Substituting k0 and r 
into (13) gives the occupation probabilities of finding 

4. COMPUTER SIMULATION RESULTS 

4.1. Decomposition with an ordering transition o f  the 
second kind 

In this computer simulation, a 2-D square lattice 
consisting of 64 x 64 unit cells is used. The starting 
occupation probabilities correspond to a completely 
disordered state with small random perturbations. 
Several compositions representing different parts of 
the two-phase field in the phase diagram in Fig. 2 

0.015 

~o a 
l 
t 
I . . . . .  disordered 

0.01 
ta. , ordered 
= 

I 

0.0o5 L c = % = c  ./ b 

\ 
0 

0 0.1 0.2 0.3 0.4 0.5 

e 

Fig. 4. Reduced free energy as a function of composition 
for both the ordered and disordered phases at T*= 0.106 
in the case of ordering transition of the second kind. The 
dotted line is a segment of the free energy curve of 
the disordered phase in the absolutely unstable region. 
Vo = dF/ac~ = ~F/dcp is the equilibrium chemical potential, 
c =c+ = co is the composition at which the ordering 
transition of the second kind occurs at T* = 0.106. Point a 
is the free energy of the disordered phase at composition 
0.25, point b is the free energy of the congruently ordered 
phase and point c is the free energy of the final two-phase 

equilibrium state. 
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were chosen for studying the decomposition kinetics. 
They are "quenched" into the two-phase field at 
temperature T* = 0.106. The free energy curves for 
both the disordered and ordered states at T* = 0.106 
are shown in Fig. 4. 

For the substitutional diffusion in alloys, the 
elementary diffusion jump probabilities, L(r), are 
assumed to be nonzero at r = 0 and at r correspond- 
ing to the nearest neighbor sites only. 

Using this assumption and the requirement, 

£(0)  = ~ L(r) = O, 
r 

which follows from the conservation of the number 
of atoms, we obtain 

/.~(k)0 = - 4 L t  (sin2nh + sinmxl) (16) 

where L] is the jumping probability between nearest 
neighbor sites during a unit of time. It is convenient 
to introduce the dimensionless reduced time, t*, 
measured in terms of the typical time of an elemen- 
tary diffusion event, to* = l IL t ,  by relation 

t* = t / t ~ .  (17) 

The diffusion kinetics described by equation (4) 
occurs very fast in the beginning of the decompo- 
sition process and much slower at the later stages. 
Because of that, the time increment, At*, in equation 
(7) has been chosen differently at different stages. 

4.1.1. Composition c = 0.25. This composition, 
labeled by point b in Fig. 2, is almost the middle point 
between the equilibrium compositions of the disor- 
dered and ordered phases at temperature T* = 0.106. 
The temporal evolution of the occupation probabili- 
ties n(r, t) at four different times during the aging 
process is illustrated by Fig. 5(a-d). In Fig. 5 and the 
figures followed, the values of occupation probabili- 
ties of finding solute atoms B, which describe the 
atomic structure, are imaged by different darkness of 
the circles at crystal lattice sites. 

Our initial state (t* = 0) is a quenched completely 
disordered solution. Its free energy is represented by 
point a in Fig. 4. At time close to t* = 2.0, the whole 
system proves to be at an ordered single-phase state 
consisting of a set of antiphase domains [Fig. 5(a)]. 
An alternation of dark and light circles in Fig. 5 and 
all other figures indicates the atomic pattern of the 
ordered phase. The free energy of the congruently 
ordered state is shown by point b in Fig. 4. The 
structure of the ordered phase coincides with that 
described in Section 3 for the concentration wave 
analysis with the superlattice vector 

k0= a 

Because the ordering reaction does not affect the 
composition of the alloy, the ordering is a congruent 
reaction and, thus, the ordered phase is nonstoichio- 
metric. The occupation probabilities away from the 
antiphase domain boundaries have values very close 

to the congruent equilibrium values, nt ~ c + cr/0 and 
n 2 ~ c -cr/0 following from equation (10). As is ex- 
pected, the congruent ordering leads to the growth of 
the amplitude, tT(ko) --- Nc~, and disappearance of all 
other amplitudes. It may be noticed that the distri- 
bution of antiphase domains shows a remarkable 
resemblance to experimental observations in ordering 
systems (see, for example, [6]). 

The nonstoichiometric ordered phase formed by 
the congruent ordering reaction was found to be 
unstable with respect to the phase decomposition into 
an ordered and disordered phase mixture. An import- 
ant computer simulation result which should be 
especially emphasized is that the decomposition pro- 
cess following the congruent ordering occurs pre- 
dominantly at the APBs. The reduction of the 
composition at the APBs towards the equilibrium 
value c = c, = 0.074 and subsequent gradual APB 
disordering are observed. The composition of the 
ordered phase moves towards the equilibrium value 
cB= 0.454 at the same time. It is illustrated by 
Fig. 5(b) for t* = 25, in which the APBs are replaced 
by layers of the disordered ~ phase. Very small 
ordered domains disappear quickly and become 
spherical disordered particles as a result of simul- 
taneous decomposition at APBs and coarsening. 

Figure 5(c), corresponding to t * =  200, demon- 
strates the growth of the disordered layer thickness 
between the antiphase domains. At this stage, the 
decomposition has almost reached its completion. 
The microstructure is a mixture of ordered and 
disordered phases with the equilibrium values of the 
composition and l.r.o, parameter. At t*--200,  the 
coarsening reducing the area of order/disorder inter- 
face, however, is still far from completion. The 
reduction of interracial area is accomplished through 
both surface diffusion along the order-disorder inter- 
face and the bulk diffusion across the disordered layer 
and across the ordered domains. 

The result of coarsening is shown in Fig. 5(d). This 
microstructure has much less interracial area com- 
pared to that shown in Fig. 5(c). The resulting 
amount of the ordered and disordered phases are 
found to be in agreement with the lever rule, which 
is about 50% each at this relevant composition and 
temperature. The total free energy of the two-phase 
equilibrium system is represented by point c in Fig. 4. 

4.1.2. Composition c = 0.15. This composition is 
close to the solubility curve of the disordered phase 
(see point a in Fig. 2). The occupation probabilities 
represented by gray levels are plotted in Fig. 6(a-d) 
for four different reduced times. The transformation 
starts as a congruent ordering, which produces a 
transient nonstoichiometric ordered single-phase with 
antiphase domain boundaries at t* = l0 [Fig. 6(a)]. 
The occupation probabilities within the ordered do- 
mains are close to congruent equilibrium values at 
c = 0.15. The ordered phase shown in Fig. 6(a) has ex- 
perienced substantial coarsening of antiphase domains 
occurring simultaneously with ordering prior to any 

AMM ~/II--E 
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a b 

c d 

Fig. 5. Temporal evolution of occupation probabilities at temperature T* = 0.106 and composition 0.25 
in the case of the ordering transition of the second kind. The magnitudes of the occupation probabilities 
at lattice sites are visualized by the darkness of the circles at the crystal sites. Occupation probabilities 
close to 1.0 are represented by the darkest circles and those close to 0.0 are represented by the lightest 

circles. (a) t *=  2; (b) t*= 25; (c) t*ffi 200; (d) t *=  1000. 

significant concentration redistribution. It is driven 
by the reduction of  the total APB energy. The size of 
domains is much larger in Fig. 6(a) than in Fig. 5(a). 

The single-phase state shown in Fig. 6(a) is also 
unstable with respect to further decomposition. At 
t* = 50, the disordered phase starts to appear at the 
APBs, whereas the composition of ordered regions 
close to the APBs moves towards the equilibrium 
values of the ordered phase. Following the appear- 
anc¢ of  disordered phase at APBs, disordered phase 

also develops inside the domains. Ordered domains 
near the high curvature regions of the APBs first 
reach the equilibrium composition of the ordered 
phase. At t* =300, the decomposition already 
reaches its completion. The resultant two-phase mor- 
phology consists of spherical equilibrium ordered 
phase particles in the disordered matrix [Fig. 6(c)]. 

Further coarsening of the two-phase mixture of 
Fig. 6(c) is, unlike the coarsening of the antiphase 
domains, a very slow process. It is driven by the 



LONG-QING CHEN and KHACHATURYAN: STRUCTURAL TRANSFORMATIONS 2541 

~ . ° . e .  o o o o ~ o e e e o o • e • l e ° o  ¸ e o l o o o e  o °  

* • ° ° °  . . . . .  ° , . , ° ~ ° ° ° ° ° °  . . . .  . . , .  ° ,  

• * • . ~ ° . °  . . . . .  • ° ~ * ~ , : , ,  . ° , . ° ° • ~ • ~  

f • ~ ¢ • • ' ~ • ~ ' e ~  * ~ ° o • o ~ o  ° * e ~ , ° ° • ~ ' ~ ° • ~ • • ° • ° ~ ' • ' • ° - ' , ~ . ° ~ ° • "  • e  

~ • ~ ° . ° ~ °  • • • , " o ° o ° • • • ° ~ * • ~ • ° ~ • • ' • • ~ • e ° ~ ° ~ * e ° ,  " ,  • ~ . ' ' ° ~  

, ' ; ; " ~ . . - . ; : : ; : : : : ; : . : , : : : . : : : : : . : : : : : .  . • • . : : ; : . ~ : ; : : ' ; : : : : : : : : : : : : ' '  • • 
~ °  ° ° ° ~ • ° • ° ° ° ~ e ~ e • ° e e  , ° o e • ° . • • • e - e ~ o ° e e e • ~ ° o * ° e ° • • ~ • ' ~ • ~ ' e * * * ~ •  e 

: : : - ' . : : : : : : :  : : : : : : : ; : : : : : : : : : : :  i e . ~  o * o • o ~ ' ° ' ' ° ~ ° ° e e o • ~ ° o o • * • • • o ° o  

~ o • • • ° • . • • ° ~ ° ~ * o ° * * ° • o ~ o °  ' ~ o e e e ~ e e ° • ° • ° o ° ' °  o • ' e  * • • • • • ° °  
o • • • • • • • • 

~ ' • ~ , • ° ~ • ° ~ ° ~ e e ° ° e e e  • ° ° ' ~ ° e  • e ° •  ° ° ~ % ° ~ • • • • ° °  • ° e • • ° •  
• • • e • ~ e  o •  • • • • • t . ~ °  • . •  . e •  • ° ° ° ° e o e ° ° °  • e °  o • o O o O . ° o  • ~ . ° e • • . • •  

• • • • • • • e  • e • • •  

• • • . • • • .  • • ° • e %  • ° • ~  • ' •  • • • e • •  • • • • • 

' : : i  iiiii !i iiiiiiii iii:ii.iii iii i.i.i: ii:i.i.i;i!iiiiiiiii: 
e • ~ ° • • e e ° ° • . e o . • ° o . • • . a o o * • • * ~ ° • • ° •  

• • • • o  • • e e o ~  • ° • • 

" "e • • • • e • •  ~ o • o • • • • • * ° • ~ • o , • o  

...!....::.:...i..:::::::::...:.:.:..:::.......:....:...:. • 

: . : . ' , ~ "  ;,..-.,...=========================================== 
• . . . . . . .  ~ . ~ ° . . . . . . ° . ° . ° • 

° . .  . . . .  ¢ , . . . . . . . . . . .  ° .  

~ ° • . * • ° • ° . ° * • ° ° • • 
• . . ° ° ° , ° , ~ . . , ° ~ ° . . •  

, ° ° '  . . . . .  ~ ~ . . ° • ~ ° ° . . * ~ • ° • • 
° . . . ' .  . ° o . . ° ° • ° • ~ ° • ~ ° ° ~ ~ , ° . . • . 

~ . . . . . . . .  , . • , ° . , ° ° . . . . .  ° ° ° ° • ~ 
, °  . ° . ~  . • ° ° ° ° • ° • ~ * • , ~ , ° , • ~ • ~ . • ° ,  

e •  • • • • o ° ,  , ° , , ° ~ • ~  ~ • . ° • ,  ~ , , • * • ° °  ° . . , • ,  ° % ° • , ° % * , * * * *  ° ~ • ~  • e  

• • , ° ° o  ° , . . °  . • * ° e  • • •  o *  ° ° • • • ° • ° ~ e  , e e  • ° ° e  ° ° , 

~ , ~ • *  ° • ° ° , e • • • •  ° • • °  • •  - ° • , • • O o  • e ° e  • e  • o • ~ o e , • • • • * * • o ~  ° • e • • • °  • ° 

• • • • ° ° . ° ~ , • ° ,  ~ • ~ * ° • • • e • ° • o • ° * • o ,  

~ • * ' ~  ° • * ' •  * - • ° . e  • ° e  o o *  o ~  o e  e o ~  ~ e e o o •  

• ° ° • * , . . *  ~ *  ° . e o ° ° o ~ ° o ~  , • ° •  * °  . • o ,  

: - : : : . : : : : - : ' : : : : : : : : . ' . : . : . : . : : ' : : ' : ' : " - ; ' 2 " : - ; " - : ' ; - : ' : ' : - "  
• " : " '  . . . . .  " .  " : : ' : ' . . . : . .  . . . .  . . . . ' ~ :  ; . ; . : : : : : : : : : : : : : :  : . : : : . ' : " : ' :  ? ;2; : :? ; : ' ;  .: 

. . . . . . . . .  " ! ' [ i : : : :  . . . . . . . . . . . . . . . . . .  !!:!i!: :i!:i!!!;Hii:!.!!:i 
: - . . . °  ° ' . ' .  % : - . ~ : : : . : : . . . . , . - . ' . : ~ : : : : . : :  . . . . . . . . . . . .  : - : : , : : -  

• • •  e *  • • c a • • •  * • • . • . o |  ° e e e e e ~ o * • ~ e e e e ~ o  o o  • e o ~ * ° ~  • • ° • * • • e •  

' [ ' : ' : : [ : : : : : : : [ ' : ' [ ! ' : ' : [ ! ' ! H " : ' : ! ' [ H [ [ [ ! : " i  : [ . [  . . . . . .  " .  " . [  [ .~ .  . " : " [  
• • • a o ~ • o • • ~ . • • * • ~ e e ° o o ° ~  ° , • , • • o o ° • • ~ •  • 

• • ° a • e  • a • ° ~ • •  • - ° • : : : . : . . .  " . . . . - .  . . . . .  : .  , , ~ . . . . . . . . . . . . . . . . . . .  
• . . . . .  • . . . . .  " ~ : ~ ' . ' • , ' .  • . . . . .  : : . : ~ . ~ . .  , . . . -  . ° . , : :  

° °  • , • • • ° 

• • : .  . . . .  I '.•:: 
, , , , , : l l l l : , l ° l l l l l l l , l ] l  I l l l l l ,  i t , , I ° , , , ,  . . .  • , , t : , : : ,  l 

• e e o e e H o • o ~ ° o ° ~  • - , • , ~ ~ • • o o • • • ~ °  • . . , • • * ° e e o • o ~  

• ° ~ • ° • o ° ~ e • ° ~ . ,  , . . • ~ , • • ~ 1  
° o e ° • e • , o o , H ~ o  • • , ° , o o o ° ~ • o ~ • .  • • . . ~ • ~ • • 1  

e • e ° e * H e • • ~ • *  • • ~ ° • • , • ~ ° , o ° • , •  . . . . . .  e • l  
• - * ° * o o l  o ° • . e  ~ e ~ e ° ~ ° o • * ,  • • • . * • ~ • e H e e ~ o e ~ e ° •  , . - 

o ~ e • ~ • e e ° ~ * ~ e • o  • . ° • • o ~ * ° . * , • e e e • • *  . . . .  

igiii i: !i!ii!i!i!ii! i !iiii iiii!iiiiiii:!:::'. . . . .  "g . . . .  i i i . . i i  i . . . .  i i ,:ii!ii:ili 
• . . . . . . . . . . . : : : : : : : " . . . . . . . . . . . : : : : : : : : : : : . . . . . . .  . . . . .  : 

: ' . ' . ' - ' . ' . ' • ' . ' . : : : I : : I . :  . . . .  : ." : "  " ' I  . . . . . . .  • : . . . . . . .  : :" 

, ,  • . , . ° , . ° * ¢ * e e ~ o * e o * e * e e e s l s e o e o s e e * e e e s e e s e s * e o e  

, ° * • ° . ° ~ . • * ° . ~ ° * . * ° . . ° . , . , . •  * • • • ° . . . * . .  • . . • 

: ~ I ~ : ; : : , , , . "  , , , ° ~ 1 ~ : ; : : - , '  ' . " . ' , - : ~ : : , ' . '  , • 
~ o e • ° . ,  . . . . . . . .  . °  . . . . . .  ° . . . . .  • . • • . . . . . . . .  . . . . . . . . . . .  • . : : : : : . - . . . . - . : :  
! ~ ! E ' ; ' :  : : : : "  . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . .  : : : : . . . • .  =========================== 

. . . . . . . . .  . . . .  , , . . . . . . . . . . . . . . . . . . . . . , , , , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ e e * ~ ° * H e • . * ° * ~ • *  . .  

. . . . . . . .  [ " [ i  : : : : : : : : : : : : : : : -  ~ . ~ . . : ! E : ~ h ~ ! : ~ H : ! : ! : : : ~ : : : I - : : . I  
~ • • • • • o • • ° . ~ * .  - - . ° ~ -  • • , , • 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: : : : : : : : : : : : : : : : : : : : :  : : : : : : : : : : : : : : : : : :  . . : :  

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  . . . .  . . . : : : :  

c d 

Fig.  6. T e m p o r a l  e v o l u t i o n  o f  o c c u p a t i o n  p r o b a b i l i t i e s  at  t e m p e r a t u r e  T *  = 0 . 1 0 6  a n d  c o m p o s i t i o n  0 . 1 5  
in the  c a s e  o f  o r d e r i n g  t r a n s i t i o n  o f  the  s e c o n d  kind•  R e p r e s e n t a t i o n  o f  the  o c c u p a t i o n  p r o b a b i l i t i e s  is 

the  s a m e  as  F ig .  5. (a)  t * =  10; (b)  t*  = 5 0 ;  (c)  t*  = 3 0 0 ;  (d)  t * =  1000. 

reduction of the order/disorder interfacial energy and 
is determined by the long-range diffusion. The micro- 
structure produced by the coarsening is shown in Fig. 
6(d) for t * =  1000. In Fig. 6(d), the number of  
ordered phase particles is reduced as they become 
larger, compared to Fig. 6(c). 

4.1.3. Composition c = 0.415. This composition is 
between the conditional spinodal line and equilibrium 
solubility line of  the ordered phase in the phase 
diagram (point c in Fig. 2). This means that 
completely ordered state with nonstoichiometric 

composition can not spin•dally decompose. The de- 
composition of  a quenched disordered phase, again, 
starts from the congruent ordering, which is finished 
at around t* = 1.0 [Fig. 7(a)]. 

After the congruent ordering, a disordered layer 
arises at the ant•phase domain boundaries [Fig. 7(h)]. 
Heterogeneities within the ordered domains do not 
lead to any homogeneous decomposition. They 
disappear producing uniform ordered domains• At 
t * =  100, the decomposition process already reaches 
its completion Fig. 7(c)]. 



2542 LONG-QING CHEN and KHACHATURYAN: STRUCTURAL TRANSFORMATIONS 

• • • • e • • • • • • o e • • • . . . . .  ~ • • • • . . ~  . .  • . . . .  +- 

i " o  "e" e"  " o  • • • • • • • • • +e + ' o  e "  • • • • '  + + • • . . . . .  • 
• " o"  • • • • • • • o ' •  i ~ o  o ' o  0 + •  • • • • • • • • • o"  t ~ e  

D" "e" "e'  ' •  ' o  + +•" "•+ • + ' e  + • '  " • '  • + "e  o '  "o '  'o" e "  ' e '  • e '  ' e  + ' o '  • " e  +"  • • . . . . . . .  • + 
• '0+ • ' e  6 '  • '  • • • o "  • • ' e  • + • • " e  • • • ' o  • • + • " e  • • • . '  '~ 

i+ • " t  • '  o e ' o  o o • +•  o o '  o +•  • e '  • • o e+ o e +o • • ' 0  • • ' o  
' 0 '  ' • "  '•+ "e" + e  "e" ' • "  "•"  +•" '0"  • "  "o" "•"  ' 0 '  o "  +•'  "o" ' o '  "•"  "•" ' o '  +•" 'o"  "o' " •  + 0 " "  ' • '  "0+ 0+ +e' " "e 
' • • 0 '  • • ' o  • • • ' o  • e "  " •  " •  " 0  • '  • • • o "  • • " o  • '  • ' • " o  • e ' '  

o '  • '+  • • '  • " • " •  0 '  • • ' e  • • • " •  • • '  • ' •  • • + • ' 

• • o~  • ~ • e~ o "  e~ • e~ •+  " 0  • • "  • • • • ~ ~ " • " •  • • • " •  • • 
• • • i + o  • • • • • • • o + 0  • " • • + o  • • • • • • 

• • • • • +e • • +o " o  • " e  e "  • • ' e  • o "  • • " e  " e  "o  • + • • • e"  4 
• • • • e '  • • • • "  • " • + • +e • 0"  • • " •  • • + • • ' e  • • • ' o  

• • • ' • ' •  • • • +o  • " 0  • + • • " 0  • • • '  • • ' e  +•  • • • • • • ~ I 
G "•"  " •  . . . . .  o "  "o" "•" " •  "o" " • "  +•+ " 'e"  "e" " e  "o" o "  " "•+ "•" " •  ' • "  "o" " •  . . . . .  • "  "6  " e  " o  + "•+ ++" " o  + 
• o"  • • ' e  • • • " •  • " •  • '  • • • • 0"  • • ' e  ' •  • • • • • e '  • 
+ • " • • 1"  • • • • "  • "  +e " •  • +  • • • • "0+ +o 0 '  ' • • " e  • • • "o  
• " • ~ • • ' e  • • " e  +e • ++ 0+ • • • • • • • + e "  • ' ' •  • • + • " •  • 0 '  '1 

" "  • • • "  • "  • "  • • • "  • " • " •  " •  • • • • • . . . . . . .  • "  • • +•" " •  " e  + "I 
• ' • +•  • • • • • • + • • '  • " o  • ' " • • + " ' • ' •  • • • ' •  • ' •  • +  • • ' •  • • • " l  + , •  • -  • • + • +•  • •+ • • • • • ' '  

" • "  " • "  ' • "  "•"  " • '  "•"  "e  + "•" " • '  +o + " •  . . . . .  • "  ' l "  "•"  ' • "  " l  + +•" "0+ " •"  "•"  • "  " " •  " •  . . . . .  • +•" "•" "•"  " " 
' ' •  " •  •+  • • " •  • • • " e  • ' '  • "  • • " 1  • • • +•  • • • + • ' • • • " 

' o  • + • +•  • • '  • • • • +  • • + ' o  " • e '  • • • • '  o '  • ' e  • • • '  e 
• "o" ' e  " o  + • "  +o + " •  o '  +•+ "•+ "o" "0" +•" ' e  " ~ "  "•"  " e  " e  + • "  +•  . . . . .  • ' e  0 "  • • . . . . .  • 'e"  
' o  • "  • +•  • e"  • • + '  • "  • ' e  ' e  " .  ' e  e '  • +o • ' • • '  • ' e  • e '  • • "  +1 
' • " o  "o" • • ' 1  • • • " 0  • " • • ' e  • • ' • • ' o  • '  • • ' • • " o  

' • ' •  •+  • • ' •  • • " • ' •  •+  ' •  • ' •  ' o  • • + • • ' e  • '  " • • " 0  
• o "  • " •  • 0 '  • " •  • • '  • " •  o "  o '  • • • ' 0  • o '  • ' • ' •  • • "  I 

%-:,,,.-+,-+,,: ,+',%:,,+-+-:, :, • - :  ..... , , : , % , : , ,  : , % ' , . ' ,  "+,':,' 

'.:,.i., !."-:,:.',',.'!':.."i:,.'!-:'-.'i',.'..':.."i:,.'-'i'."i: +.:':'%:>..' 
'.'.::" :.:.!:.: 'i +'.::% ". :.:.'.'i i:i;;:;:::::::::::::::::::::::::: ::::::::::::::::::::::: i iii:! 

a b 

g ° ' • ' • ' o • ' o ° + o + o • ' e o ° o + O o e ' • ' • + e e ' o ' e ' o ' e o ' + o ' ° + o ' ' o ' ' o ' ' o ° + o ' ' o  o ' ' • ' , ' ' o ' e e ' e  " o ' o  " e ' e  "e 
• - ' • • ' - • • . • • • o - • o - • ' • + • • • ' • . • • • ' • • ' • ' c o o ' • T • •  • 

o ' e o e o ~ + e  

" o • ' o ' • o o ' o i l • ' e o ' o • ' • o ' i o ' o o ' e o o e ' o o o ' e o ~ o o ' e  
~ • ' o o ' o o ' i • • i ' • o • ~ o o o • ~ o • • o ' o o ' l o ~ e o ' o o o • ~ o  

o ' e e + o o ' o o • e ' o o o ' o ' o o • ' e • o o ' e o ' 6 o ' o l e • o • ' o  
o o + o ' e o o ' e o e o ' • o ' l e + l • ' o o l o ' e o e e i e o e e o o • ' l  

o ' e o ' o e ' o o • e ' o • e ' e ' o o + e ' e o + e o ' • o ' e e o e i e • o o i e  
o o ' o ' e e o ' • o o • + e o ' e o ' • e ' o o o o ' o j o e e o o e e o o e  

o o o o o o o o o • i o o e o o e e o o e i t o o i o l o • o o e o l J l  
e o o o e e e e o o o o o o e e e o o e o 4 o e e o o e o • o  

o o ' o ' e • o ' o e o o ' o o ' l e + o o ' e o o e ' • o o ' e ' e • i e o • • ' l  
o ~ e e o e i o o i o e ' ~ o l e l e ~ l o e i e o o 6 o e i • e ' e o ' e • o • ~ o  

i e ~ l o e o e e o . l e ,  l O l i . O O . e ~ O e O O l l e o o J l e • o l e o l l  
• + o 1 " •  e o o e • o o o o e o • ' o • o o • i ' e + J + e • • • o  

+ o o l o o o ' e o o o ' o + o o o o ' o • o ' ' o o ' o e o o e ' • ' o • • ' •  + 
• e + e o e • • o • o o  • ' e ' o ' • • ' o o o e ' o o o o ' • o e ' o • • • ' 4  o - e e ' e o o ' e e o E e ' - o o ' e ' e ' o o - e J ~ ' e o e d e O d L e e O e o e e J o  

• ~ : ~ o o ~ i o e o i l o ~ o l o • • ' • • e i o o • ~ i l l e o ~ • • i e o i • o l e  
i . . o i + + o • , , i . o . . o o i i o ,  o , i l e . e + • o • . , o . • . + . • . • . o • . • , . e , . • . o , • . + • . . •  

o ' • o o o ' e o o ' e o ' o o ' e + e o ' • • i ' ' • o o e ' + • o  o • • + • 0 ' 4  
o • o o • o ' o ' o o o ' •  o ' e o • o ' o o o , ' o o e o ' e o ' • o o o ' o  

~ o ' • o ' i o ' e • i o ' o o o • e ' • o ~ • • i : o ' i o t e o • ~ •  • o ~ o  
. o . • . . o , . e • , . e . , o . o . o . . o . , • , . , i . o . o • o o o , o o . . o o e ,  o . o e o o . o . o . . • - 4  

o + o o ' o • ' • o e • ' • o o t • ' l o ' • o o  • o • ' • • ' i • ' • • o o ' o  
' • ' o ' • ' ' e o o ' o o o • ' o  e ' o ' o e • ' • e o o ' • o • ' • ' • o • ' l • e o ' l  

o ' • • • o ' • o o e ' o o o ' o o • o ' • o e  o o e ' e + o e o o e • ' •  
o • ' o o o e ' o e o o ' o o ' e ' o o o ' • • • • o o o • o o • o o • • ' 4  
. + o . . • + . o . . • - . • . . • e . - o - e . o - . o , o . o - • . • + . e . . e + - o . o - + + . e . . o + . o . e - o . o - j - e • - • + . o - . ~  
" o l o ' o ' • o o ' o o • • ' • o + e ' • • o • o • ' o o e ' e ' o o e ' • o • o l  
" o ' • ' o ' • • ' • • ' • ' • ' • o • ' • • ' • o • o e o ' • e ' • e ' • e ' • o • ' • e  
o o ' o o o o o o • o o o o • o • o • o • • o o • • o l e • o • l  

• o e o o o o o o o o  o • • o • o • o o e o • e o e e • e • o  
o • ' • ' • o • ' • • o o + • • o ' o ' o o • ' o o • e ' o l • ' o e o • ' • e o o ' q  
e ' e e o • i e e • o ~ o o • ' o o ~ • + o ~ . • • • • ' o • ~ • e • o ' o o o e ~ •  
+ o i ~ + o i i e i • e o i • o . o e + + e ~ • • ~ + • e o • . • o l o • . • ~ e + • • ~ e ~ o i ~ o ~ e q  

P • ° • . e • ° • ° • • o . • • • • ° • • o . ° • • • ° + • . • • . ° • • o ° . • • • ° • • • • • ° • • e • • • . o • • • • . • B • l e o • • . •  I 
o ~ * i • ~ • l ~ • e e • 2 e e l ~ e ~ • l e 2 • e • • ' l . r e l 2 e l 2 l e • • ' ; •  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " 1 1 4  
I I I I I ' I I I I + I I I ' I i i i ' I I I I I I I I ' I I ' I I I + I ' I  

+ I + ' i ~ ' I ' ' I ' i ' I ~ I I ' ' I + I I I ~ I - I ~ - I , i ~ I - - i + i I ' I ' I I ' I + ' i ' ' i ' I ' I + I " i ' ' I " i  
i i i i i i . I I I I i i i i i i i + + I I i i i ' I i ' i i + I i i i ' I  
I + I - I i i i i + I I I ' I I - I I ' I + I ' I i i i ' I I I - I + - i i i - I I i i - i  
+ + I , - i , . i , I , I , i i i + + I * i , , I . I . + I , I + I + i . I + i i + i - . i i , I . i , , i , + I . , I , , i , , i , I , , I +  
I I + I - I I I ' I I I I ' I I - i i ' I + i + i i i i i i i - I ' I i i - I + I I I -  . 

I + I I I I + I I I I ' I I I + I i o i ' I I i i + I I + I i ' I I ' o l i i ' I  
i i ' I ' I I I ' I I i i + I I ' I I ' I I ' I i i i + I i ' i ' i + i i i ' I i i - 1 " 4  

1 o + 1 1 1 1 + 1 1 1 4 + 1 1 1 1 1 1 1 + 1 1 1 1 + 1 1 - 1 1 + 1 1 + i o 1 1 1  + ' ' • ' . • ' ' • + ' • ' • . + • + + • ' • + • . • ' • . • ' ' • ' • • . • ' ' • ' • ' + . • ' • + ' • ' - • ' • • + . • ' ' • ' + • ' ' • ' ' • ' + • . ' •  

I I i i ' I I ' I i i i i i i ' I I I i i + I i i i ' I I ' i i ' I ' i i i ' I  
i i i i i i ' i i i i ' I I ' i i ' i i i i i i ' I I i ' I ' I I i ' I i i i ' i  

I I I i i + I I I I ' i i i + + I ' I i i ' ' I I I I ' i i + I i i i ' i i i i ' I  
o i ' I I I I ' I I  . . . . . .  ' I I + I ' i . ' I I ' I o l i ' I I I i ' I I i - i .  I i ' i  

i I ~ I I i ,  i ' i i I I ~ I I ~ i I ' I I ' i I I i i ' i i + I ' i + I i ' I i i i ' I  
i I i + I I i I I I I I I i i I i i ~ + I I I I i ' i ' + I i ' I I I I "  

i + I I i i I I i I i i I I + i I I i + i I i I I I i ' I I ~ ' i i + i i I I ' I  
- I + + I + I , + I , i , . I + i + , I , + I , . I i + - I , i . . I , + I , i + i , - I . . I + , - I + . i . , i . + i + I - , i , i . . i , I , I - . I  . ,  

I ~ I + I . I I I + I , I o o ,  I I , i , o - . I I . I . . I , I . I , I I . . I , . I I ,  I I , I I I ,  I + o  

c d 

Fig. 7. Temporal evolution of occupation probabilities at temperature T* = 0.106 and composition 0.415 
in the ordering transition of the second kind. Representation of the occupation probabilities is the same 

as Fig. 5. (a) t* = 1.0; (b) t* = 5; (c) t* = 25; (d) t* = 500. 

The final stage is the coarsening which leads to a 
microstructure shown in Fig. 7(d) where a thin layer 
of  disordered phase wetting the APBs is observed. 

4.2. Decomposition with the ordering transition of the 
first kind 

In thJs computer simulation, a 2-D close-packed 
triangular lattice with 48 x 48 unit cells is employed. 
Compositions used in this study are indicated by 
points a, b and c in the phase diagram (Fig. 3). They 
are c = 0.103 and 0.123, which are "quenched" into 
the two-phase field at the temperature T * - - 0 . 1 0 9  

(points a and b), and c = 0.165 (point c) at lower 
temperature, T* = 0.90. With T* = 0.9, we can ob- 
tain all three possible antiphase domains for 
c -- 0.165 using the system size of  48 x 48 unit eells. 
The free energy curves for both, the disordered and 
the ordered state at temperature, T * = 0 . 1 0 9 ,  are 
shown in Fig. 8. 

For the substitutional diffusion the nearest-neigh- 
bor jump approximation for L(r)0 can be employed. 
Then the Fourier transform of  L(r) is 

I~(k) = --4Ll [sin27rh + sin27tl + sin27t(h - 1)] (18) 
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Fig. 8. Reduced free energy as a function of composition for 
both the ordered and disordered phases at T* = 0.I09 in the 
case of the ordering transition of the first kind, the dotted 
line is a segment of the free energy curve of the disordered 
phase in the absolutely unstable region, c Is the ordering 
instability composition, c+ is thc disordering instability 
composition and co is the composition at which the free 
energies of the disordered and ordered phases arc equal. 
#o = ?'F/~c~ = ~F/dc~ is the equilibrium chemical potential. 

where reciprocal lattice point coordinates, (h, l), are 
related to the vector k as 

27r 
k = - -  (ha* + /a~)  

Q 

where a~' and a~' are the unit reciprocal lattice vectors 
of the real triangular lattice. 

4.2.1. Compos i t i on  c = 0.165, T *  = 0.9. This com- 
position is roughly in the middle of the two-phase 
field of ordered and disordered phases at temperature 
T * =  0.9 (point c in Fig. 3). The "as-quenched" 
occupation probabilities correspond to the com- 
pletely disordered state. Figure 9(a-d) shows various 
stages of overall decomposition processes. In the very 
initial stage the congruent ordering occurs due to the 
growth of the amplitudes of the concentration waves 
with the wave vectors 

27t • 
___i~ = _+ ~ - ( a ~  - a * ) .  

These wave vectors coincide with those minimizing 
the function VOk). The obtained ordered phase has a 
structure predicted by equations (13) and (14). The 
developed amplitudes are actually proportional to the 
l.r.o, parameter ~/. At time t* = 2.5 an ordered single- 
phase state arrived with all three possible antiphase 
domains [Fig. 9(a)]. Although the 1.r.o. parameter is 
inhomogeneous because of appearance of APBs, the 
composition is almost uniform throughout the sys- 
tem. The occupation probabilities within the ordered 
phase domains arc close to the equilibrium values for 
the congruent ordering at composition c = 0.165. 

This system also demonstrates the compositional 
instability at APBs. At time t* = I0, the decompo- 
sition at APBs produces disordered phase film separ- 
ating the antiphase domains [Fig. 9(b)]. Figure 9(c), 
corresponding to t*= I00, illustrates the growth of 
the disordered laycrs between antiphasc domains, 
with the l.r.o, paramctcr and composition of the 

ordered phase moving towards the equilibrium val- 
ues. One ordered domain has been eliminated during 
the decomposition due to simultaneous coarsening. 

At t * =  500, another domain disappears due to 
coarsening and the final microstructure is formed. It 
is a mixture of a single domain ordered phase and a 
disordered matrix with equilibrium composition and 
i.r.o, parameter [Fig. 9(d)]. 

4.2.2. Compos i t i on  c = 0.123, T *  = 0.109. For this 
composition and temperature the representative 
point of the system is located between the To and T_ 
lines (point b in Fig. 3), i.e. within the field where the 
quenched disordered phase is metastable (stable with 
respect infinitesimal fluctuations of the 1.r.o. par- 
ameter and composition). Our computer simulation 
shows that the small random fluctuations introduced 
into the initial occupation probability distribution 
decay as a function of time, which is in agreement 
with thermodynamics of the system. Because of this, 
we introduced large fluctuations into the system in 
the form of critical nuclei of the congruent ordered 
domains with the same composition as the initial 
disordered phase and with the equilibrium I.r.o. 
parameter corresponding to the given temperature 
and composition. The congruent nuclei of 19 atoms 
with a radius 2a disappear while those of 37 atoms 
with a radius 3a grow. Therefore, the critical radius 
of nucleus is close to 3a. Four nuclei of radius 3a were 
randomly placed in the initial occupation probability 
distribution corresponding to the disordered state. 

The temporal evolution of the occupation proba- 
bilities in this situation is shown in Fig. 10(a-d). The 
initial occupation probability distribution describing 
four nuclei of the congruently ordered phase in the 
disordered matrix is shown in Fig. 10(a). Initially the 
values of the l.r.o, parameter decrease inside each 
nucleus due to the relaxation of l.r.o, parameter 
profiles. This process produces very diffuse interfaces 
between the nuclei and matrix. The "tails" of l.r.o. 
parameter profiles for different nuclei interact with 
each other. The competition between different anti- 
phase nuclei during coarsening results in disappear- 
ance of three nuclei and growth of the remaining one. 
Its growth occurs congruently, producing a single 
domain crystal at time t * =  18 [Fig. 10(b)]. This 
congruent growth produces a nonstoichiometric or- 
dered phase with approximately the same average 
composition as the original disordered phase and the 
same symmetry as the final ordered phase. 

This congruently ordered phase proves to be un- 
stable with respect to further isostructural decompo- 
sition into two ordered phases [Fig. 10(c)]. Since we 
have a single domain of the ordered transient phase 
without APBs, the decomposition occurs only homo- 
geneously via a spinodal mechanism through growth 
of fluctuations in composition and l.r.o, parameter. 
This computer simulation result is consistent with the 
fact that the free energy of the congruently ordered 
phase resides at the convex part of the free energy vs 
composition curve for the ordered phase. 
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a b 

c d 

Fig. 9. Temporal evolution of occupation probabilities at lattice sites at composition 0.165 and 
temperature T*= 0.9 in the ordering transition of the first kind. Representation of the occupation 

probabilities is the same as Fig. 5. (a) t* ffi2.5; (b) t*ffi 10; (c) t*= 100; (d) t*= 500. 

The solute-lean ordered phase resulted from the 
spinodal decomposition underwent a spontaneous 
disordering transition around t* = 60 to 70, at which 
the composition of the solute-lean phase crosses the 
instability value c+. It can be noticed in Fig. 10(c), 
corresponding to t* = 100, that the composition in- 
side the disordered phase is higher than that at the 

order/disorder interface region, which means that the 
decomposition is faster at the order/disorder interface 
than inside the disordered phase where the compo- 
sition moves towards the equilibrium composition by 
the conventional growth process. 

Further decomposition and coarsening of the 
microstructure shown in Fig. 10(c) result in a 
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Fig. I0. Temporal evolution of occupation probabilities at lattice sites at composition 0.123 and 
temperature T*= 109 in the ordering transition of first kind. Representation of the occupation 

probabilities is the same as Fig. 5. (a) t* =0; (b) t* = 18; (c) t*= 100; (d) t*= 500. 

mixture of the equilibrium ordered and disordered 
phases [Fig. 10(d)]. 

4.2.3. Composition c = O. 103. As is shown in Fig. 3, 
the representative point, a, of this system is within the 
two-phase field of the phase diagram but above the 
congruent equilibrium line. T O (at T = To, the free 
energies of the ordered and disordered phases are 

equal). This area forms a very narrow strip adjacent 
to the solubility line for the disordered phase. Ac- 
cording to thermodynamics, congruent ordering in 
this case is impossible. The ordered phase can precipi- 
tate only by the classic mechanism through the nucle- 
ation and growth of the equilibrium ordered phase 
occurring with composition change. Because of this we 
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Fig. 11. Temporal evolution of occupation probabilities at lattice sites at composition 0.103 and 
temperature T*-109 in the ordering transition of the first kind. Representation of the occupation 

probabilities is the same as Fig. 5. (a) t * - 0 ;  Co) t* -50 ;  (c) t*=  100; (d) t*= 500. 

randomly placed four ordered phase nuclei with the 
radius 2a in the disordered matrix [Fix. 1 l(a)]. Unlike 
the previous case of  c--0.123,  these nuclei were 
chosen so that they have the equilibrium composition 
and the equilibrium l.r.o, parameter of  the ordered 
phase. The composition of the matrix is slightly 

smaller than 0.103. However, the overall average 
composition is still maintained equal to 0.103. 

Like in the c = 0.123 case, initial relaxation of th¢ 
introduced nuclei results in the spreading of both, 
l.r.o, and composition profiles as shown in Fig. I l(b) 
corresponding to t*= 5. The area of the ordered 
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region far exceeds the size of the nuclei. No congruent 
ordering throughout the system occures in this case. 
However, the order/disorder interface is very diffuse 
during decomposition. This suggests that congruent 
ordering occurs locally around the ordered phase 
nuclei. At t* ffi 100, significant growth of the ordered 
phase has occurred and at the same time one of the 
ordered particles has disappeared due to coarsening 
[Fig. 1 l(c)]. The composition of the disordered matrix 
also moves towards the equilibrium composition at 
the same time. At t* = 1500, both the decomposition 
and coarsening are almost completed [Fig. l l(d)]. 
The order/disorder interface compared to that at 
t* = 100 is much shaper. 

5. DISCUSSION 

The method of kinetics equations for the density 
functions which are the averages over a time depen- 
dent nonequilibrium ensemble has a certain advan- 
tage with respect to the conventional Monte Carlo 
simulation. The Monte Carlo algorithm is designed 
to simulate the equilibrium Gibbs ensemble and 
produces a series of snapshot atomic configurations 
appearing along the simulated Markov chain. For 
our purposes, however, the determination of the 
temporal evolution of the single-particle character- 
istics such as local density and l.r.o, parameters 
described by the spatially inhomogeneous single-par- 
ticle density function, n (r), is of the primary concern. 
This is the reason why we used the kinetic equation 
method as a tool for the investigation of the relevant 
system. The accuracy of the free energy represen- 
tation does not affect the main qualitative con- 
clusions as long as the employed free energy gives 
qualitatively correct description of the convexity or 
concavity of the concentration and l.r.o, dependences 
of the free energy, and provides the correct topology 
of the phase diagram as shown in Fig. 1. The 
situation here is similar to that with the macroscopic 
phenomenological theory where the Landau free 
energy expansion can be successfully employed as 
long as it correctly describes the above-mentioned 
main topological features of the free energy depen- 
dence on composition and l.r.o, parameters. 

The major limitation of our computer simulation 
technique is that it does not describe fluctuational 
nucleation and, this, cannot describe a transition 
from a metastable state. However, large fluctuations 
can be artificially introduced into the system in the 
form of random distribution of nuclei, as we have 
done for the compositions 0.123 and 0.103 for the 
ordering transition of the first kind. 

In order to discuss the decomposition sequence of 
alloys in various regions of the phase diagram, we 
divide the two-phase field in Figs 2 and 3 into three 
regions, in which the free energy surfaces have differ- 
ent geometrical characteristics: the field (A) where 
T < T(c)_(c > c(T)_ ), the field (B) where 
T(c)o > T > T(c)_ (c(T)o < c < c(T)_ ) and the field 

(C) where T > T(c)o (c < c(T)o). T(c)_ is an absol- 
ute ordering instability temperature at composition c 
with respect to infinitesimal fluctuations of l.r.o. 
parameter, T(c)+ is an absolute disordering instabil- 
ity temperature of the ordered phase at composition 
c and T(c)o is the congruent equilibrium temperature 
at which the free energies of the ordered and disor- 
dered phases at composition c are equal. The corre- 
sponding instability compositions c(T)_,  c(T)+ and 
c(T) o are defined similarly. For the ordering tran- 
sition of the second kind, T(c)o = T(c)_,  the two- 
phase field can be divided into two regions, below and 
above T(c)_. 

For any disordered alloy quenched to the field A 
or B, the free energy of the quenched disordered alloy 
is always higher than that of the ordered one at the 
same composition. The above situation is illustrated 
in Figs 4 and 8. Such a relation between the free 
energies of the ordered and disordered phases at the 
same composition makes the congruent ordering 
always possible. Depending on the temperature of 
aging, the ordering should occur either by nucleation 
of the ordered phase domains of the same compo- 
sition (in field B), or by the barrierless homogeneous 
ordering (in field A). But in both cases the resultant 
state is the same. It is the single phase transient 
ordered phase. 

In the area (C) the thermodynamics forbids the 
congruent ordering at all since the free energy of 
the ordered phase is never below the free energy 
of the disordered phase at the same composition 
(see Fig. 8 at c < Co). Therefore the decompositon in 
the area (C) can occur only by the conventional 
mechanism, i.e. by the precipitation of equilibrium 
ordered phase particles from the disordered matrix. 
The area (C) where the conventional precipitation 
mechanism occurs is very narrow compared to the 
whole two-phase field. 

In our computer simulation of the decomposition 
with the ordering transition of the second kind all 
compositions of the disordered alloys, c = 0.15, 0.25, 
0.415, were chosen so that the aging occurred in the 
area (A). Figures 5(a), 6(a), 7(a) demonstrate that for 
all these alloys the decomposition reaction starts 
from the congruent ordering which produced the 
transient nonstoichiometric ordered single-phase 
state. 

For the ordering transition of the first kind, we 
chose the alloy with c = 0.165 in the area (A) (point 
c in Fig. 3), the alloy with c = 0.123 in the area (B) 
(point b) and the alloy with c ffi 0.103 in the area (C) 
(point a). The computer simulation shows that the 
alloy with c = 0.165 decomposition started from the 
barrierless congruent ordering resulting in the or- 
dered single-phase state [Fig. 9(a-d)] in agreement 
with the thermodynamic analysis. The decay of the 
l.r.o, fluctuations observed in the computer simu- 
lation of the alloy with c = 0.123 is also consistent 
with the thermodynamics since an alloy in the area 
(B) should be stable with respect to small fluctuations 
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of the l.r.o, parameter, t/. We have shown, however, 
that the artificially introduced ordered nuclei whose 
size is above the critical one can grow congruently, 
producing a single-phase ordered phase prior to the 
decomposition (Fig. 10). The simulation for the alloy 
with c =0.103 located in the area (C) where the 
congruent ordering is impossible shows that the alloy 
decomposes only if the critical nuclei of the equi- 
librium ordered phase are introduced. The decompo- 
sition occurs by the growth of the equilibrium phase 
followed by the coarsening [Figs 11(a-d)]. It is very 
interesting that even in this case where the thermo- 
dynamics predicts the conventional decomposition 
mechanism, the mechanism which follows from our 
computer simulation has features different from 
what we would have expected. As follows from 
Fig. l l(b, c), the growth occurs in two stages by a 
very unconventional way. The first stage is congruent 
ordering around the ordered phase nuclei, the area of 
the congruent ordering substantially exceeding the 
area occupied by the nuclei, and the second stage is 
the subsequent decomposition of these congruently 
ordered regions. The coarsening mechanism, how- 
ever, is the same as that is predicted by the conven- 
tional theory. 

The transient ordered states formed due to the 
congruent ordering undergo either the isostructural 
spinodal decomposition into two ordered phases (if 
the alloy is quenched below the conditional spinodal 
as has been proposed by Allen and Cahn for the 
ordering of the second kind [6]) or by nucleation of 
the equilibrium disordered phase. Figure 10 iUus- 
trates that the spinodal decomposition occurs by a 
separation of the initial congruently ordered phase 
into two ordered phases with the same structure 
but different compositions. The composition of the 
solute-lean phase moves towards the solubility line of 
the disordered a phase of the phase diagram (see 
Fig. 3). It spontaneously disorders when it reaches the 
instability line, T(c)+, above which the ordered 
phase is unstable [1]. The composition of the solute- 
rich ordered phase moves during this spinodai 
decomposition in the opposite direction towards 
the solubility line of the ordered//phase up to the 
moment when it reaches its equilibrium composition, 
c a, producing the//phase. Figure 10 of our computer 
simulation results confirms this cascade of decompo- 
sition reactions predicted in [1] on the basis of 
thermodynamics. It should be, however, emphasized 
that substantial homogeneous decomposition can be 
observed only within very large domains of the 
congruently ordered phase (Figs 6 and 10). Some 
decomposition is also observed inside the relatively 
large domains of Figs 5 and 9 but no completely 
disordered phase develops. 

Our computer simulation predicts that the precipi- 
tation of the ordered intermetallics through a single- 
phase nonstoichiometric ordered state substantially 
alters the decomposition mechanism even with 
respect to what could be expected from the 

thermodynamic analysis [1] and [5]. The computer 
simulation revealed a crucial role played by the APBs 
formed in the single-phase ordered state in the de- 
composition kinetics. As it follows from Figs 5, 7 
and 9, the decomposition mainly occurs heteroge- 
neously at the APBs, regardless if the alloy is inside 
or outside the conditional spinodal. This decompo- 
sition replaces the APBs by a layer of the equilibrium 
disordered phase enveloping the ordered phase do- 
mains and, thus, creating a very specific "shell" 
structure [Figs 5(a), 7(b) and 9(b)]. The electron 
microscopic observation of "speckles" of the ordered 
phase domains in A1-Li alloy aged at low tempera- 
tures by Sato et al. [2] is probably related to the fine 
scale "shell" structure stage of the decomposition 
kinetics. 

The dominant decomposition at the APBs resulting 
in their wetting by the disordered phase is a manifes- 
tation of a special kind of instability which is more 
effective than the conventional spinodal instability 
within the domains. The latter is just a minor process 
which, in most cases, does not contribute too much 
to the overall decomposition rate. The nature of the 
APB instability could be, for example, clarified by a 
limit transition to the continuum equations by ex- 
panding the microscopic kinetic equations (2) or (4) 
around k = 0 and k = k0. The expansion around 
k = 0 gives the continuum kinetic equation for com- 
position while the expansion around k = ko results in 
the continuum kinetic equation for the l.r.o, par- 
ameter. In the real space these continuum counter- 
parts of (2) and (4) read 

=D -mcV(c +V 2~f r/) (19) 

__ = [ + Oftc, t/)'] t3tl -L~ -m~V 2t/ (20) 
a 

wheref(c, t/) is the local free energy per unit volume, 
and mc and m~ are gradient coefficients for the 
composition and l.r.o, parameter, respectively. 
Within the antiphase domains where the congruently 
ordered phase is homogeneous [c(r)=const. and 
t/(r) =const.], equation (19) does not give any de- 
composition since ac/Ot =0.  This means that the 
spinodal decomposition of the completely homo- 
geneous ordered solution cannot occur within Cahn's 
approximation (19) even if the alloy is below the 
conditional spinodal (the spinodal decomposition 
would, of course, appear in the next approximation 
which takes into account the simultaneous temporal 
evolution of the two-particle correlation function). 
This conclusion shows that the spinodal decompo- 
sition within the transient phase ordered domains 
where c(r)~const and r/(r).~ const, does not occur 
at all or occurs very slowly. At the APBs, however, 
where, by its definition, r /= t/(r), the right-hand side 
of equation (19) does not vanish since af(c, tl)/t~c 
depends on the coordinates through tl (r). Therefore, 
the decompositon rate, ac/Ot, does not vanish and the 
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barrierless temporal concentration evolution at the 
APBs resulting in the decomposition should occur 
even at the first approximation (19). This results in 
the conclusion that the above discussed concentra- 
tional instability at the APBs is induced by the 
inhomogeneity of the I.r.o. of the ordered phase in the 
form of APBs. 

Actually the instability resulting in APBs wetted by 
a disordered phase has been first discussed by Allen 
and Cahn based on experimental observations in the 
Fe-AI system [6]. Matsmura et al. [16] analyzed the 
kinetics of segregation of solvent atoms into the APB 
using a simple Landau-type free energy expansion for 
the ordering transition of the second kind, equation 
(19), and assuming a one-dimensional square distri- 
bution of l.r.o, parameter in the ordered phase. They 
also concluded that the segregation of the solvent 
atoms into the APB is barrierless and therefore is a 
kind of spinodal instability. 

The final microstructure is developed due to the 
coarsening which, according to our computer simu- 
lation, results in formation of the ultimate equi- 
librium two-phase system dictated by the phase 
diagrams. Our computer simulation shows that there 
are two types of coarsening. The first one is a 
coarsening of anitphase domains in the single-phase 

.congruently ordered state. It is driven by the re- 
duction of APB surface area. The second is the 
conventional coarsening developed after the de- 
composition of the ordered single-phase state. It is 
driven by the reduction of the order/disorder inter- 
facial area. 

In most situations, coarsening is driven by re- 
duction in the order/disorder interracial energy since 
a disordered film develops soon after the formation 
of the congruent ordered phase, e.g. in the cases of 
composition c = 0.15, c = 0.25 and c = 0.415 in the 
ordering transition of the second kind and c --0.165 
in the ordering transition of the first kind. Coarsening 
proceeds by both a surface diffusion along the 
order/disorder interface and bulk diffusion across the 
ordered and disordered phases. 

Coarsening of antiphase domains driven by the 
APB energy reduction occurs in the case of c = 0.15 
during ordering stage in the ordering transition of the 
second kind and c = 0.123 during congruent growth 
stage in the ordering transition of the first kind. These 
two compositions are quite close to the T O line and 
therefore, the driving force for ordering is small 
compared to other compositions. It takes longer time 
to reach the congruent ordered state than other 
compositions studied in this paper. Moreover, the 
order/disorder interface is very diffuse close to T O line, 
hence different ordered domains interact during 
growth which leads to coarsening. 

In summary, the decomposition of a disordered 
phase quenched into a two-phase field of ordered and 
disordered phase occurs, as a rule, in three stages even 
though they sometimes overlap each other. The first 
stage is a congruent ordering reaction which produces 

an ordered single-phase alloy composed of antiphase 
domains. The second stage is the decomposition of 
the congruently ordered state, which predominantly 
occurs along the APBs. And the last stage is the 
coarsening of the decomposed two-phase mixture, 
which is driven by the reduction of the total 
order/disorder interfacial energy. The only exception 
to this sequence of transformation is when the alloy 
composition is inside the field C which is a very small 
region compared to the overall two-phase field. 

The predictions obtained in this computer simu- 
lation study are confirmed by Allen and Cahn for 
Fe-AI alloys [6], Matsumura et al. for Fe-Si alloys 
[16], Sato et al  [2], Radmiiovich et al. [3] and Shaiu 
et al. [4] for Al-Li alloys, and by Corey and Lisowski 
[17] and Corey et al. [18] for Ni-Al superalloys. 

In the initial stage of decomposition at room 
temperature Sato et al. observed extremely fine 
domains of the ordered intermetallic Al3Li phase 
separated by the boundary areas with incompletely 
ordered structure which later developed in the normal 
two-phase structure [2]. Similar effects were observed 
by Radmilovich et al. [3]. They reported the i.r.o. 
parameter to be around 0.5 of the normal one which 
is consistent with the fact that the observed state is a 
congruently ordered one. Shaiu et al. reported that 
the composition along the sample with the ordered 
domains is constant which is in agreement with the 
concept of the congruent ordering. They also con- 
cluded that the congruent ordering occurs prior to the 
decomposition. The boundaries between domains 
observed in [2, 3] seem to be APBs which has a 
structure similar to that obtained in our computer 
simulation [see for example, Figs 5(b), 6(b), 7(b) and 
9(b)]. As is shown above, the decomposition on these 
boundaries is associated with the specific APB con- 
centration instability competing with the conven- 
tional spinodal instability. 

Although the decomposition kinetics in superalloys 
is one of the best studied processes, the formation of 
the congruent ordered state at the initial stage has 
been largely overlooked. To our knowledge, the 
papers which address this phenomenon are the single 
crystal X-ray study by Corey and Lisowski [17], and 
transmission electron microscopy study by Corey et 

al. [18]. These researchers gave the most clear indi- 
cation that the congruent ordering precedes the de- 
composition process in Ni-AI alloy. They observed 
the formation of a transient single-phase state (they 
called it the y* phase) prior to the precipitation of the 
Ni3Al phase. The y* phase has the same ordered 
structure as the equilibrium Ni3AI phase but its 
composition is different. It actually coincides with the 
as quenched composition of the disordered phase, 
which is within the two-phase field of the diagram. 
According to our computer simulation results and 
general thermodynamic analysis [1, 5] the similar 
sequence of the structural transformations during the 
precipitation of the ordered intermetallic phase 
should be expected in all systems. 
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We believe that the congruent ordering may even 
produce the transient ordered phases whose struc- 
tures are different from those of the stable phases on 
the phase diagram. It could be, in principle, expected 
in systems like Cu-A1 within the ~(Cu)+//(CuAI) 
area. In Cu-A1 system a congruently ordered f.c.c.- 
based transient phase is predicted if the interactions 
between Cu and AI atoms in the f.c.c, solution is such 
that each Cu atom tries to have AI atoms as the 
nearest-neighbors. The structure of the congruently 
ordered phase then would be determined by details of 
the interchange interaction. 

The same phenomenon can be expected in ceramic 
compounds with mixed valencies (this condition is 
required to allow deviations from the stoichiometry). 
The transient single phase state then could be formed 
either by congruent ordering or by diffusionless dis- 
placive transformation. In this respect it should be 
mentioned that the ordering considered above is not 
the only possible congruent reaction which may 
precede the decomposition. The martensitic trans- 
formation is another possibility. It appears when the 
structural parameter distinguishing the parent and 
product phase is an amplitude of a crystal lattice 
rearrangement mode. 

The above obtained conclusions concerning the 
transformation path during the precipitation of a 
ordered intermetallic phase can be extended to pre- 
cipitation of a secondary ordered phase from the 
primary ordered phase matrix. This case is expected 
in the systems characterized by two l.r.o, parameters. 
An exmaple of such a decomposition is discussed by 
Matsumura et al. [16] who studied the decomposition 
of the B2 primary ordered phase in Fe-Si alloys into 
a mixture of the B2 phase and the secondary ordered 
D03 (Fe3Si) phase. If a disordered alloy is quenched 
into the two-phase field, then two congruent ordering 
reactions, primary and secondary, should occur prior 
to the decomposition. This would produce the transi- 
ent single-phase ordered state with two types of the 
antiphase domains and, thus, two types of APBs 
which will create different instabilities with respect to 
the further decomposition. In this case many different 
structural transformation paths depending on the 
position of the representative point in the phase 
diagram are possible. 

The precipitation mechanism involving the congru- 
ent ordering is very important since this phenomenon 
can be expected in the majority of advanced struc- 
tural alloys. Typical examples of  such alloys are 
discussed above. They are the family of Ni-based 
superalloys, AI-Li, Fe-AI, A1-Ti and other similar 
materials. Since the "shell" structure predicted by the 
present computer simulation may considerably affect 
the mechanical and other properties of the alloy, it 
could be, for example, used for the alloy design. In 
particular, it has been shown that the "shell" struc- 
ture enhances the ductility of Ni-AI superalloys 
considerably [19]. The "shell" structure is formed by 
layers of the disordered phase encircling the ordered 

phase particles which substitute the APBs. Thus the 
configuration of the order/disorder interracial bound- 
aries coincides with the APB network at the initial 
stage of the decomposition of the congruently or- 
dered state. Therefore, controlling the size and distri- 
bution of the antiphase domains at the stage of the 
congruent ordering, we can, up to a certain extent, 
control the structure of the two-phase mixture. 

6. CONCLUSION 

In this paper we have conducted a computer 
simulation study which describes ordering, decompo- 
sition and coarsening simultaneously. The main 
conclusion is that the precipitation of an ordered 
intermetallic phase from a disordered phase, in gen- 
eral, does not occur by the conventional nucleation 
and growth mechanism. In most parts of the phase 
diagram, the precipitation occurs in three stages. At 
the first stage, a transient nonstoichiometric phase 
which has the same composition as the original 
disordered solid solution and the same symmetry as 
the final ordered phase is formed by the congruent 
ordering reaction. In the case of ordering transition 
of the first kind, the transient ordered phase can 
either arise from the ordering instability or nucleation 
and growth. The next stage is the decomposition of  
the transient ordered phase. It occurs prediminantly 
at the APBs. This is true even the composition is 
inside the conditional spinodal of the ordered phase, 
where the ordered phase can spinodally decompose. 
Decomposition at APBs is due to a concentrational 
instability induced by the inhomogeneities in the I.r.o. 
of the congruently ordered phase. The last stage is 
coarsening process of the decomposed two-phase 
microstructure, which is slower than both the order- 
ing and decomposition rection. The preceding wet- 
ting of the APBs by a disordered film can slow the 
coarsening process of the ordered phase substantially, 
which may be utilized for formation of very fine 
two-phase mixtures. The only exception to the above- 
described transformation sequence is for alloy com- 
positions between the solvus line of the disordered 
phase and the To line, which is a very narrow strip in 
the equilibrium phase diagram. 
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