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Nonlinear phase-field model for electrode-electrolyte interface evolution
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A nonlinear phase-field model is proposed for modeling microstructure evolution during highly nonequilibrium
processes. We consider electrochemical reactions at electrode-electrolyte interfaces leading to electroplating and
electrode-electrolyte interface evolution. In contrast to all existing phase-field models, the rate of temporal
phase-field evolution and thus the interface motion in the current model is considered nonlinear with respect to
the thermodynamic driving force. It produces Butler-Volmer-type electrochemical kinetics for the dependence
of interfacial velocity on the overpotential at the sharp-interface limit. At the low overpotential it recovers
the conventional Allen-Cahn phase-field equation. This model is generally applicable to many other highly
nonequilibrium processes where linear kinetics breaks down.
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I. INTRODUCTION

The phase-field method is a versatile mesoscale com-
putational approach that has been successfully applied to
modeling temporal and spatial microstructure evolution of
materials undergoing a wide variety of processes such as
phase transformations, deformation, and particle coarsening
[1–5]. However, all existing phase-field models are based on
linear kinetics, i.e., the rate of change of a phase field is
assumed to be linearly proportional to the thermodynamic
driving force, which is, in principle, only valid for systems
close to equilibrium. For example, the diffusion flux of an
atomic species is assumed to be linearly proportional to the
local chemical potential gradient of the species, and the rate
of changes of a nonconserved phase order parameter field is
assumed to be linearly proportional to the variational derivative
of the total free energy with respect to the phase order
parameter. In reality, however, many material microstructure
evolution processes take place in systems highly out of
equilibrium. Examples include an undercooled liquid well
below the melting temperature, phase transformations under a
strong external force, electrochemical reactions under a large
overpotential, and many others. In this letter, we present a
nonlinear phase-field formulation that is applicable not only
to systems near equilibrium but also to systems that are highly
out of equilibrium or the thermodynamic driving force is large,
using electrode-electrolyte interface evolution arising from an
electrode reaction, e.g., electrode plating, as an example.

Electrochemical reactions are ubiquitous, taking place in
batteries and fuel cells or during corrosion, etc. [6–13].
Many electrochemical processes such as electrodeposition and
dissolution lead to electrode-electrolyte interface evolution
including interface shape and topology changes under the
chemical and electrical driving forces.

Existing mathematical modeling of electrochemical pro-
cesses [14] involves the solutions to coupled ionic-electronic
diffusion equations within the electrolyte or electrode with the
electrochemical reactions at the electrode-electrolyte interface
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specified as boundary conditions. The positions of electrode-
electrolyte interfaces are assumed to be fixed, and thus the
conventional mathematical models [15–17] are not suitable for
modeling phase evolutions and morphological changes during
electrochemical reactions leading to the electrode-electrolyte
interface motion such as Li plating and dendrite formation in
Li-ion batteries.

Existing phase-field models of Li intercalation into and
out of an intercalation compound such as LiFePO4 describe
diffusion and the phase separation process using the Cahn-
Hilliard equation in which the flux is assumed to be linearly
proportional to the chemical potential gradient, i.e., based on
linear kinetics. The electrode reaction rate, which is assumed to
be exponentially dependent on the variation of free energy with
respect to lithium concentration, i.e., the nonlinear electrode
reaction kinetics, is specified as the boundary condition at the
fixed electrode-electrolyte interface [18–23].

The present paper is focused on the nonlinear electrode-
electrolyte interface evolution kinetics driven by the overpo-
tential for the electrode reaction. The first attempt to model
electrodeposition processes using the phase-field method was
made by Guyer et al. [8,9]. It involves the solutions to
a set of coupled diffusion equations for ion and electron
transport, the Poisson equation for electrostatics, and an Allen-
Cahn kinetics equation for the electrode-electrolyte interface
evolution, i.e., assuming linear kinetics. Despite employing a
linear phase-field equation, Guyer et al. obtained the nonlinear
Butler-Volmer type of kinetics. In this case, the nonlinear
kinetics arises from the space charge double layer near the
electrode-electrolyte interface and its response to overpotential
rather than the nonlinear electrode reaction itself. In an attempt
to mimic Butler-Volmer electrode reaction kinetics, Okajima
et al. [24] assumed an exponential dependence of diffusional
mobility on the overpotential for electrode reactions while
the rate of electroplating is still linearly proportional to the
thermodynamic driving force.

In this work, we propose a nonlinear phase-field model to
describe the electrode-electrolyte interface evolution driven by
the overpotentials that exist in electrochemical reactions. The
model reproduces the Butler-Volmer type of electrochemical
kinetics at the sharp-interface limit of the diffuse-interface
phase-field model. The results are compared to the linear
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Allen-Cahn equation and classical sharp-interface Butler-
Volmer equation results.

II. MODEL FORMULATION

To discuss our nonlinear phase-field model which is appli-
cable to electrode-electrolyte interface motion under highly
nonequilibrium electrode reactions, we consider a simple,
general electrode reaction,

Mz+ + ze− ↔ M, (1)

where the ions Mz+ in the electrolyte solution react with
electrons e− in the electrode to produce the electrode M atoms.
The thermodynamic driving force is given by

�G = μM − μMz+ − zμe− , (2)

where μ represents the electrochemical potential of a species.
To simplify the discussion, we assume that the electrode is
a pure metal under a voltage φ, while the voltage in the
electrolyte is assumed to be zero, and hence

�G = �Go + zFφ − RT ln aMz+ , (3)

where �Go is the standard free energy change for the electrode
reaction, F is the Faraday constant, and aMz+ is the activity
of Mz+ in the electrolyte, which, in general, depends on
temperature and on the concentrations of other ions. Since
we are focused on the electrode kinetics, we assume that aMz+

is a constant and does not evolve with time. In this case, there
will be no overpotential drop for the charge transport in the
electrolyte and electrode, and there is no space charge double
layer, i.e., the entire overpotential drop is associated with the
electrode reaction. At equilibrium,

�Go + zFφo − RT ln aMz+ = 0, (4)

where φo is the equilibrium potential for the reaction at
a given temperature and a given ion concentration in the
electrolyte. Therefore, by subtracting Eq. (4) from Eq. (3)
the thermodynamic driving force can also be expressed as

�G = zF (φ − φo) = zFη, (5)

where η is the overpotential. If η < 0, the electrolyte is
reduced; whereas if η > 0, the electrode is being oxidized.
The change of energy landscape along the reaction coordinate
with the overpotential is schematically shown in Fig. 1. The
energy landscape for η = 0 is represented by curve I (dashed
line above) while for η < 0 it is changed to curve II (solid
line). The energy barrier is shifted by αzFη for the forward
reaction and βzFη for the backward reaction.

To model the interface migration, we introduce a phase-field
variable ξ (r,t) to distinguish the electrolyte and the electrode.
The value of ξ (r,t) varies continuously from 1 to 0 in the
interfacial region, i.e., a diffuse-interface description with a
finite thickness [1].

We employ a simple double-well free energy function g(ξ )
to describe the two equilibrium states for the electrode (ξ = 1)
and electrolyte (ξ = 0) under zero overpotential,

g(ξ ) = Wξ 2(ξ − 1)2, (6)

where W/16 represents the potential height of the double-well
potential at ξ = 0.5. Under a driving force, �G, we use f (ξ )

FIG. 1. (Color online) Energy landscape vs reaction coordinate at
equilibrium (curve I for η = 0) and during reduction reactions (curve
II for η < 0).

to represent the local free energy density of the electrode and
electrolyte two-phase mixture,

f (ξ,η) = h(ξ )�G + g(ξ ) = h(ξ )zFη + g(ξ ), (7)

where h(ξ ) = ξ 3(6ξ 2 − 15ξ + 10) is an interpolating func-
tion.

The total free energy of an inhomogeneous system is then
given by

F = 1

vm

∫
V

[
f (ξ,η) + 1

2
κ(∇ξ )2

]
dV, (8)

where κ is the gradient energy coefficient.
Rather than assuming a linear kinetics in which the rate

of a phase transformation or an interface motion is linearly
proportional to the thermodynamic driving force, one natural
nonlinear model to describe the temporal and spatial evolution
of the phase-field variable, motivated by classical rate theory
of chemical reaction kinetics, is

∂ξ

∂t
= −RT kn

[
exp

(
α δF/δξ

RT

)
− exp

(
− βδF/δξ

RT

)]
,

(9)

where t is time, R is the gas constant, T is temperature,
kn is a reaction rate constant, and α and β are constants
satisfying the relation that α + β = 1.0. Under a small driving
force, the equation is reduced to the conventional Allen-
Cahn equation. Based on the sharp-interface limit of Eq. (9)
using the asymptotic analysis method and actual numerical
simulations, it is shown that the kinetics described by Eq. (9)
is sensitive to the choice of the interpolating function, h(ξ ).
Furthermore, its sharp-interface limit lacks a simple analytical
form, and hence it is difficult to map the parameters to the
conventional models for electrode kinetics. Therefore, we
seek a simplified form of nonlinear equation. We consider
the fact that the driving force for interface migration consists
of two contributions: interfacial free energy reduction and
the electrode reaction affinity. While the driving force for
the electrode reactions can be much larger than the thermal
energy depending on the overpotential, the driving force from
interfacial energy or curvature reduction relative to thermal
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energy (kbT or RT ) is usually small. Therefore, we assume that
the interface migration velocity is linearly proportional to the
interfacial free energy reduction but nonlinear with respect to
the overpotential. We assume that the nonlinearity of electrode
reaction rate dependence on the driving force follows the usual
kinetic rate theory for chemical reactions, i.e., the reaction rate
is exponentially dependent on the activation energy for both
forward and backward reactions. A simplified nonlinear model
to describe the temporal and spatial evolution of the phase-field
variable can be written as

∂ξ (r,t)

∂t
= −Lσ

δ
∑

δξ (r,t)
− LηRT h′(ξ )

[
exp

(
α�G

RT

)

− exp

(
− β�G

RT

)]
, (10)

where Lσ is the interface mobility, Lη is a reaction rate
constant, and

∑
is the total interfacial free energy of an

inhomogeneous system consisting of a mixture of electrode
and electrolyte given by

∑
=

∫
V

[
g(ξ ) + 1

2
κ(∇ξ )2

]
dV. (11)

The first term on the right-hand side of Eq. (10), δ
∑

/δξ =
g′(ξ ) − κ∇2ξ , is the contribution of interface energy to the
phase-field parameter evolution. The second term on the
right-hand side of Eq. (10) is the contribution due to the
electrode reaction. The second term can also be viewed as
an additional source term to the diffusion-reaction equation,
∂ξ/∂t = −Lσ [g′(ξ ) − κ∇2ξ ]. For a flat interface or a one-
dimensional model, the electrode reaction source term is
the only contribution which leads to the interface motion
since there is no interfacial energy change. In the second
term of Eq. (10), the function h′(ξ ) = 30ξ 2(1 − ξ )2 limits the
electrode reaction to take place at the electrode-electrolyte
interface. Other forms of h′(ξ ) such as h′(ξ ) = 6ξ (1 − ξ ) can
also be used, but our test results show that the reaction kinetics
is little affected by the choice of the h(ξ )-function [2]. At low
overpotential, linearization of Eq. (10) immediately recovers
the well-known Allen-Cahn equation [1],

∂ξ

∂t
= −M

δF

δξ
, (12)

where F = ∫
V

[g(ξ ) + h(ξ )�G + 1/2κ(∇ξ )2]dV , and M =
Lσ = RT Lη.

To obtain an analytical solution of the interfacial velocity,
ν, under the sharp-interface limit of the nonlinear phase-field
model, we first multiplied Eq. (10) by ∂ξ/∂u and then
integrated over −∞ < u < ∞, where u is a coordinate normal
to the interface [25],

v = −κLηRT

σ

[
exp

(
αzFη

RT

)
− exp

(
−βzFη

RT

)]
, (13)

in which σ is the interfacial energy per unit area between elec-
trode and electrolyte. Equation (13) shows that the interface
velocity varies nonlinearly with respect to the overpotential
across the interface, which has a similar form as the well-
known Butler-Volmer equation for the electrode reaction
kinetics. Under low overpotential, linearization of Eq. (13)
leads to

v = −κLηzF

σ
η, (14)

which is the sharp-interface limit of the Allen-Cahn equation.
Under a high positive overpotential, the forward electrode
reaction, the reduction reaction, dominates over the reverse
reaction, and the sharp-interface limit of the nonlinear phase-
field equation reduces to the Tafel equation [14],

v = −κLηRT

σ
exp

(
αzFη

RT

)
. (15)

Similarly, under a high negative overpotential, the reverse
reaction, the oxidation reaction, dominates.

III. NUMERICAL RESULTS AND DISCUSSION

To numerically demonstrate the electrode reaction and thus
the interface migration velocity of the electrode-electrolyte
interface, we employ a one-dimensional model. We start with
a phase parameter profile ξ which is equal to 1 in the electrode
and 0 in the electrolyte, and it changes abruptly at the phase
boundary (Fig. 2). We employ the finite difference method to
solve the phase-field equation [Eq. (10)]. The dimensionless
parameters used for the calculations are as follows: grid
size �x = 0.001, number of grid points = 20 000, double-
well potential height W = 100.0, gradient coefficient κ =
0.0009, mobility Lσ = 0.1, valence of Mz+z = 1, time step

FIG. 2. (Color online) Phase order parameters evolve with time: (a) reduction reaction at overpotential η = 0.1 V; (b) oxidation reaction at
overpotential η = −0.1 V.
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FIG. 3. (Color online) Comparison of interface kinetics from
the nonlinear phase-field equation, Allen-Cahn equation, and the
corresponding sharp-interface limits.

�t = 0.001, symmetry factors α = β = 0.5, and overpoten-
tial −0.10V � η � 0.10V (positive sign for oxidation and
negative sign for reduction).

The phase order parameter develops a diffuse-interface
profile across the electrode-electrolyte phase boundary after
only a few time steps. Figure 2 shows the phase order parameter
evolution with time for both reduction (overpotential less than
0) and oxidation (overpotential larger than 0). The appearance
of sharpness in the phase order parameter changes across
the interface is due to the large scale for the simulation
cell compared to the interfacial thickness. For the reduction
case, the electrode grows while it shrinks under a positive
overpotential. We determine the interface velocity for a given
potential from the interface position as a function of time.

The interface velocities numerically computed from both
the nonlinear phase-field equation [Eq. (10)] and the clas-
sical Allen-Cahn equation [Eq. (12)] are compared to the
analytical solutions from the corresponding sharp-interface
limits [Eq. (13)] and [Eq. (14)] at different overpotentials in
Fig. 3. The phase-field simulation results agree well with the
analytical sharp-interface limit results for both the linear and
the nonlinear cases. For the Allen-Cahn equation, the interface
migration velocity is linearly proportional to the driving
force (overpotential). The nonlinear phase-field model is very
close to the Allen-Cahn equation at lower overpotentials, but
it exhibits strong nonlinearity at higher overpotentials. The
discrepancy between the nonlinear phase-field model and the
Allen-Cahn equation increases with overpotential as expected.
The results indicate that the existing phase-field model based
on the Allen-Cahn equation is valid only at small driving
forces, and hence highly nonequilibrium processes such
as electrochemical reactions at high overpotentials require
nonlinear descriptions.

For an electrochemical reaction, Butler-Volmer equation
[14] describing the current across the electrode-electrolyte
interface is given by

in = i0

[
exp

(
α

Fη

RT

)
− exp

(
−β

Fη

RT

)]
, (16)

FIG. 4. (Color online) Comparison of the nonlinear phase-field
model and Allen-Cahn equation with Butler-Volmer kinetics. The red
line representing the Butler-Volmer equation overlaps with the blue
line representing the sharp-interface limit of the nonlinear phase-field
model.

where the exchange current density i0 is the value of the current
density at zero net current under an equilibrium condition. For
migrating interfaces, the deposition or dissolution rate of the
metal electrode M is directly related to the current flow across
the electrolyte-electrode interface according to Faraday’s law;
thus the current density in during the electrochemical reaction
can be related to the interface velocity. Simply multiplying
the interface velocity [Eq. (13)] by the charge density Q gives
the current flow associated with the interface migration. We
converted the interface velocity in Fig. 3 to current flow (in/i0)
for both linear and nonlinear phase-field models, and compared
the results with the current flow computed from the Butler-
Volmer equation (red line) in Fig. 4. It is easy to see that the
behavior of current flow obtained from interface velocity is
essentially the same as the Butler-Volmer kinetics for current
flow while the Allen-Cahn equation leads to linear kinetics.

Figure 5 shows the effect of symmetry factors on
the reaction current. The dots represent the Butler-Volmer

FIG. 5. (Color online) Comparison of the nonlinear phase-field
model with Butler-Volmer kinetics under different symmetry factors.
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equation and lines denote the results based on the interface
migration velocity computed from phase-field simulations.
The symmetry factors in Fig. 4, α = 0.3 and β = 0.7, and
α = 0 and β = 1.0, lead to large oxidation current while the
case of α = 0.7 and β = 0.3 and the limiting case α = 1.0
and β = 0 produce large reduction current. The phase-field
simulation results reproduce the Butler-Volmer kinetics for
different symmetry factors.

IV. CONCLUSIONS

We developed a nonlinear phase-field model for predicting
interface motion and microstructure evolution involving highly
nonequilibrium processes. Linearization of the nonlinear
phase-field model recovers the conventional Allen-Cahn equa-
tion broadly used in essentially in all existing phase-field
simulations. Its application to the electrode reactions leads
to the Butler-Volmer kinetics of electrode-electrolyte interface
migration during both oxidation and reduction. This work is an
important step to demonstrate the validity through comparing
with the classical sharp-interface Butler-Volmer kinetics.

The nonlinear phase-field model can be extended to many
other complex electrochemical processes. For example, it
can be coupled with electronic-ionic diffusion equations to
predict the coupled electron-diffusion transport processes
associated with electrode reactions under applied voltages such

as the electrodeposition of metal from metal melt solution,
uranium shape changes on the solid cathode in electrorefining
processes, and lithium plating at the anode in lithium ion
batteries. By coupling of the electrode reaction model with
a heat conduction equation or an elasticity equation, it can
be used to simulate the thermal or stress effects on the
electrochemical reaction processes and electrode-electrolyte
interface evolution.

Although the numerical simulations in this work were
performed in one dimension, the model is equally applicable to
two or three dimensions allowing complex morphologies of the
electrode-electrolyte interface structures and their evolutions.
In fact, we already coupled this nonlinear phase-field equation
with the ion diffusion equation and Poisson’s equation and
demonstrated the possibility of lithium metal deposit growth
and dendrite formation in lithium ion batteries. This nonlinear
phase-field model is also applicable to many other general
diffusion-reaction processes such as phase transformations
under highly nonequilibrium conditions.
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