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The Landau–Ginzburg–Devonshire phenomenological theory is employed to model and predict the
ferroelectric phase transitions and properties of single-domain potassium niobate �KNbO3�. Based
on the LGD theory and the experimental data of KNbO3 single crystal, an eighth-order polynomial
of free energy function is proposed. The fitted coefficients are validated by comparing to a set of
experimental measured values including phase transition temperatures, spontaneous polarization,
dielectric constants, and lattice constants. The effects of hydrostatic pressure and external electric
field on phase transition temperatures and piezoelectric coefficients are investigated. The free energy
function may be used to predict ferroelectric domain structures and properties of KNbO3 bulk and
films by phase-field approach. © 2009 American Institute of Physics. �doi:10.1063/1.3260242�

I. INTRODUCTION

Potassium niobate �KNbO3� has been intensively inves-
tigated due to their large electro-optical coefficients, nonlin-
ear optical coefficients, and electromechanical coupling fac-
tor for various electronic device applications.1–4 KNbO3 is
also lead-free and environmentally friendly as compared to
the widely used lead zirconate titanate �PZT� system.5,6 At
high temperature, KNbO3 is paraelectric with a cubic struc-
ture. As temperature decreases, a KNbO3 crystal undergoes a
series of ferroelectric phase transitions, i.e., from cubic to
tetragonal phases at 435 °C, tetragonal to orthorhombic at
225 °C, and orthorhombic to rhombohedral at −50 °C. At
room temperature, KNbO3 has orthorhombic symmetry with
the space group Bmm2. All of these ferroelectric phase tran-
sitions are first-order and involve thermal hysteresis as a re-
sult of the lattice deformation and the shift of Nb ion in-
volved in the transitions.

The ferroelectric phase transition behavior of KNbO3

single crystal is quite analogous to BaTiO3. The Landau–
Ginzburg–Devonshire �LGD� phenomenological theory has
been successfully used to explain the ferroelectric transitions
and properties of ferroelectric single crystal like BaTiO3.7–9

There have also been a number of efforts to develop a LGD
phenomenology theory for KNbO3. Cross et al.10 applied a
six-order polynomial expression of free energy to determine
the order of the ferroelectric-paraelectric phase transition,
while the energy coefficients of �1, �11, and �111 were evalu-
ated for the tetragonal phase. Triebwasser11 also used a six-
order free energy function to describe the observed dielectric
constant, spontaneous polarization, and latent heat at the
paraelectric to ferroelectric transition point by assuming �11,
�111 to be temperature independent. The energy function co-
efficients were determined from the experimentally mea-
sured dielectric constant and spontaneous polarization val-

ues. These thermodynamic models provide a reasonable
description for the cubic to tetragonal transition. Kvyatk-
ovskiǐ and Zakharov12 applied a first-principles method to
obtain the energy expansion coefficients by employing the
Devonshire–Barrett one-ion model. The Curie temperature
and Curie–Weiss constant were calculated. Kleemann and
Schäfer13 applied Landau theory to calculate the entropy and
latent heat change at the paraelectric to ferroelectric transi-
tion point. Dorfman et al.14 presented a mean-field approach
based on the application of the time-dependent Ginzburg–
Landau theory to investigate the movement of interphase
boundary under applied pressure. However, despite these ef-
forts, the previous free energy functions can only be used to
simulate the ferroelectric properties of KNbO3 in the tetrag-
onal phase that is above 225 °C. For the orthorhombic and
rhombohedral phases below 225 °C, to our knowledge, no
such free energy function has been reported so far. Also lots
of experimental data obtained at low temperature, e.g., at
room temperature, cannot be reproduced or compared with
the calculation results obtained by using these free energy
functions. So there is still a lack of a free energy function
that accounts for all the ferroelectric phases and phase tran-
sitions. Thus, for the benefit of describing the structural and
ferroelectric transition for single crystal KNbO3 in the whole
phase transition temperature range using thermodynamic
phenomenological theory, a more complete description for
the free energy function is required.

A phase transition may be influenced by adjusting the
external thermodynamic parameters, such as temperature, ex-
ternal fields, and composition. Many prior studies have been
focused on the ferroelectric behavior under pressure using
various experimental techniques.14–19 One of the most pro-
nounced pressure effects on the ferroelectric properties is the
large shift of the ferroelectric transition temperature.20 Pres-
sure may modify the characteristics of a phase transition by
weakening the first-order transition.21,22 For optical and pi-
ezoelectric applications, e.g., 180° domain pairs can be cre-
ated by applying electric field.23 Piezoelectric coefficients
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will be significantly enhanced by engineering the domain
structure. However, because of the difficulty in the growth of
single crystal with sufficient electrical resistance and in pol-
ing, there are only a few reports for the piezoelectric prop-
erties of KNbO3.24 The LGD theory will allow one to calcu-
late the properties under applied electric field and pressure.

The main objective of this work is to develop a thermo-
dynamic free energy function by reproducing the experimen-
tal properties of the bulk KNbO3 throughout the temperature
range. The main results of this work have been briefly intro-
duced in a previous letter.25 In this paper, the ferroelectric
phenomenological theory, free energy function determina-
tion, and the applications of the KNbO3 single crystal are
described in detail. Additional results and applications in-
cluding the spontaneous strain, dielectric constants under the
hydrostatic pressure, and piezoelectric coefficients under the
applied electric field are presented. In the next section �Sec.
II�, the phenomenological theory of ferroelectricity is given.
In Sec. III, the fitting procedure for coefficients of the free
energy function is provided. In Sec. IV, coefficient values are
evaluated by comparing to experiments. In Sec. V, the prop-
erties under the applied hydrostatic pressure and the electric
field are calculated based on the fitted energy function as
well as the comparison with the related experiments. Finally,
a summary is provided in Sec. VI.

II. FERROELECTRIC PHENOMENOLOGICAL THEORY

A. Thermodynamic free energy function

In the LGD phenomenological theory, the spontaneous
polarization P= �P1 , P2 , P3� in a rectangular coordinate sys-
tem is chosen as the primary order parameter. In this work,
an eighth-order polynomial is used to describe the thermo-
dynamics of KNbO3 single crystal. Under stress-free condi-
tion, the eight-order polynomial expression is given as26

fLGD�P1,P2,P3� = �1�P1
2 + P2

2 + P3
2� + �11�P1

4 + P2
4 + P3

4�

+ �12�P1
2P2

2 + P2
2P3

2 + P1
2P3

2� + �111�P1
6 + P2

6

+ P3
6� + �112�P1

4�P2
2 + P3

2� + P2
4�P1

2 + P3
2�

+ P3
4�P1

2 + P2
2�� + �123P1

2P2
2P3

2 + �1111�P1
8

+ P2
8 + P3

8� + �1112�P1
6�P2

2 + P3
2� + P2

6�P1
2

+ P3
2� + P3

6�P1
2 + P2

2�� + �1122�P1
4P2

4 + P2
4P3

4

+ P1
4P3

4� + �1123�P1
4P2

2P3
2 + P2

4P1
2P3

2

+ P3
4P1

2P2
2� , �1�

where � with subscript index represents energy expansion
coefficient. All of these coefficients are assumed to be tem-
perature independent except �1, which is assumed to be lin-
early dependent on temperature and obeys the Curie–Weiss
law,

�1 = �T − �0�/2�0C0, �2�

where �0 is the Curie–Weiss temperature, �0 is the permittiv-
ity of free space, and C0 is the Curie constant.

To perform the thermodynamic analysis of KNbO3, po-
larization is assumed to be P= �0,0 , P3� for the tetragonal

phase, P= �P3 ,0 , P3� for the orthorhombic phase, and P
= �P3 , P3 , P3� for the rhombohedral phase. At the paraelectric
cubic state, P= �0,0 ,0�. Then free energy density of each
phase is then simplified to

fC = 0,

fT = �1P3
2 + �11P3

4 + �111P3
6 + �1111P3

8,

fO = 2�1P3
2 + �2�11 + �12�P3

4 + 2��111 + �112�P3
6

+ �2�1111 + 2�1112 + �1122�P3
8,

fR = 3�1P3
2 + 3��11 + �12�P3

4 + �3�111 + 6�112 + �123�P3
6

+ 3��1111 + 2�1112 + �1122 + �1123�P3
8, �3�

where f , with subscripts C, T, O, and R, represents the free
energies of the four phases, respectively, and the energy of
the cubic phase is assumed to be zero and used as a potential
energy reference point.

The dielectric stiffness coefficient �ij can be obtained via
the second partial derivative of the energy function,

�ij = �2fLGD/�Pi � Pj . �4�

Therefore, for the tetragonal phase, the dielectric stiff-
ness coefficients �ij are

�11T = �22T = 2��1 + �12P3
2 + �112P3

4 + �1112P3
6� ,

�33T = 2��1 + 6�11P3
2 + 15�111P3

4 + 28�1111P3
6� ,

�12T = �13T = �23T. �5�

For the orthorhombic phase,

�11O = �33O = 2��1 + �6�11 + �12�P3
2 + �15�111

+ 7�112�P3
4 + 2�14�1111 + 8�1112 + 3�1122�P3

6� ,

�22O = 2��1 + 2�12P3
2 + �2�112 + �123�P3

4 + 2��1112

+ �1123�P3
6� ,

�13O = 4��12P3
2 + 4�112P3

4 + 2�3�1112 + 2�1122�P3
6� ,

�12O = �23O = 0. �6�

For the rhombohedral phase,

�11R = �22R = �33R = 2��1 + �6�11 + 2�12�P3
2 + �15�111

+ 14�112 + �123�P3
4 + 4�7�1111 + 8�1112 + 3�1122

+ 2�1123�P3
6� ,

�12R = �13R = �23R = 4��12P3
2 + �4�112 + �123�P3

4

+ �6�1112 + 4�1122 + 5�1123�P3
6� . �7�

The multiplication by the permittivity of free space �0 in
Eqs. �4�–�7� can convert the absolute dielectric stiffness co-
efficients into the relative ones.

In the orthorhombic and rhombohedral states, since the
polarization is assumed to be along the �101� and �111� di-
rections of the original cubic axes, the resulted dielectric
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stiffness tensor is not diagonal. We can set a new coordinate
system �x1� ,x2� ,x3�� to let the new �001�� direction parallel to
the polarization direction. The dielectric stiffness tensor will
be diagonalized. The relations of dielectric stiffness coeffi-
cients between the old and new coordinates are given below.
For the orthorhombic phase, the new dielectric stiffness co-
efficients �ij� are given by

�22O� = �22O, �11O� = �33O − �13O, �33O� = �33O

+ �13O, �12O� = �13O� = �23O� = 0. �8�

For the rhombohedral phase, �ij� are

�11R� = �22R� = �11R − �12R, �33R� = �11R + 2�12R, �12R�

= �23R� = �31R� = 0. �9�

The dielectric constant tensor �ij ��ij� � can be calculated
from the dielectric stiffness coefficient by

�ij =
1

�0
�ij

−1 ��ij� =
1

�0
�ij�

−1� , �10�

where �ij
−1 ��ij�

−1� is the reciprocal matrix of the dielectric
stiffness coefficients matrix �ij ��ij� �.

The ferroelectric transition due to the shift of Nb ion will
cause the lattice deformation and the corresponding sponta-
neous strain in the KNbO3. When the cell axes is along the
pseudocubic direction, the spontaneous strain can be ex-
pressed by

e11
0 = Q11P1

2 + Q12�P2
2 + P3

2� ,

e22
0 = Q11P2

2 + Q12�P1
2 + P3

2� ,

e33
0 = Q11P3

2 + Q12�P1
2 + P2

2� ,

e12
0 = Q44P1P2,e13

0 = Q44P1P3,e23
0 = Q44P2P3, �11�

where Q11, Q12, and Q44 are the electrostrictive coefficients
that can be measured by experiments.

The lattice constants of three ferroelectric phases can be
calculated by

aT = a0�1 + e11T
0 � = a0�1 + e22T

0 �,cT = a0�1 + e33T
0 � ,

aO = cO = a0�1 + e11O
0 � = a0�1 + e33O

0 �,bO = a0�1 + e22O
0 � ,

aR = a0�1 + e11R
0 � = a0�1 + e22R

0 � = a0�1 + e33R
0 � , �12�

where a0 is the pseudocubic lattice constant.

B. Free energy function under constant pressure

The change of the phase transition temperature under
applied external stresses can be calculated based on the LGD
energy function. Under an external stress �
= ��1 ,�2 ,�3 ,�4 ,�5 ,�6�, the free energy function can be re-
written by

f� = fLGD − 1
2s11��1

2 + �2
2 + �3

2� − s12��1�2 + �1�3

+ �3�2� − 1
2s44��4

2 + �5
2 + �6

2� − Q11��1P1
2 + �2P2

2

+ �3P3
2� − Q12��1�P2

2 + P3
2� + �2�P1

2 + P3
2� + �3�P1

2

+ P3
2�� − Q44�P2P3�4 + P1P3�5 + P2P1�6� , �13�

where s11, s12, and s44 are the elastic compliances at the
constant polarization. In the hydrostatic pressure condition,
the pressure tensors must satisfy �1=�2=�3=−�, �4=�5

=�6=0. Thus, Eq. �13� becomes

f� = fLGD − 3
2s11�

2 − 3s12�
2 + Q11��P1

2 + P2
2 + P3

2�

+ 2Q12��P1
2 + P2

2 + P3
2� . �14�

C. Free energy function under an applied electric
field

Many useful properties of ferroelectric materials such as
the piezoelectric and electrostriction rely on the strain gen-

TABLE I. The thermodynamic parameters used for fitting the LGD energy expansion coefficients.

Parameter

Transition temperature Dielectric constant

Symbol Tc1
a Tc2

a Tc3
b �22

c �33
c �11

d �22
d �33

d

Temperature �°C� ¯ ¯ ¯ 227 227 22 22 22
Value 435 °C 225 °C −50 °C 2089 296 1000 160 55

Parameter

Entropy change Curie–Weiss temperature Curie constant Polarization
Symbol �S1

e T0
f C0

g Ps
f

Temperature �°C� 435 ¯ ¯ 418
Value 29 485.6 J m−3 K−1 377 °C 2.4�105 °C 0.26 C /m2

aReference 27.
bReference 28.
cReference 29.
dReference 30.
eReference 31.
fReference 11.
gReference 32.
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erated by the applied electric field. With the applied external
electric field E= �E1 ,E2 ,E3�, the LGD energy function is thus
rewritten as

fE = fLGD − E1P1 − E2P2 − E3P3. �15�

The piezoelectric coefficient can be obtained through the
derivative of strain eij with respect to the electric field, i.e.,

dkij =
deij

dEk
�i, j,k = 1,2,3� , �16�

where dkij is the piezoelectric coefficient and subscripts
�i , j ,k� denote the crystallographic axes.

III. DETERMINATION OF COEFFICIENTS FOR THE
FREE ENERGY FUNCTION

We first fit the coefficients of the free energy function
based on the experimental data including transition tempera-
tures, spontaneous polarization, dielectric constants, entropy
change, etc., which are listed in Table I. Using these fitted
coefficients, we can calculate all the structural and ferroelec-
tric properties to validate these coefficients. In the following,
we will show the procedures about how to fit these energy
coefficients.

Let us take the cubic to tetragonal phase transition as an
example. The energies for the cubic and tetragonal phase at
the transition point must be equal. Since we use the cubic
phase as the reference for the free energy function, at the
cubic to tetragonal transition temperature, it implies

fT = �1P3
2 + �11P3

4 + �111P3
6 + �1111P3

8 = 0. �17�

The first derivative of energy for the tetragonal phase
must be zero at a given spontaneous polarization, i.e.,

� fT/�P3 = �1 + 2�11P3
2 + 3�111P3

4 + 4�1111P3
6 = 0. �18�

For describing the properties for the tetragonal phase, �1

�C0�, �11, �111, �1111, and P3 should be determined. In order
to determine these five quantities, five equations are needed.
Based on the experimental spontaneous polarization value of
0.26 C /m2 for the cubic to tetragonal transition at the tem-
perature 418 °C,11 we use three different polarizations
around this value at three given temperatures to fit these
parameters. The fitted parameters are then tested by compar-
ing the predicted ferroelectric properties from the thermody-

namic model to experimentally measured values including
transition temperatures, dielectric constants, spontaneous po-
larizations, Curie constant, and entropy change as shown in
Table I. We tried many different polarizations to fit the ex-
perimental measured values and found that the spontaneous
polarizations with 0.33, 0.32, and 0.27 C /m2 at respective
three given temperatures of 250, 300, and 435 °C gave a
better fitting.

The entropy change for the cubic paraelectric to tetrag-
onal ferroelectric phase transition is

�S = �Pproduct
2 �Tc� − Pparent

2 �Tc��/2�0C0, �19�

where Pproduct is the spontaneous polarization for the product
phase and Pparent is the polarization for the parent phase at
the transition point. The reported experimental value of �S is
29 485.6 Jm−3 K−1 at the equilibrium transition
temperature,31 thus we use Eq. �19� as one of five equations
to determine the coefficients of the free energy function. Us-
ing Eqs. �17�–�19�, all coefficients for the tetragonal phase
can be determined uniquely.

With the determination of �1, �11, �111, and �1111, we
are able to fit the rest of free energy coefficients based on the
experimental data associated with the orthorhombic and

TABLE II. The fitted LGD energy expansion coefficients for KNbO3 single
crystal.

Coefficients This work Othersa Units

�1 4.273�105 �T-377� 2.173�105 �T-377� C−2m2N
�11 −6.36�108 −4.05�108 C−4m6N
�12 9.66�108

¯ C−4m6N
�111 2.81�109 2.99�109 C−6m10N
�112 −1.99�109

¯ C−6m10N
�123 6.03�109

¯ C−6m10N
�1111 1.74�1010

¯ C−8m14N
�1112 5.99�109

¯ C−8m14N
�1122 2.50�1010

¯ C−8m14N
�1123 −1.17�1010

¯ C−8m14N

aReference 11.
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rhombohedral phases using the similar method as shown
above. These experimental data used for fitting and compar-
ing are listed in Table I. All the fitted expansion coefficients
of the LGD energy function for KNbO3 single crystal are
listed in Table II. The coefficients �1, �11, and �111 obtained
by others11 are also given for comparison.

IV. FERROELECTRIC PROPERTIES CALCULATED
FROM THE FITTED COEFFICIENTS FOR THE FREE
ENERGY FUNCTION

With the fitted coefficients in Table II, the free energy
densities of three ferroelectric phases as a function of polar-
ization are shown in Fig. 1. The actual stable state of the
crystal should correspond to the minimum of the free energy
of the system. It is clearly shown that the tetragonal phase
exhibits lowest energy from 435 to 225 °C while the ortho-
rhombic and rhombohedral phases are energetically most
stable from 225 to −50 °C and below −50 °C, respectively.
The free energy density of the tetragonal phase from an ex-
isting sixth-order polynomial is also included for
comparison.11

Figure 2 shows the spontaneous polarization dependence
on temperature. One can see from Fig. 2 that the magnitude
of polarizations decreases with increase in temperature and
changes abruptly at each transition point, which is character-
istic of first-order phase transitions. The spontaneous polar-
ization in the tetragonal state is 0.27 C /m2 at 435 °C and
goes up to 0.34 C /m2 near the tetragonal to orthorhombic
transition point. Existing experimental measurements indi-
cated that the spontaneous polarization in the tetragonal
phase might be larger. For example, values of 0.371 �Ref. 33�

and 0.396 C /m2 �Ref. 34� were suggested as compared ear-
lier experimental value of Ps=0.30 C /m2.11 Kleemann et
al.13 confirmed a larger value Ps=0.373 C /m2 at 227 °C by
the linear birefringence data. Resta et al.35 used the Bloch
functions of the tetragonal phase to calculate the polarization
value and obtained Ps=0.35 C /m2 at 270 °C. The value of
polarization at room temperature is compared with the ex-
perimentally measured data given in Table III. The calculated
polarization is 0.45 C /m2 at the room temperature, in agree-
ment with the other experimental and computational work.
The value of polarization is 0.51 C /m2 at −50 °C in the
rhombohedral phase.

The entropy at a transition temperature is discontinuous
due to the first-order phase transition characteristics. The en-
tropy changes from the higher to lower temperature phases at
three ferroelectric phase transition points are calculated by
Eq. �19� and are listed in Table IV. These values are in good
agreement with the experimental values.31

The latent heat change at the transition point can be cal-
culated by the expression �L=Tc�S, where Tc is the phase
transition temperature. As shown in Table IV, the latent heat
change �L is consistent with the experiment.40,41 These
larger latent heat changes in KNbO3 can be attributed to the
large lattice distortions.

The dielectric constant is one of the important properties
of the ferroelectric KNbO3 single crystal. Figure 3 shows the
dielectric constant tensors in three ferroelectric phases,
which are calculated through Eq. �10�. Experimental values29

are also shown in the figure for comparison. The plotted
dielectric constant �33 ��33� � is along the polar direction,
while �11 ��11� � and �22 ��22� � are along the other two direc-
tions which are orthogonal to each other and also to the
polarization. For the tetragonal phase, �11 agrees well with
the experimental values, while �33 is underestimated in com-
parison with the only experimental data we could find so far.
Despite its underestimated absolute value, the �33 variation
with the temperature is consistent with experiment. For the
orthorhombic phase, �11� , �22� , and �33� are in good agreement
with the experimental data. Furthermore, the dielectric con-
stants for the rhombohedral phase are also calculated as
shown in Fig. 3, but no experimental data are available for a
comparison.

The spontaneous strain is generated accompanying with
the phase transition. The spontaneous strains along the crys-
tallographic axes of the pseudocubic can be calculated from

TABLE III. The values of polarization �C /m2� and dielectric constant for
KNbO3 at room temperature �T=22 °C�.

Properties
This
work Experiment

Ps 0.45
0.3347,a 0.41,b 0.38,c 0.38�0.04,d 0.41�0.02,e 0.42,f

0.43g

aReference 36.
bReference 30.
cReference 37.
dReference 38.
eReference 24.
fReference 39.
gReference 33.

TABLE IV. Entropy S and latent heat L changes of KNbO3 at three ferroelectric phase transition points.

Transition

Properties

�S �L
This work

�J m−3 K−1� �cal/�mole K��
Othersa

�cal/�mole K��
This work

�Jm−3� �cal/�mole��
Othersb,c

�cal/�mole��

Cubic to tetragonal 29 485.6 0.28 0.28 2.1�107 196 190�15
Tetragonal to orthorhombic 20 050.9 0.19 0.17 1.5�107 93 85�10
Orthorhombic to rhombohedral 16 569.5 0.16 0.12 6.6�106 34 32�5

aReference 31.
bReference 40.
cReference 41.
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the polarizations, as expressed in Eq. �11�. Figure 4 shows
the calculated spontaneous strains as a function of the tem-
perature for all the three ferroelectric phases. For the tetrag-
onal phase, the spontaneous polarization is along with the x3

direction. The spontaneous strain e11T
0 is equal to e22T

0 , and
the spontaneous strain e33T

0 along the x3 direction is larger
than e11T

0 and e22T
0 . In the case of the orthorhombic phase, the

spontaneous polarization is along the �101� direction. The
spontaneous strain e11O

0 is equal to e33O
0 while, in the rhom-

bohedral phase case, e11R
0 is equal to both e22R

0 and e33R
0 be-

cause the polarization is along the �111� direction. In order to
determine the spontaneous strain, we set the electrostrictive
coefficients Q11=0.12 m4 /C2, Q12=−0.053 m4 /C2, and
Q44=0.052 m4 /C2 instead of the experimentally measured
values of Q11=0.13 m4 /C2, Q12=−0.047 m4 /C2, and Q44

=0.052 m4 /C2, or Q11=0.13 m4 /C2, Q12=−0.055 m4 /C2,
and Q44=0.052 m4 /C2.10 This is because the phase transi-
tion properties under the hydrostatic pressure �see Sec. IV�
calculated from these electrostrictive coefficients largely de-
viate from the experimental values. The calculated spontane-
ous strain values in the orthorhombic phase are in reasonable
agreement with previous studies.

The lattice constants in different phases can be deter-
mined from the spontaneous strain by Eq. �12�. Figure 5
shows the calculated lattice constants of KNbO3 as a func-
tion of temperature. The black squares represent experimen-
tal values.40 The lattice constants of three ferroelectric
phases, aT, bT, and cT for the tetragonal phase, aO, bO, and
cO for the orthorhombic phase, and aR, bR, and cR for the
rhombohedral phase, are obtained by Eq. �12�, where a0 is
the lattice of the pseudocubic and a0=4.015 29+1.923 36
�10−5 T fitted from the cubic data and extrapolated to
lower temperature.40 They are in reasonable agreement with
the experimental values. Sepliarsky et al.42 also calculated
the lattice constants versus the temperature using the mo-
lecular dynamic method, which shows the larger lattice con-
stants in comparison with the present work.

V. EFFECT OF EXTERNAL PRESSURE AND ELECTRIC
FIELD

A. Phase transition properties under hydrostatic
pressure

Besides temperature, pressure change may lead to the
phase transitions. A notable feature of the ferroelectric
KNbO3 is the phase-transition temperature shift under an ap-
plied pressure. Using the Raman spectroscopic measurement
and optical observation, Gourdain et al.22 found that the
tetragonal-cubic phase transition occurs at 
9–10 GPa at
the room temperature. Shamim and Ishidate17 analyzed the
Raman spectra of KNbO3 under the high pressure and found
that the orthorhombic-tetragonal and tetragonal-cubic phase
transitions occur at 7 and 8 GPa at room temperature, respec-
tively. Kobayashi et al.19,43 measured the dielectric constant
dependence on temperature and pressure in all three ferro-
electric phases and gave the phase-transition pressures are
8.5 and 11 GPa at room temperature for the orthorhombic-
tetragonal and tetragonal-cubic phase transitions, respec-
tively. Gourdain et al.16 reported a transition pressure of 10–
11GPa for the tetragonal-cubic phase transition and 5–7 GPa
for the orthorhombic-tetragonal phase transition at room
temperature.
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The phase transition temperature under the applied ex-
ternal pressure can be calculated by using Eq. �13�. The elas-
tic compliance constants in this calculation are taken as s11

=4.6�10−12 m2 /N, s12=−1.1�10−12 m2 /N, and s44=11.1
�10−12 m2 /N according to the experiment.10 The calcula-
tion results are shown in Fig. 6. It is found that the cubic-
tetragonal phase transition occurs at 12.5 GPa and the
orthorhombic-tetragonal transition occurs at 6.1 GPa at room
temperature, which is in agreement with experiment. We can
estimate the derivative of the pressure � with respect to the
transition temperature through �P /�Tc, which is approxi-
mately 	0.03 GPa/K for all the three phase transitions of
KNbO3. For the tetragonal-cubic phase transition, the pre-
dicted value is consistent with the experimental measured
value of 	0.036 GPa/K.17 For the orthorhombic-tetragonal
phase transition, the calculated value is the same as the ex-
perimental data of 	0.03 GPa/K by Gourdain et al.16 using
x-ray diffraction and Raman scattering measurements. How-
ever, we need to point out that the all phase transitions under
hydrostatic pressure are the first order transition. It is seen
from Eqs. �13� and �14� that the introduction of applied
stresses or hydrostatic pressure only affects the coefficients
of the second order term of the LGD free energy that does
not cause any change on phase transition order. But applied
constraint strain can result in phase transition orders.44,45

The dielectric constant under an applied pressure can be
calculated from Eqs. �4� and �10� where the free energy is
replaced by Eq. �14�. The spontaneous polarization is still
along the �001�pc direction for the tetragonal phase and along
the �101�pc direction for the orthorhombic phase. We calcu-
late the dielectric constant tensor �33 along the pseudocubic
axis �001� at various hydrostatic pressures under constant
temperatures. We chose five temperatures, i.e., 	20, 22, 200,
and 200 °C, as well as 152 and 89 °C in order to make a
comparison with the corresponding experiment. Figure 7
shows the curves of the dielectric constant �33. As it can be
seen in the plot that �33 increases with pressure and exhibits
two maxima which correspond to the orthorhombic-
tetragonal and tetragonal-cubic phase transition points for the
given temperature. Clearly, the orthorhombic-tetragonal
phase transition pressures at 152 and 89 °C are 4.8 and 6.8
GPa, while the tetragonal-cubic phase-transition pressures

under the same temperatures are 9.2 and 11.2 GPa, respec-
tively, consistent with experiments.19 We thus can obtain the
dielectric constants of KNbO3 under any pressure at different
temperatures, most of which are currently unavailable. As
shown in Fig. 7, the dielectric constants at the 	22, 22, and
200 °C are calculated based on the fitted free energy func-
tion. Obviously, the transition pressure decreases as tempera-
ture increases, which is consistent with experimental obser-
vations.

Figure 8 shows the dielectric constant �33 as a function
of the temperature under given hydrostatic pressures. The
selected hydrostatic pressures used in the calculations are 2,
4, 6, 8, and 10 GPa. Figure 8 shows the tetragonal-cubic and
orthorhombic-tetragonal phase transitions, characterized by
the two peaks. Obviously, the transition temperature de-
creases with the applied hydrostatic pressure, which is con-
sistent with experimental observations.19 The transition tem-
peratures for the orthorhombic-tetragonal and tetragonal-
cubic phase transitions are 277 and 422 °C at 2 GPa, which
decrease to 	17 and 127 °C at 10 GPa. The ferroelectric
transition temperature decreases and the temperature range
between the orthorhombic and tetragonal phase is narrowed
with increasing pressure. Using the fitted thermodynamic
free energy function, we can thus obtain the dielectric con-
stant values at any temperatures and pressures.
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B. Piezoelectric properties under applied electric field

The piezoelectric coefficients can be calculated through
the derivative of strain with respect to the electric field using
Eq. �16�. We apply the electric fields of E= �0,0 ,E0�, E
= �E0 ,0 ,E0�, and E= �E0 ,E0 ,E0� at room temperature. At
room temperature under zero electric field, the ferroelectric
orthorhombic phase is stable. The corresponding spontane-
ous polarization is assumed to be along the �101� direction.
We calculate the piezoelectric coefficients along the applied
electric field directions and the other two directions which
are orthogonal to each other and to the electric field direc-
tion. We take the engineering notations d33, d32, and d31. For
example, for the electric field E= �E0 ,0 ,E0�, the three or-

thogonal directions are chosen as �101̄�, �010�, and �101�.
The corresponding piezoelectric constants are calculated as

d31 =
�e�101̄�

�E�101�
, d32 =

�e�010�

�E�101�
, d33 =

�e�101�

�E�101�
. �20�

Under stress-free condition, the strains e�101̄�, e�010�, and
e�101� are calculated with

e�l,m,n� = e11
0 l2 + e22

0 m2 + e33
0 n2 + 2e12

0 lm + 2e13
0 ln

+ 2e23
0 mn , �21�

where �l ,m ,n� is the direction unit vector with l2+m2+n2

=1. d3i under the electric field E= �0,0 ,E0� and E
= �E0 ,E0 ,E0� is calculated in the same way. Figure 9 shows
the predicted piezoelectric coefficients as a function of ap-
plied electric field at room temperature. We checked the
stable polarization solutions of the free energy function be-
fore calculating the piezoelectric coefficients. It is found that
a ferroelectric phase transition occurs when applying the
electric field E�111�, which is represented by the abrupt
change of the piezoelectric constant as shown in Fig. 9�c�.
The orthorhombic phase changes into rhombohedral phase at
the electric field 9.9 MV m−1. It is noted that d33 always has
the highest values comparing with d31 and d32. In addition,
d33 decreases with the increasing of electric field along �001�
and �101� directions, while d31 and d32 increase. However,
there is no significant variation of d31, d32, and d33 with the
electric field E�001� and E�101� as shown in Figs. 9�a� and 9�b�.

The values of piezoelectric coefficients under the electric
field E�101� at room temperature are listed in Table V in com-
parison with other computational and experimental data. Pi-
ezoelectric coefficient tensor d33 and d32 are in good agree-
ment with experiments, while d31 is smaller than the
experimental values, although the experimental values
among themselves also have a large difference. It has been
suggested that d3i may be enhanced by using various experi-
mental methods. For instance, Nakamura et al.3 presented the
experimental confirmation of the strain versus electric field
behaviors of �001� cut KNbO3 with a single-domain struc-
ture. The effective piezoelectric coefficient d33 was shown to
be about 80 pc/N when the direction of electric field was set
the same as that of the original spontaneous polarization.
Masuda et al.47 reported that the piezoelectric coefficient d33

of the electrically poled KNbO3 ceramics by doping La and
Fe was 98 pC/N.

C. Application of the fitted free energy function in the
phase-field method

The phase-field model has been successfully developed
as a powerful computational approach for studying mesos-
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FIG. 9. �Color online� Piezoelectric coefficients vs applied electric field
E�001�=E0, E�101�=�2E0, and E�111�=�3E0, respectively, at room temperature.

TABLE V. Piezoelectric coefficients under the applied electric field E�101� at
room temperature �T=22 °C�.

Properties This work Others Units

d33 27.4 24.5�0.15,a 29.3�0.15,b 29.6c pC/N
d32 	24.3 −19.5�0.20,a 	22.3c pC/N
d31 3.4 9.8�0.07,a 18.5c pC/N

aReference 46.
bReference 38.
cReference 24.
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cale domain structure and microstructure evolution. In the
application of the ferroelectric materials, for instance, it can
be used to investigate the ferroelectric properties especially
the domain structures and their temporal evolutions, as well
as the effects of substrate constraint on the phase transition
temperatures and domains in ferroelectric materials such as
PbTiO3, BaTiO3, PZT, etc. In order to model the real pro-
cesses in the materials, the accurate thermodynamic and dy-
namic data should be determined as input parameters in the
phase-field model. The stable microstructure is a direct con-
sequence of minimizing the total energy of the system. The
fitted thermodynamic free energy function as an intrinsic
thermodynamic energy term in the total energy in the phase
field model quantitatively determines the total energy of the
system. The ferroelectric properties of KNbO3 can thus be
determined. It will have many straightforward, immediate,
and important applications. For instance, one can study do-
main structures and wall motion in KNbO3 single crystals,
the domain structures and their evolution under applied fields
such as pressure and electric field. Further, the substrate con-
straints effect on domain structures, phase transition tem-
peratures as well as other ferroelectric properties for KNbO3

thin film can also be investigated.

VI. SUMMARY

In summary, an eight-order polynomial of free energy
function has been constructed in the framework of LGD
phase transition theory for describing the ferroelectric prop-
erties of the potassium niobate �KNbO3� single crystal. All of
the free energy expansion coefficients are determined based
on the related properties of KNbO3. The fitted free energy
function is used to model and predict the structural and ferro-
electric properties of KNbO3. These properties include the
phase transition temperatures, spontaneous polarizations, en-
tropy and latent heat changes, dielectric constants, spontane-
ous strains, and lattice constants. We also predicted the pi-
ezoelectric coefficients and phase transition temperature
changes and dielectric constants under a hydrostatic pressure.
The calculation results suggest that the free energy function
describe well the properties of a KNbO3 single crystal. The
fitted free energy function can lead to many applications. For
instance, it can be employed in the phase field model to
simulate the domain evolution and ferroelectric properties
for both KNbO3 bulk and thin film.
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