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Abstract

Many of the physical properties of materials are critically dependent on their microstructure. In recent years, there has been increasing
interest in using computer simulations based on phase-field models for the spatial and temporal evolution of microstructures. Although
such simulations are computationally expensive, the generated set of microstructures can be stored in a repository and used for further
analysis in materials design. However, such an approach requires a substantial amount of storage, for example, approximately 1 Tera-
byte for a single binary alloy. In this paper, we develop fast data compression and regeneration schemes for two-dimensional microstruc-
tures that can reduce storage requirements without compromising the accuracy of computed values, such as stress fields used in analysis.
Our main contribution is the development and evaluation of a sparse skeletal representation scheme which outperforms traditional com-
pression schemes. Our results indicate that our scheme can reduce microstructure data size by more than two orders of magnitude while
achieving better accuracies for the computed stress fields and order parameters.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the major research directions in computational
materials science is to predict and analyze materials micro-
structures during processing. Microstructures indicate the
spatial distributions of phases and other structural features
at nano- and/or micro-scales [1]. Microstructures can be
measured either experimentally or through computer simu-
lations [1]. Recent advances in computing technology and
mathematical schemes have made the latter more tractable
and attractive.
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Microstructures are either reconstructed and digitized
from experiments or directly observed from computer sim-
ulations. Such microstructures can be stored in the form of
a repository and used with data-mining techniques to
explore the design space for optimum microstructures to
potentially tailor new materials [2–5]. However, this
approach will be feasible only if a large number of micro-
structures can be stored and manipulated in the repository
without prohibitive storage requirements and the corre-
sponding computation nd I/O costs, i.e., moving data to
and from CPU and disks for analysis. For example, a com-
puter generated microstructure on a 1024 · 1024 two-
dimensional mesh typically requires 40 MB of space when
each mesh point contains five double precision values (cor-
responding to properties such as orientation, composition,
etc.). At a given temperature and composition, if the micro-
structure evolution is to be retained for 20 different time
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stamps, the storage costs grow to 40 · 20 = 800 MB.
Studying such a system for 10 different composition and
temperature conditions will lead to a total storage require-
ment of at least 80 GB. For three-dimensional microstruc-
ture representations, the costs will be dramatically higher;
calculations indicate that storage requirements can exceed
1.2 Terabytes for a similar study, using a 256 · 256 · 256
microstructure.

In an earlier work towards building functionally useful
repositories of limited size, Sundararaghavan and Zabaras
[2] developed reduced order models. Another effort
involves representing microstructures using the statistics
of phase distribution [6,7] for intervals in the physical
domain. In this approach, the number of intervals is not
predetermined in order to allow an accurate approximation
to the original microstructure. However, regenerating accu-
rate microstructures from such representations can be com-
putationally expensive.

In this paper, we develop compact representations of
microstructures using ‘lossy’ methods, i.e., methods in
which some of the details are lost. However, we conjecture
that such a data loss can be corrected through a fast regen-
eration scheme in which the errors are corrected using a
few iterations of a corresponding phase-field simulation.
We view the microstructure as an image and consider mul-
tilevel forms of different schemes for image compression.
Our main contribution is the development of a new sparse

skeletal representation which can reduce data size by more
than two orders of magnitude; corresponding regenerated
and refined microstructures lead to the lowest errors for
associated parameters.

This paper is organized as follows. Section 2 contains an
introduction to microstructures and phase-field simulations
followed by a brief review of existing data compression
schemes. Section 3 introduces our microstructure data
reduction and regeneration framework including our new
compression schemes in Section 3.1. Section 4 provides
an empirical evaluation of our schemes using two-phase
microstructures from Ni–Al (c and c 0) and Al–Cu (a and
h 0) binary systems. It includes a comparison of compres-
sion rates achieved and the accuracy of regenerated data
including the local stress distribution. Section 5 contains
some concluding remarks.

2. Background

2.1. Microstructures of materials

A microstructure is a general term that refers to a spatial
distribution of structural features which can be phases of
(i) different compositions and/or crystal structures, (ii) grains
of different orientations, (iii) domains of different structural
variants, and (iv) domains of different electrical or magnetic
polarizations, as well as structural defects.

The size, shape, and spatial arrangement of the local
structural features in a microstructure play a critical role
in determining the physical properties of a material such
as mechanical, electrical, magnetic and optical properties.
Microstructure evolution takes place to reduce the total
free energy which may include the bulk chemical free
energy, interfacial energy, elastic strain energy, magnetic
energy, electrostatic energy, and/or under applied external
fields such as applied stress, electrical, temperature, and
magnetic fields. Many important properties of a material
can be engineered by controlling its microstructure evolu-
tion. In computational materials science, a microstructure
is digitized on two- or three-dimensional mesh points where
each point can be associated with local thermodynamic and
other physical properties.

One of the most familiar examples for a local property is
the local composition of an atom species. Typically the val-
ues associated with composition are uniform within a
domain or phase, but they exhibit sharp changes across
the interfaces. In practice, graphical images are often used
to provide an intuitive understanding on a morphology of
phases. For example, Fig. 1 shows 2D graphical images of
Ni–Al and Al–Cu microstructures with 512 · 512 mesh
points, where the concentration of Al at each point is rep-
resented by a range of colors. According to this figure,
there are two different phases representing precipitates (in
red color) dispersed in a matrix (in blue color).

In strain-dominated two-phase microstructure evolu-
tion, it is important that the local stress distribution is cal-
culated accurately. The stress-field rij(x,y) at (x,y) in a 2D
microstructure is obtained using the Einstein summation
convention as:

rijðx; yÞ ¼ Cijklðx; yÞ�klðx; yÞ; ð1Þ

where Cijkl(x,y) is the elastic modulus tensor, and �kl(x,y) is
the elastic strain within a microstructure at (x,y). The de-
tails regarding the calculation of the elastic strain can be
found in [8] for the case of homogeneous modulus
approximation.
2.2. Phase-field simulation

The phase-field approach is one of the most powerful
methods for modeling many types of microstructure
evolution processes [1,9]. Unlike classical approaches, a
phase-field model describes a microstructure, both the
compositional and structural domains and the interfaces
between phases, as a whole by using a set of field variables.
The field variables change smoothly from one phase to
another across the interfacial regions, and hence the inter-
faces in a phase-field model are diffuse. Typical examples of
field variables are the concentration and long-range order
parameters that characterize the compositional and struc-
tural heterogeneities, respectively. The temporal evolution
of the field variables toward the thermodynamics equilib-
rium are governed by a pair of continuum equations,
namely, the Cahn-Hilliard nonlinear diffusion equation
[10] and the Allen-Cahn (time-dependent Ginzburg-Lan-
dau) equation [11] shown as follows:
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Fig. 1. Graphical images of the 2D Ni–Al (left) and Al–Cu (right) microstructure; the values represent the concentration of Aluminum for Ni–Al, and
atomic fraction of Cu for Al–Cu.
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ogpðr; tÞ
ot

¼ �Lpq
dF

dgqðr; tÞ
; and ð2Þ

ocðr; tÞ
ot

¼ Mr2 dF
dcðr; tÞ : ð3Þ

Lpq and M are kinetic coefficients related to atom or inter-
face mobility. c represents conserved field variables, gp is
non-conserved field variables, and F is the total free energy
of the system. The solutions of these equations provide the
temporal evolution of microstructures. To solve these ki-
netic equations, we employed the semi-implicit Fourier
spectral method [12].
2.3. Data compression schemes

The data and image compression techniques can be cat-
egorized as performing either lossless or lossy compression.
Additionally, both types of schemes can be combined to
further increase compression rates [13,14].

Lossless compression schemes include Huffman coding
schemes [15], and LZW algorithm [16,17] and their vari-
ants. These schemes are also used in the de facto standard
compression software such as zip and gzip. Such methods
convert frequent sequences of literals (symbols) to small
sequences of bits (0/1 values) and these mappings are
stored in a translation table. The associated decoding algo-
rithm uses these translation table values to regenerate the
original data from the compressed data with small compu-
tational costs.

Lossy schemes allow some data loss or inaccuracy in the
regenerated data. These schemes tend to be more domain-
specific as opposed to the general-purpose lossless schemes.
The accuracy in the regenerated data varies with schemes,
and the accuracy of some schemes can be tuned depending
on the application. We next describe some lossy schemes
that represent starting points in our work to develop com-
pression schemes tailored for developing a microstructure
repository.

2.3.1. Low-rank representations

A two-dimensional microstructure (or any image) can be
viewed as an m · n matrix M, for some m P n. Such a
matrix could have a rank as large as n thus representing
very high dimensional data. A singular value decomposi-
tion (SVD) can be used as a compression scheme by con-
structing the closest p, p < n, rank approximation to M as:

M ¼ URV T: ð4Þ
The m · n matrix R contains positive real entries in its diag-
onal, and matrices U (m · m) and V (n · n) are unitary. The
diagonal elements of R are called singular values and U and
V are called singular vectors. Selecting the largest p singular
values and corresponding singular vectors (say bR, bU and
bV ) enables a compact representation of M. Upon regener-
ation, the matrix bM is computed as the following matrix
product:

bM ¼ U RV T: ð5Þ
Such SVD schemes have been known to capture the main
features with relatively small decompositions [18].

2.3.2. JPEG

The standard image compression scheme is JPEG (Joint
Photographic Experts Group) [13,14]. It represents a com-
bination of lossy compression based on discrete cosine
transforms (DCT) [19] and lossless compression using
Huffman coding [15]. For a given image M with m · n pix-
els, the algorithm partitions the domain into multiple 8 · 8
blocks. Then, it applies DCT to obtain the coefficients for
64 frequency components for each block. These coefficients
are used when regenerating data through the backward
transformation. Compression is achieved using quantiza-

tion, which scales these coefficients to a small range of inte-
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ger values. Subsequently, the reduced data after quantiza-
tion can benefit from further compression through lossless
Huffman coding.

2.3.3. Binary image segmentation

The numerical data in microstructures represents the
distribution of matrix and precipitates as values associated
with mesh points. For the Ni–Al systems of our interest,
the data is expressed as the concentration of Aluminum
in each mesh point. In this case, the matrix (c phase) con-
tains approximately 13% of Al, and the precipitates (c 0

phase) contain approximately 20% of Al. These numbers,
called ‘average composition,’ can be used to determine
the phase at each mesh point. We can now apply this def-
inition to distinguish a microstructure into binary numbers
— a ‘0’ represents matrix and a ‘1’ represents precipitate.

This binary image segmentation scheme starts with
thresholding to detect precipitate in the microstructure,
where the threshold is determined by the method proposed
by Otsu [20]. After this step, the precipitates are viewed as a
connected components of the image [21], and a unique
identification number (ID) is assigned to each precipitate
[22]. In addition to the binary representation of the micro-
structure matrix, the method can store each precipitate’s
ID number and associated values (such as concentration
or order parameter). This method can be successful at data
reduction. However, it typically suffers from inaccuracies in
representing the data at the interfaces between matrix and
precipitates.

3. A framework for readily regenerable reduced
microstructure representations

We now develop a framework for storing highly reduced
representations of microstructures which can be easily
regenerated to full accuracy. We seek schemes that enable
compression by several orders of magnitude with negligible
computational costs (in terms of execution time) when
compared with the costs of the original phase field
simulations.

Our framework involves a series of steps as shown in
Fig. 2. We first store the input parameters for a phase-field
simulation such as the Gibbs free energy, temperature, dif-
fusivity of phases and elastic constants. Next we process
microstructures generated by the simulation as follows.
We apply lossy compression schemes that are tailored to
significantly compress microstructures. Compressed micro-
structures obtained from this step are then further reduced
using lossless ‘gzip’ like compression. Such a fully com-
pressed microstructure is retrieved and regenerated when
needed using the following series of steps. First, an inverse
of the lossless gzip compression is applied followed by an
inverse of the lossy compression scheme. In addition to
directly using this regenerated microstructure, we can apply
a refinement step to potentially further reduce errors. The
physics of microstructure and phase-field simulations in
Section 2.2 indicates that a simulation evolves to minimize
the bulk energy of the physical domain. Thus, we can use
the regenerated microstructure with the saved phase-field
simulation parameters to apply a few steps of the simula-
tion. Since this regenerated microstructure represents a
small perturbation of the original, we expect that such a
refinement will converge to recover the original structure
or its evolved form after a few time steps.

We now discuss new lossy compression schemes that are
specifically developed for processing microstructures.
3.1. New lossy compression schemes for microstructure

compression

In this section, we develop two new lossy microstructure
reduction schemes. The first is a multilevel scheme based on
image resizing through interpolation that can be imple-
mented in conjunction with existing lossy compression
scheme. The second is our sparse skeletal representation

(SSR) scheme which exploits the characteristics of micro-
structure data to achieve significant compression with high
accuracy.
3.1.1. Multilevel scheme
Our multilevel scheme is in part motivated by multilevel

methods used for the solution of sparse linear systems aris-
ing from the numeric solution of partial differential equa-
tions [23,24]. In our scheme, image resizing [25] applied
recursively to reduce the dimensions of the microstructure
by a factor of two at each level. Thus at each level, for a
halving of the dimension, the data size is reduced by a fac-
tor of four. This process can be applied more than a once
and the final reduced structure can then be compressed
using standard compression techniques. We call our
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scheme ML-JPEG when JPEG is used for compression of
the reduced structure.

To regenerate the microstructure, an inverse interpola-
tion is applied at each level to double the dimension and
quadruple the data until the original dimensions are recov-
ered. The overall multilevel (ML) process is illustrated in
Fig. 3. The data reduction step (labeled as restriction) com-
putes the average of four neighbors being eliminated, and
this average value is assigned to the mesh points being
retained. The recovery step (labeled as prolongation)
applies bi-cubic interpolation of the neighbors. During
the prolongation steps, we could potentially apply some
correction schemes (such as running phase-field simula-
tions or image deblurring filtering [25]) to avoid propagat-
ing the error in the lower level to higher levels.

3.1.2. Sparse skeletal representation

In this approach, we view the microstructure as a sparse

object, i.e., one in which the important features are concen-
trated at only at c · N of the total N2 points in an N · N
image, where c is a small constant. Our sparse skeletal rep-

resentation (SSR) scheme explicitly retains and operates
Microstructure processed with the Skeletal Representation
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Fig. 4. The sparse skeletal representation of an order parameter of the 2D Ni–A
(right).
only on data associated with interfaces of different phases.
SSR uses thresholding to extract the interface region in a
given microstructure. Then, coordinate indices and values
(in 8-bit integers) of the interface are explicitly stored using
three integer arrays; this is similar to the data structure for
a sparse matrix N · N matrix. Fig. 4 shows the microstruc-
ture after the thresholding where the interfaces are clearly
demarcated. The regeneration fills out the holes in the pre-
cipitate region with average values for precipitates (see
Fig. 4) using an algorithm to detect holes in a segmented
image [26]. The region for the matrix in the microstructure
is filled with average values obtained from the original
microstructure. This scheme is more suitable for micro-
structures where precipitates occupy a smaller fraction of
domains.
4. Empirical results

We now evaluate the effectiveness of our readily regener-
able reduced microstructure schemes with respect to
(i) compression rates, and (ii) the accuracy of the regener-
ated microstructure. Our new schemes are applied to
microstructures of Ni–Al and Al–Cu binary systems [27–
29] and compared with well-known compression schemes
reviewed in Section 2.3.

We describe our experiments and methodology in Sec-
tion 4.1. In Section 4.2, we investigate how our sparse skel-
etal representation (SSR) differs from the standard JPEG
scheme with respect to the accuracy of values associated
with interface. Sections 4.3, 4.4 and 4.5 focus on a perfor-
mance analysis of our schemes using metrics such as com-
putational costs, compression factors, and quality of the
regenerated data.
4.1. Methodology and experiments

All methods are tested by applying the compression and
regeneration schemes to each component of the microstruc-
Regenerated order parameter: Ni—Al Microstrcture
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tures of Ni–Al and Al–Cu binary systems represented using
512 · 512 regular mesh. For each system, we obtain micro-
structures at every 10,000 time steps from the 100,000 time
step phase-field simulation for each system. Unless indi-
cated otherwise, results in figures and tables indicate the
average value for these 10 microstructures for each system.

The Ni–Al binary system contains c and c 0 phases
evolved for approximately 40 s of real time through its
phase-field simulation [29]. The initial microstructure for
the simulation contains many small particles of precipitates
in random distribution. The microstructure is represented
by the composition field and four order parameter fields.
The total total size of single microstructure data is approx-
imately 10 MB (as binary-format file). The simulation
involves time stepped ordinary differential equations, using
the spectral method with a two-dimensional FFT [30]. For
the simulation, we set 1173 K for the temperature,
2.0 · 10�9 m for the mesh size and 2.0 · 10�4 s for a single
time step. The concentration of Al is set to 19.25% so that
precipitates occupy approximately 50% of the physical
domain. The input parameters for thermodynamic proper-
ties are determined from [31] and kinetic properties are
obtained from modeling by [32,33]. Note that the prepara-
tion of microstructure with 100,000 time steps takes
approximately 8 h.

The Al–Cu binary system has a and h 0 phases evolved
for approximately 881 s of the real time through the simu-
lation [28]. The mesh size is 10�9 m and the microstructure
is represented by the composition field and two order
parameters for a total data size of approximately 6 MB.
The temperature is set to 500 K and the concentration of
Cu is set to 8.82% with 12 precipitate particles randomly
deployed in the domain. Once again, kinetic and thermody-
namic properties are obtained from appropriate models
[28]. Such a phase-field simulation with 100,000 time steps
takes approximately 32 h.

The parameters used for the compression schemes are as
follows. For the JPEG scheme, we use its default values for
the quantization parameters for standard image compres-
sion. For SVD, we use a rank-50 approximation, i.e., the
largest 50 singular values and corresponding vectors; this
dimension was selected in order to obtain accuracies com-
parable to other methods. For our ML-JPEG scheme, we
use one level of restriction and prolongation to retain com-
parable accuracy in the regenerated data; more levels can
be sought to meet the application needs. For our SSR
scheme, we compute the thresholding value based on the
largest and smallest values in a given microstructure (vmax

and vmin). We then treat the values less than 0.05(vmax �
vmin) + vmin as the matrix. Values greater than 0.95(vmax �
vmin) + vmin are treated as precipitate. All the methods are
followed by gzip for further lossless compression. Our tests
were performed on a 2.66 GHz Intel Pentium 4 Linux
workstation with 1 GB memory.

We evaluate schemes using measures of the computa-
tional cost, the data compression rates and the accuracy
of the regenerated data. The computational cost is defined
by the execution time for the data compression and data
regeneration. The accuracy is measured using the (i) matrix
norm of the error for every parameter of the microstruc-
ture, and (ii) the maximum absolute error in the stress-field
values. Let the original microstructure data and regener-
ated data M and bM respectively; both M and bM are
512 · 512 matrices. Now the matrix norm error is com-
puted through the matrix infinity norm as:

Error ¼ k
bM �Mk1
kMk1

: ð6Þ

For the values on the stress-field, the maximum error is
computed as follows:

MaxError ¼ max
i;j
j bM ij �Mijj: ð7Þ

To measure the degree of compression, we use the com-
pression factor F defined as the ratio of data sizes of the
original and compressed microstructures,

F ¼ sizeðMÞ
sizeð bM Þ

: ð8Þ
4.2. Performance of sparse skeletal representation

We use an example to evaluate how our SSR method
performs relative to the traditional JPEG scheme.

We first observe that JPEG can preserve the morphol-
ogy of precipitates very accurately as shown in Fig. 5.
However, as shown in Fig. 6, the stress-field computed
from the order parameters exhibits a large difference for
the regenerated data when compared to the original. Fur-
thermore, as shown in Fig. 7, the differences (errors) in
the stress-field are magnified at the interface regions
between matrix and precipitate because JPEG fails to
retain the accuracy of order parameters. Our SSR method
seeks to address that problems by retaining exact values at
the interface. As indicated in Fig. 8, this results in a more
accurate stress-field representation.

4.3. Computational costs

We now investigate the efficiency of the data reduction
schemes using execution time as a measure of computa-
tional costs. Table 1 demonstrates that all the schemes
are computationally inexpensive at under a few hundred
seconds. This is quite negligible in relation to the time
required for the original phase-field simulation in the order
of 8–32 h. The compression using SVD is time consuming
because of the complexity of the SVD algorithm O(N3)
for an N · N microstructure. The other schemes have lower
complexities: O(N2 log N) for JPEG and O(N2) for segmen-
tation. The skeletal representation requires relatively large
amount of time to compress the data for the Ni–Al system
because of the large number of particles in the system.
However, these costs are still very small compared to the
time for the original phase-field simulation and they grow
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Fig. 5. Microstructures for the 2D Ni–Al system: concentration in original (left) and concentration using regenerated data after JPEG compression (right).

—7000

—6000

—5000

—4000

—3000

—2000

—1000

Stress Field (σ11) of Ni—Al Microstructure: regenerated 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

250

300

350

400

Error in stress field (σ11) of Ni—Al Microstructure 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500
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Table 1
Execution time in seconds for reduced representation and regeneration

Method System

Ni–Al Al–Cu

Compress Regenerate Total Compress Regenerate Total

SVD 58.2 0.05 58.3 57.4 0.05 57.5
JPEG 0.4 0.3 0.7 0.3 0.2 0.5
Segment 0.7 0.3 1.0 0.2 0.1 0.3
ML-JPEG 1.2 0.7 1.9 0.5 0.4 0.9
SSR 115.2 3.7 121.9 0.5 1.7 2.3

Execution time of a 100,000 step phase field simulation for Ni–Al is 8 h; for Al–Cu it is 32 h.
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linearly with the microstructure size. Regeneration is
almost equally efficient across schemes.

4.4. Compression factors

We next compute the average compression factor of 10
different microstructures for each system (obtained after
every 10,000 time steps in an evolution of 100,000 time
steps). An important metric is the factor by which the data
size is compressed. We represent this by the compression
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F
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The average compression factor is shown in Fig. 9 for

the Ni–Al and Al–Cu systems. For both systems, SVD is
less effective than the other schemes. Segmentation appears
to be the best. However, as we show in the next section, the
regenerated data is highly inaccurate with respect to the
order parameters and composition. Observe that in ML-
JPEG scheme, the ML stage (1 level) provides a compres-
sion factor of 4. The overall compression factor of ML-
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JPEG is the product of 4 (the compression factor of ML
level 1) and the compression factor from applying JPEG
on the ML output. The latter is typically lower than for
JPEG on the original data; JPEG’s compression factors
are known to vary depending on data [13,14]. This is
reflected in Fig. 9, where compression factors for Ni–Al
and Al–Cu using ML-JPEG are better than JPEG, but only
by a factor of 2. SSR shows fairly good compression fac-
tors for the Ni–Al system, at approximately 100. SSR com-
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Fig. 10. Relative norm error for composition (top) and order parameters (bott
Al–Cu microstructure (right). The errors are shown before refinement ( bM t wit
simulation ( bM tþ50 with respect to Mt+50).

Table 2
Relative norm error in composition with different time steps of refinement (x)

Method x = 0 x = 10

Mt Mt+x

Ni–Al system

SVD 0.0279 0.0104 0.0104
JPEG 0.0128 0.0054 0.0054
ML-JPEG 0.0190 0.0103 0.0103
SSR 0.0035 0.0020 0.0020

Al–Cu system

SVD 0.0326 0.0298 0.0298
JPEG 0.0143 0.0129 0.0129
ML-JPEG 0.0624 0.0608 0.0608
SSR 0.0067 0.0062 0.0062

The column labeled Mt denotes the error in bM tþx with respect to Mt+x. The col
method, the smaller value of the error is indicated in bold.
pression factors are higher at approximately 400 for
simpler systems such as Al–Cu.
4.5. Quality of regeneration

The quality of the regenerated microstructure data can
be measured by differences in composition, order parame-
ters and analyzed stress from those in the original ones.
We first study the errors for all the schemes and the error
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om) of the regenerated microstructures for Ni–Al microstructure (left) and
h respect to Mt), and after refinement with 50 time steps of the phase field

for Ni–Al and Al–Cu systems for t = 50,000

x = 30 x = 50

Mt Mt+x Mt Mt+x

0.0066 0.0066 0.0056 0.0056
0.0048 0.0047 0.0047 0.0045

0.0100 0.0100 0.0101 0.0101
0.0015 0.0015 0.0014 0.0013

0.0273 0.0281 0.0256 0.0259
0.0117 0.0111 0.0101 0.0099

0.0581 0.0581 0.5578 0.0555

0.0061 0.0059 0.0065 0.0056

umn labeled Mt+x denotes the error in bM tþx with respect to Mt+x. For each
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against the original microstructure after refinement using
50 time steps of the phase-field simulations. The compari-
son is made using the original microstructure at tth time
step, Mt for t in the range 10,000 to 100,000, the regener-
ated microstructure bM t and a refined regenerated micro-
structure bM tþ50. Fig. 10 indicates that segmentation is
highly inaccurate for both systems and in particular, and
fails to regenerate for the Al–Cu system which has very
thin particles. The SVD scheme achieves good accuracy
for Al–Cu because it successfully captures the smaller set
of features in this system. However, SVD fails to maintain
Table 3
Relative norm error in order parameters with different time steps of refinemen

Method x = 0 x = 10

Mt Mt+x

Ni–Al system

SVD 0.0726 0.0609 0.0600

JPEG 0.0174 0.0159 0.0149

ML-JPEG 0.0243 0.0274 0.0264

SSR 0.0177 0.0150 0.0141

Al–Cu system

SVD 0.0066 0.0092 0.0059

JPEG 0.0240 0.0201 0.0189

ML-JPEG 0.0799 0.0780 0.0756

SSR 0.0245 0.0237 0.0230

The column labeled Mt denotes the error in bM tþx with respect to Mt+x. The colu
method, the smaller value of the error is indicated in bold.

SVD JPEG ML—JPEG SSR
0

0.05

0.1

0.15

0.2

0.25

Maximum Error in Stress Field Values: NiAl system

Ab
so

lu
te

 E
rro

r

SVD JPEG ML—JPEG SSR
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Average Error in Stress Field Values: NiAl system

Ab
so

lu
te

 E
rro

r

Fig. 11. Maximum (top) and average (bottom) error for internal stress of the r
microstructure (right).
a good accuracy for the Ni–Al systems. This inaccuracy
can potentially be reduced by increasing the rank and thus
retaining more singular vectors. However, this will come at
the expense of smaller compression factors, which are
already very small as shown in Fig. 9. For both Ni–Al
and Al–Cu systems, SSR achieves very accurate data regen-
eration compared to other schemes.

Fig. 10 indicates the impact of the refinement after evo-
lution using 50 time steps of the phase-field simulations.
The first bar in each graph shows the error between bM t

and Mt while the second bar of each graph shows the error
t (x) for Ni–Al and Al–Cu systems for t = 50,000

x = 30 x = 50

Mt Mt+x Mt Mt+x

0.0485 0.0453 0.0423 0.0368

0.0169 0.0136 0.0196 0.0142

0.0312 0.0277 0.0351 0.0290

0.0140 0.0107 0.0146 0.0087

0.0189 0.0072 0.0273 0.0068

0.0229 0.0132 0.0286 0.0100

0.0766 0.0689 0.0782 0.0636

0.0275 0.0206 0.0324 0.0195

mn labeled Mt+x denotes the error in bM tþx with respect to Mt+x. For each
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between bM tþ50 and Mt. Observe that refinement reduces the
error in the composition for all methods for the Ni–Al sys-
tem. However, the errors in the composition for Al–Cu and
the order parameters for both systems do not necessarily
improve after refinement. This can potentially be attributed
to the fact that the error is computed as the difference
between the original microstructure, Mt, and the regener-
ated microstructure which has further evolved after 50 time
steps, i.e., bM tþ50. Thus, the error shown in Fig. 10 includes
the effect of further evolution of the regenerated micro-
structure. This raises interesting issues on how the error
should be defined and evaluated. Although thus far we
have considered the error in bM tþ50 with respect to Mt, it
may be quite appropriate to instead consider the error
between bM tþ50 and Mt+50, i.e., the original microstructure
after 50 time steps of evolution.

We now evaluate the error (after compression, regenera-
tion and refinement), that can be attributed to the difference
between Mt and bM tþx due to the evolution of Mt by x time
steps to Mt+x. For this evaluation, we choose t = 50,000
and x = 0,10,30 and 50. Tables 2 and 3 indicate the error
in composition and order parameters with respect to x in
both forms, i.e., bM tþx with respect to Mt and bM tþx with
respect to Mt+x. Table 2 indicates that the error in compo-
sition does not change in both forms. However, the error in
order parameters shown in Table 3 is substantially smaller
when the error is evaluated with respect to Mt+x. This indi-
cates that comparing bM tþx with Mt does not account for the
further evaluation through x time steps of refinement. Thus,
our overall scheme is indeed effective. Furthermore, it may
be more appropriate to consider the error with respect to
Mt+x because of the impact of further evolution.

We now consider the impact of regeneration on the
computed internal stress and we report errors in Fig. 11.
The errors correspond to the best instance of results (with
or without refinement) shown in Fig. 10. Note that we do
not report the performance of segmentation because the
inaccuracy of order parameters makes stress analysis
impractical. For all the schemes, the maximum error is
observed at the interface between two different phases
and the average error is approximately two orders of mag-
nitude smaller than the maximum error. The SVD scheme
has low maximum error for Al–Cu, but the corresponding
value is much higher for the more complex Ni–Al system.
More significantly, average errors for SVD are substan-
tially higher than for SSR. The bar graphs in Fig. 11 clearly
indicate that our SSR scheme has the least average and
worst case errors for both Ni–Al and Al–Cu systems. This
is because it successfully preserves values associated with
the interface of different phases while achieving high orders
of compression.

5. Conclusions

In this paper, we have developed a framework for effi-
cient construction of reduced representations of two-
dimensional microstructures, to decrease storage require-
ments for building repositories for computational materials
design. Our framework allows for fast regeneration to near
original accuracy and the use of a few time steps of phase-
field simulation for further refinement to potentially reduce
errors. Our new ‘sparse skeletal representation’ (SSR)
scheme is particularly effective at achieving high factor of
compressions and higher accuracy of computed order
parameters and stress fields. This is primarily because
SSR can compress data while allowing its accurate regener-
ation, particularly at interface regions where other schemes
like JPEG suffer from relatively large errors.

Future extensions of our work concern the development
of compression and regeneration for three-dimensional
microstructure data. We also plan to extend our study
for improving effectiveness of the data refinement through
phase-field simulations. As one reviewer indicated, there is
also a need to quantify and model the tradeoffs between the
compression factor, accuracy of reduced representations,
and computational costs for compression and regeneration.
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