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In this paper, the dynamics of phase coarsening at ultrahigh volume fractions �0.9�VV�0.96� is
first studied based on two-dimensional phase-field simulations by numerically solving the
time-dependent Ginzburg–Landau and Cahn–Hilliard equations. It is shown that the cubic average
radius of particles is approximately proportional to time that is in good agreement with one of
experimental observations. The microstructural evolutions for different ultrahigh volume fractions
are shown. The scaled particle size distribution as functions of the dispersoid volume fraction is
presented. The interesting finding is that the particle size distribution derived from our simulations
at ultrahigh volume fractions is close to Wagner’s particle size distribution due to
interface-controlled ripening rather than Hillert’s grain size distribution in grain growth. The
changes of shapes of particles are carefully studied with increase in volume fraction. It is found that
some liquid-filled triple junctions are formed as a result of particle shape accommodation at
ultrahigh volume fraction, VV�0.96. © 2010 American Institute of Physics.
�doi:10.1063/1.3340517�

I. INTRODUCTION

Phase coarsening is a common relaxation process during
late-stage microstructural evolution that leads to a decrease
in the excess total interfacial energy of two-phase systems.
During phase coarsening, larger particles tend to grow by
absorbing solute atoms at the expense of small particles that
tend to dissolve by losing them. Over time, this “competitive
diffusion” results in an increase in the average size of the
particle population, and in a concomitant decrease in the
number density of particles. The study of phase-coarsening
kinetics during microstructural evolution is critical to a vari-
ety of industrial applications involving two-phase systems in
which the dispersed phase controls the properties of the ma-
terial. Liquid-phase sintering, casting, and spray deposition
are just a few examples of processes in which the coarsening
process has important technological implications. There have
been numerous experimental, theoretical, and computational
attempts over the last decades to understand the kinetics of
phase coarsening. The first successful theory for diffusion-
controlled phase coarsening was proposed in 1961 by Lif-
shitz and Slyozov1 and Wagner.2 The predictions of this
model—now referred to as the LSW theory—are strictly
valid only in the case of vanishing volume fractions �VV

→0�, entailing a growth law of the form

�R�t��n − �R�t0��n = Kn�t − t0� , �1�

where �R�t��, �R�t0��, and Kn denote, respectively, the aver-
age particle radius at time t, the average radius at initial time
t0, and a proportionality constant. n is called scaling expo-
nent, and 1 /n is called time exponent. For diffusion-
controlled coarsening, the scaling and time exponents take

on the values of 3 and 1/3, respectively; on the other hand,
for normal grain growth, n=2.3,4

Although progress has been made in the thermodynam-
ics and kinetics of phase coarsening over the past two de-
cades, there remains a significant challenge to fundamentally
understand the coarsening kinetics at ultrahigh volume frac-
tions �ca. VV�0.9�. Recently, Wang et al.5,6 reviewed the
status of theoretical, computational, and experimental studies
of phase coarsening, following two earlier reviews.7,8 In or-
der to take into account the effects of nonzero volume frac-
tion, a number of mean-field theories of coarsening have
been developed over the past 40 years.9–15 However, all of
them are strictly valid only at low volume fractions ��0.1�.16

However, Wang et al.21,22 developed diffusion screening
theory, which is valid for the range of 0�VV�0.33. Marsh
and Glicksman17 introduced the concept of a statistical “field
cell” acting around each size class of the particles undergo-
ing phase coarsening, and obtained normalized coarsening
rates that are in good agreement with data derived from vari-
ous liquid-phase sintering experiments, particularly in the
range 0.3�VV�0.6. Therefore, there is no existing theory
for coarsening in the ultrahigh volume fraction regime.

The earliest attempt to employ computer simulations for
particle coarsening was published in 1973 by Weins and
Cahn.18 They employed several particles in various spatial
configurations to demonstrate the basic coarsening interac-
tions during sintering. Their study was followed by the pub-
lication of multiparticle simulations by Voorhees and
Glicksman,19 who systematically studied microstructural
evolution using several hundred randomly distributed par-
ticles. Later, Beenaker20 improved multiparticle simulation
procedures and was able to increase the total number of par-
ticles to several thousands. More recently, a further develop-
ment by Wang et al. resulted in additional improvement ina�Electronic mail: kwang@fit.edu.
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the accuracy of simulating three-dimensional �3D� phase
coarsening by multiparticle diffusion method.21–28 The mul-
tiparticle diffusion simulations were carried out in the range
of 10−10�VV�0.55. More recently, the phase-field method
has been employed to model the microstructural coarsening
process. Chen et al. performed two-dimensional �2D� phase-
field simulations for volume fractions up to VV=0.9.29 How-
ever, phase coarsening in the ultrahigh volume fraction re-
gime �0.9�VV�1� remains to be explored.

There are several advanced experimental methods devel-
oped to study and quantify the phenomenon of late-stage
phase coarsening. Baldan30 reviewed the status of experi-
mental studies to quantify phase coarsening in nickel-base
superalloys, especially those based on the binary system Ni–
Al. Most experimental studies fall in the volume fraction
range 0�VV�0.5 and have been based on 2D microstruc-
tures. Hardy and Voorhees31 experimentally examined phase
coarsening in the volume fraction range from 0.6 to 0.9 in
Pb–Sn alloys and observed cube-root kinetics. Sok and
Yoon32 experimentally studied the kinetics in Fe–Cu and
Co–Cu alloys for the volume fraction range from 0.34 to
0.95 and observed cube-root time kinetics. However, Kaila-
sam et al. experimentally investigated the kinetics in Sn–Pb
alloys for the volume fraction range from 0.5 to 0.95.33 They
found that when the volume fraction becomes ultrahigh
�VV=0.90�, instead of cube-root of time kinetics, the fourth
root of time kinetics was observed. They also found that, as
the volume fraction drops from VV=0.90, the temporal expo-
nent lies between 1/4 and 1/3, depending on the volume frac-
tion. These findings are contrary to all other experimental
results reported for this range of volume fractions. There is
no other confirmation for these findings. On the other hand,
it is well known that when VV=1 the phase coarsening cor-
responds to grain growth, and the kinetics are square root.
However, no definitive conclusions could be reached regard-
ing how 1 /n changes with VV—i.e., does the time exponent
manifest a crossover from 1/3 to 1/2 somewhere at ultrahigh
volume fractions of the coarsening phase?

The main objective of this paper is to study the crossover
behaviors for some physical quantities such as the time or
scaling exponents and particle size distribution �PSD� in the
range of ultrahigh volume fractions �0.9�VV�0.96� where
analytical theories are the most difficult to be developed us-
ing 2D phase-field simulations. Using the phase-field simu-
lations we will obtain the detailed temporal microstructural
evolution for the phase coarsening. We will systematically
study the effects of volume fraction on the average size of
particle, the scaling exponent n, and PSD in the unexplored
regime of ultrahigh volume fractions. The organization of
this paper is as follows. In Sec. II, we briefly describe phase-
field model for phase coarsening. In Sec. III, we provide
details of phase field simulation. In Sec. IV, we present the
results from our phase-field simulation and discussion. Fi-
nally, in Sec. V, we conclude with a summary.

II. PHASE-FIELD MODEL FOR PHASE COARSENING

One of the main advantages of the phase-field approach
is its ability to handle complex microstructures in the ultra-

high volume fraction regime. It has been applied to different
material processes, including solidifications34 and Boettinger
et al.,35 solid state phase transformations,36 and grain
growth.37–40 The simulating microstructure consists of par-
ticles of one phase dispersed in the continuous matrix of
another phase. In this microstructure, the solubilities or equi-
librium compositions are c� and c� for the matrix phase and
second phase, respectively. A two-phase microstructure in a
binary system is described by a composition field variable
c�r��, which represents the spatial compositional distribution
in space, and orientation field variables that represent grains/
particles of a given crystallographic orientation in space,
�i�r�� , �i=1,2 , . . . , p�. In the following, particle and grain can
be interchangeable. These variables change continuously in
space and assume values ranging from �1.0 to 1.0. All ori-
entation field variables are zero in the matrix phase, simulat-
ing a liquid or disordered phase. c�r�� takes the value of c�

within the matrix phase and c� within a second phase grain.
c�r�� has intermediate values between c� and c� at the inter-
facial region between the matrix phase and a second-phase
grain. The total energy of the inhomogeneous system is writ-
ten as

F�c,�i� = �
�
	 f0�c,�i� +

1

2
	c��c�2 + 


i=1

p
1

2
	i���i�2�dv ,

�2�

where � represents the domain of the binary system. �c and
��i are gradients of composition and orientation fields, 	c

and 	i are the gradient energy coefficients, and f0 is the local
free energy density, which is assumed to be29

f0 = f1�c� + 

i=1

p

f2�c,�i� + 

i=1

p



j�i

p

f3��i,� j� , �3�

where

f1�c� = −
A

2
�c − cm�2 +

B

4
�c − cm�4 +

E�

4
�c − c��4 +

E�

4
�c

− c��4,

f2�c,�i� = −



2
�c − c��2�i

2 +
�

4
�i

4,

f3��i,� j� =
�ij

2
�i

2� j
2, �4�

where cm= �c�+c�� /2, and A, B, E�, E�, 
, �, and �ij are
phenomenological parameters. These parameters are
chosen in such a way that f0 has 2p degenerate minima
with equal depth located at ��1 ,�2 , . . . ,�p�
= �1,0 , . . . ,0� , �0,1 , . . . ,0� , . . . , �0,0 , . . . ,1� at the equilib-
rium concentration c�. This requirement ensures that each
point in space belongs to a grain with a given orientation of
a given phase.

This formulation guarantees that, when two particles
with different orientations are in contact with each other, a
grain boundary forms. Two particles will coalesce when they
have the same orientation. In our study, we focus on the
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coarsening stage. The driving force for particle coarsening is
minimization of total surface energy �grain boundary energy
and interfacial energy�. Therefore, as long as the correct
grain boundary and interfacial energies are obtained, the ex-
act form of the free energy density f0 is not an issue. Free
energy density f0 determines the driving force for the phase
transformation, i.e., for the nucleation and growth stages.

The temporal evolution of the field variables is obtained
by solving the Cahn– Hilliard and time-dependent Ginzburg–
Landau equations,41,42

�c�r�,t�
�t

= ��D � 	 �F

�c�r�,t��
 , �5�

and

��i�r�,t�
�t

= − Li
�F

��i�r�,t�
; i = 1, . . . p , �6�

where Li and D are kinetic coefficients related to grain
boundary mobilities and the atomic diffusion coefficient. The
difference between the kinetic equations for the orientation
field variables �i�r�� and the composition field c�r�� comes
from the fact that c�r�� is conserved field, due to the require-
ment of mass conservation, and the orientation fields are
nonconserved variables.

The energy of a planar grain boundary, 
gb, between a
grain of orientation i and another grain of orientation j for
two second-phase grains can be written as


gb = �
−�

+� 	�f��i,� j,c� +
	c

2
�dc

dx
�2

+
	i

2
�d�i

dx
�2

+
	 j

2
�d� j

dx
�2�dx , �7�

in which

�f��i,� j,c� = f0��i,� j,c� − f0��i,e,� j,e,c�� − �c − c��

�� � f0

�c
�

�i,e,�j,e,c�

, �8�

where f0��i,e ,� j,e ,c�� represents the free energy density
minimized with respect to �i and � j at the equilibrium com-
position of the second phase c�. Similarly, the interphase
boundary energy between the matrix phase and a second
phase grain with orientation i, 
in, can be defined through
elimination of � j in Eqs. �7� and �8�.

III. SIMULATION DETAILS

The phenomenological parameters cm= �c�+c�� /2, and
A, B, E�, E�, 
, �, and �ij are chosen in such a way that
f0 has 2p degenerate minima with equal depth located
at ��1 ,�2 , . . . ,�p�= �1,0 , . . . ,0� , �0,1 , . . . ,0� , . . . , �0,0 , . . . ,
1� at the equilibrium concentration c�. In fact, the condition
of minima of free energy can first determine the relationship
between 
 and �. The condition of minima of free energy is
given by

� � f0

��i
�

�i=1,�j�i=0,c=c�

= 0. �9�

Substituting the free energy in Eq. �2� into Eq. �9� and doing
some mathematical calculation, we have


 =
�

�c� − c��2 . �10�

This relationship between 
 and � is general and is applied in
our simulations.

To numerically solve the Cahn–Hilliard and time-
dependent Ginzburg–Landau equations, the following dis-
cretization of the Laplacian with respect to space is em-
ployed:

�2gi =
1

��x�2	 1

2

j=1

Nf

�gj − gi� +
1

4 

j�=1

Ns

�gj� − gi�� , �11�

where g is any function, �x denotes the grid size, and j and
j� run over from 1 to the number of the first nearest neigh-
bors of i, Nf, and the number of the second nearest neighbors
of i, Ns, in the grid, respectively. For the time evolution of
fields, we use the following Euler forward scheme:

��t + �t� = ��t� +
d�

dt
�t , �12�

where � and �t are any function and the time step for inte-
gration in time, respectively. To avoid boundary effects in the
simulations periodic boundary conditions are applied in all
simulations.

In this paper, we will employ phase field model to simu-
late 2D phase coarsening for the ultrahigh volume fraction
regime. We will perform systematic simulations at different
volume fractions within the volume fraction regime 0.9
�VV�0.96 to extract the coarsening kinetics as well as the
temporal evolution of statistical information about the micro-
structures. The kinetic coefficients D and Li in Eqs. �5� and
�6� are assumed to be 1 in the simulations. Therefore, it is
assumed that both diffusivities and mobilities in both phases
are the same. The phenomenological parameters are chosen
as c�=0.05, c�=0.95, cm= �c�+c�� /2=0.5, A=1, B=A / �c�

−c��2=4.94, �=1.0, 
=� / �c�−c��2=1.23, E�=E�=1.23,
and �ij =3.0. The gradient coefficients ki, kj, and kc are as-
sumed to be 3.0. These chosen parameters deliver an ener-
getic ratio 
gb /
in=2.927, which satisfies the total wetting
condition.

The number of orientation field variables is 30. The size
of simulation box is 512�512, and the space step for inte-
gration, �x=2.0, and the time step, �t=0.22. The initial con-
figuration is generalized by the following way: �1� assigning
all the orientation field variables, �i=0, on all the grid points
with small random values ��0.001�; �2� assigning an average
concentration, cav, on all the grid points, which is determined
by desired equilibrium volume fraction from the formula
cav=c�VV+ �1−VV�c�, with a small random values ��0.01�.

061801-3 Wang et al. J. Appl. Phys. 107, 061801 �2010�

Downloaded 24 Dec 2011 to 128.118.88.243. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



IV. SIMULATION RESULTS AND DISCUSSION

In order to understand how the local free energy density,
Eq. �4�, changes with the composition, we plot the first two
terms of local free energy density f0, i.e., f1�c�+ f2�c�, in Eq.
�4� versus composition in Fig. 1. During the process of plot-
ting Fig. 1 we considered that total contribution of �i in both
phases to f1�c�+ f2�c� should be 1. Figure 1 shows that the
relative minima of the local free energy density without ori-
entation field are located around c=0.95 and c=0.05.

Figure 2 shows three snapshots of the microstructural
evolution for VV�0.90 at the time steps t=25 000, t
=35 000, and t=45 000, respectively. The snapshots in Fig. 2
shows that most of small particles surrounding large particles
in the snapshot at the time steps t=25 000 are disappeared in
the snapshot at longer time steps t=45 000. The shapes of
particles at ultrahigh volume fraction are different from
circle shapes at the case of lower volume fraction. Most par-
ticles have curved edges and rounded corners, and few par-
ticles have flattened edges. Figure 3 shows three snapshots of
the microstructural evolution for VV�0.93 at the time steps
t=25 000, t=35 000, and t=45 000, respectively. From the
snapshot at longer time steps t=45 000 in Fig. 3, it is ob-
served that most of large particles have sharply flattened
edges, but have rounded corners. Most of small particles
have curved or rounded sides. Figure 4 shows three snap-
shots of the microstructural evolution for VV�0.96 at the
time steps t=25 000, t=35 000, and t=45 000, respectively.
It is shown in the snapshot at longer time steps t=45 000 in
Fig. 4 that most of particles have sharply flattened edges, and
except a few small particles have curved sides. Many liquid-
filled triple junctions are formed as a result of grain shape
accommodation at ultrahigh volume fraction, VV�0.96. This
similar phenomenon was also observed in experimental
work.33

The variations of volume fraction versus simulation time
for VV�0.90, VV�0.93, and VV�0.96, respectively, are
shown in Fig. 5. It is observed that at early stage, i.e., during
the simulation time steps smaller 10 000, the volume frac-

tions increase rapidly. After that time, the volume fractions
increase gradually with time �time steps smaller than
40 000�, and then gradually approach to corresponding equi-
librium values of volume fractions.

Figure 6 shows the kinetics of phase coarsening, i.e.,
�R�3 versus time for VV�0.90, VV�0.93, and VV�0.96. For
VV�0.90, the change of �R�3 with time is linear. For VV

�0.93 and VV�0.96, the change of �R�3 with time can still

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

FIG. 1. The first two terms of local free energy density f0, i.e., f1�c�
+ f2�c�, in Eq. �4� vs composition, with considering that total contribution of
�i in both phases to f1�c�+ f2�c� is 1.

FIG. 2. Microstructural evolution for VV�0.90 and 	c=2.0 at the time steps
t=25 000, t=35 000, and t=45 000, respectively. The white represents par-
ticles of second phase and the black represents liquid phase.

061801-4 Wang et al. J. Appl. Phys. 107, 061801 �2010�

Downloaded 24 Dec 2011 to 128.118.88.243. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



fit by approximately linear relation. The relationship that
�R�3 is proportional to time at volume fractions up to VV

=0.95 was found by Sok and Yoon’s experimental work for
the system of Co–Cu alloys.32 However, the experimental
work of Kailasam et al.33 showed that �R�4 is proportional to
time at volume fraction up to VV=0.95 for the system of
Sn–Pb alloys.

Figure 7 shows that the PSD’s derived from our simula-

tions for VV�0.90, VV�0.93, and VV�0.96, and Wagner’s
PSD, Eq. �13�. In order to obtain smooth PSD’s, three sepa-
rate simulations with three different seeds of random genera-
tors run for each volume fraction. The PSD’s in Fig. 7 are
averaged over three separate simulation data. The peak of the
PSD is lowered down and the width of the PSD increases
when volume fraction is increased. This is typical character-
istics of phase coarsening. The interesting finding is that the

FIG. 3. Microstructural evolution for VV�0.93 at the time steps t=25 000,
t=35 000, and t=45 000, respectively. The white represents particles of sec-
ond phase and the black represents liquid phase.

FIG. 4. Microstructural evolution for VV�0.96 at the time steps t=25 000,
t=35 000, and t=45 000, respectively. The white represents the particles of
second phase and the black represents liquid phase.
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PSD’s derived from our simulations at ultrahigh volume
fractions is closer to Wagner’s PSD. Wagner’s PSD �Ref. 2�
is for interface-controlled ripening, where some interfacial
reaction, rather than volume diffusion through the matrix,
becomes rate limiting. Wagner’s PSD is written as

G��� = �	 24�

�2 − ��5�exp	 − 3�

�2 − ��� , �� � 2�

0 �� � 2�
� . �13�

In this paper, we numerically solve both Cahn–Hilliard Eq.
�5� and time-dependent Ginzburg–Landau Eq. �6� with con-
sideration of Li=D=1. However, if D is assumed to be very
large relative to Li, i.e., Li�0, it corresponds to the case of
diffusion-controlled phase coarsening. The Eq. �6� is elimi-
nated and only Eq. �5� needs to be numerically solved. Rog-
ers and Desai43 numerically solved Cahn–Hilliard Eq. �5�
and simulated phase coarsening at the cases of lower volume
fractions in 1989. This case can be recovered by using the
approximation in energetics that 	c�	i and 	i�0 in Eq. �2�.
On the other hand, if Li is assumed to be very large relative

to D, i.e., D�0. The Eq. �5� is eliminated and only Eq. �6�
needs to be numerically solved. This case corresponds to
grain growth. Chen and Yang38 used this method to simulate
2D grain growth. Krill and Chen37 extended this method to
simulate 3D grain growth. This case can also be recovered
by using the approximation in energetics that 	i�	c and
	c�0 in Eq. �2�.

In addition, in order to understand the effect of different
values of 	c on the microstructure evolution, we run one
simulation at VV�0.9 with 	c=2.0 and other parameters
same as the previous simulations. This change results in a
tiny change for an energetic ratio 
gb /
in=2.904 from 2.927.
We compared the microstructures at different times for 	c

=3.0 and 	c=2.0 at VV�0.9. What we found is that the
microstructures are statistically similar, the kinetics for the
two cases are similar, and the PSD’s for the two cases are
also similar. As an example, Fig. 8 shows that the PSD’s for

FIG. 5. Variation of volume fractions vs time steps for VV�0.90, VV

�0.93, and VV�0.96, respectively. Filled circles, unfilled circles, and un-
filled diamonds represent VV�0.90, VV�0.93, and VV�0.96, respectively.

FIG. 6. Variation of �R�3 vs time steps for VV�0.90, VV�0.93, and VV

�0.96, respectively. Filled circles, unfilled circles, and unfilled diamonds
represent VV�0.90, VV�0.93, and VV�0.96, respectively.

FIG. 7. PSDs, G���, for VV�0.90, VV�0.93, and VV�0.96, where � is
radius scaled by average radius and Wagner’s PSD. Filled circles with
dashed line, unfilled circles with dashed line, and unfilled diamonds with
dashed line represent VV�0.90, VV�0.93, and VV�0.96, respectively.
Solid line represents Wagner’s PSD.

κ

κ

FIG. 8. PSDs, G���, for VV�0.90, but with the parameters 	c=2.0 and 	c

=3.0, where � is radius scaled by average radius. Filled circles with solid
line and filled squares with dashed line represent PSDs for 	c=2.0 and 	c

=2.0 at VV�0.90, respectively.
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the parameters 	c=2.0 and 	c=3.0 at VV�0.90. Figure 8 has
shown that the two PSD’s are statistically the same.

V. CONCLUSIONS

We simulated microstructural evolution in a phase coars-
ening and kinetics of phase coarsening at ultrahigh volume
fractions using phase-field method, i.e., numerically solving
the time-dependent Ginzburg–Landau and Cahn–Hilliard
equations. We extracted kinetics and PSD’s of phase coars-
ening at ultrahigh volume fractions �0.9�VV�0.96� from
2D phase field simulations. We compared our studies with
theoretical and experimental studies in grain growth and
interface-controlled ripening. We also carefully studied
changes of shapes of particles with increase in volume frac-
tion.

Several specific conclusions can be drawn from this
study.

�1� Figure 6 shows that the cubic average radius of particles
is approximately proportional to time. In other words,
under the condition of our simulation, the kinetics of
phase coarsening at ultrahigh volume fractions �0.9
�VV�0.96� approximately follows the kinetics of
diffusion-controlled phase coarsening. This prediction is
in good agreement with Sok and Yoon’ experimental ob-
servation at volume fraction up to VV=0.95 for the sys-
tem of Co–Cu alloys.32 However, this prediction is dif-
ferent from the experimental work of Kailasam et al.33

Kailasam et al. showed that �R�3 is proportional to time
at volume fraction up to VV=0.95 for the system of
Sn–Pb alloys. To our best knowledge, there exist only
two experimental works in which the volume fractions
are in the range of 0.9�VV�0.96.32,33

�2� The PSD’s as functions of the dispersoid volume frac-
tion derived from our simulations are shown in Fig. 7.
The interesting finding is that the PSD’s derived from
our simulations at ultrahigh volume fractions are closer
to Wagner’s PSD rather than Hillert’s 2D grain size dis-
tribution in grain growth.44 This suggests that the phase
coarsening at ultrahigh volume fractions �0.9�VV

�0.96� may be interface-controlled coarsening. At least,
the interface-controlled ripening may play more impor-
tant role than that of diffusion-controlled ripening at ul-
trahigh volume fractions.

�3� From the snapshots of microstructures in Figs. 2–4, we
observed that curved sides of most of particles at volume
fraction VV�0.90 gradually change into sharply flat-
tened edges with increase in volume fraction to VV

�0.96. Many liquid-filled triple junctions are formed as
a result of grain shape accommodation at ultrahigh vol-
ume fraction, VV�0.96. This similar phenomenon was
also observed in experimental work.33

�4� At ultrahigh volume fractions we observed that the peak
of the PSD is lowered down and the width of the PSD
increases with increase in volume fraction is increased.
This is typical characteristics of phase coarsening and
also observed at lower volume fractions.

�5� Finally, it is worth noting that there are only two
experiments32,33 at ultrahigh volume fractions. Consider-

ing that simulations have made major strides during the
past few years, we suggest that new experiments should
be designed to derive data that can be quantitatively
compared with the rapidly improving predictions de-
rived from simulations. New experimental results will
remain fundamentally important to making additional
progress in the field of microstructural evolution kinet-
ics. New experimental data are critical to establishing
broader, more reliable, quantitative comparisons with
theory and simulations.
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