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Abstract
The MacPherson–Srolovitz relation expresses the rate of volume change of a
grain in a three-dimensional polycrystalline system in terms of microstructural
parameters—the mean grain width and the triple line length—as well as
isotropic values for the grain boundary mobility and energy. We introduce
methods to accurately determine these microstructural measures for grain
structures described by a voxel-based microstructure representation, such as
those generated by phase-field simulations, Monte Carlo Potts models, or
three-dimensional reconstructions of experimentally measured polycrystalline
microstructures. We evaluate the mean rate of volume change of grains during
a phase-field simulation of grain growth and discuss the results in terms of the
MacPherson–Srolovitz relation.

(Some figures may appear in colour only in the online journal)

1. Introduction

Grain growth is one of the most extensively studied processes in materials science, as essentially
most engineering materials in use are polycrystalline. Despite the microstructural complexity
of such materials, von Neumann and Mullins were able to derive a simple relation between the
growth rate of a given grain and its topology that holds for curvature-driven grain growth in
2D: dA/dt = (kπ/3)(n − 6), where k is the kinetic constant, A is the area of a grain and n its
number of sides [1, 2]. Good agreement was obtained between this equation and experimentally
observed kinetics of grain growth observed in thin films of succinonitrile [3]. Phase-field [4, 5],
vertex [6] and cellular automaton [7] simulations of two-dimensional grain growth find that
the growth rate within each topological class (defined by n) follows the von Neumann–Mullins
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relation, although, in the case of phase-field modeling and cellular automata, only on average,
rather than for each grain individually.

There have been many attempts to extend the von Neumann–Mullins relation to three
dimensions [8–15]. Most notable among these is the recently derived MacPherson–Srolovitz
relation,

dV

dt
= −2πMγ

(
L(D) − 1

6

n∑
i=1

ei(D)

)
, (1)

in which V represents the volume of domain D; M and γ denote uniform grain boundary
mobility and energy values, respectively, and D is bounded by n triple lines (edges) with
lengths ei(D). L(D) represents the mean width, a microstructural measure for the size of the
domain [15].

In many cases, the application of equation (1) to microstructures generated by the computer
simulation of grain growth requires evaluating mean widths and triple line lengths for grain
structures defined on a three-dimensional discrete grid of uniform spacing—i.e. a voxel-
based microstructure representation (VBMR). The determination of triple line lengths is also
important in its own right for certain practical applications. For example, the total amount
of three-phase boundary (TPB) in the cathode of a solid oxide fuel cell is known to play a
critical role in its performance, because TPBs are generally believed to be the active sites for
the cathode half-cell reactions [16].

For VBMR data, the accurate evaluation of the mean width of a grain and its total triple
line length is a challenge, as the discrete nature of the grid leads to an imperfect approximation
of any surfaces or linear features that are angled with respect to the voxel faces. Nevertheless,
the MacPherson–Srolovitz relation, equation (1), has already been applied to polycrystalline
microstructures generated by the Monte Carlo Potts model for grain growth, which employs
a VBMR of the simulation cell [8]; however, when carrying out this analysis, Wang and Liu
assumed the validity of the relation E/L = (C2/6)f 1/2 (with C2 a constant, E denoting
1/6 of the total length of triple lines bounding a grain, L the grain’s mean width, and f its
number of faces) instead of directly measuring the triple line length and mean width [8]. On
the other hand, the terms on the right-hand side of equation (1) were explicitly evaluated for
microstructures generated by 3D vertex models of grain growth [17–19], resulting in good
agreement between the growth/shrinkage rate of individual grains calculated according to the
MacPherson–Srolovitz relation and the instantaneous rates observed during simulation. But,
in this case, the topology of the polycrystalline microstructure is represented by the locations
of vertices that are free to take on any positions within the simulation cell, rather than being
confined to a discrete grid, as with voxel-based approaches.

In this paper, we present methods for determining the mean width and triple line lengths of
grains in VBMRs, such as those underlying Monte Carlo Potts models, phase-field algorithms,
or 3D reconstructions of microstructures measured by tomography. As the basis for assessing
the accuracy of the methods, we generate three-dimensional polycrystalline microstructures
using a multiorder phase-field algorithm for grain growth [20, 21]. Recent progress in
improving the efficiency of phase-field models for grain growth includes the optimized
algorithm proposed by Gruber et al for handling sparse data structures [22] as well as Vanherpe
et al’s invention of a ‘bounding box algorithm’ to make larger-scale phase-field simulations
feasible [23]. To that same end, boundary-tracking methods were introduced by Kim et al [24]
and Vedantam and Patnaik [25]; we adopted the latter authors’ active parameter tracking (APT)
algorithm to enhance computational efficiency and eliminate grain coalescence [25–27].
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2. Generation of grain structures

Following [20], a grain structure is described using a set of order parameters {η1, η2, . . . ηQ},
with each order parameter corresponding to a different grain orientation. We solved the
following time-dependent equations for each order parameter,

∂ηi

∂t
= −Li

(
δF

δηi

)
, i = 1, 2, . . . , Q, (2)

where the Li denote grain boundary mobilities and F the total free energy of the system. For
our simulations, we assumed identical, constant values for all Li . The free energy is a function
of the order parameters and their gradients,

F =
∫

V

[
f0(η1, η2, . . . , ηQ) +

1

2

Q∑
i=1

κi(∇ηi)
2

]
dV, (3)

where f0 represents a local free energy density, and the κi are gradient energy coefficients.
For a system consisting of many grains, each having one of Q possible orientations, we are
free to choose the function f0 to have degenerate minima at (η1, η2, . . . , ηQ) = (1, 0, . . . , 0),
(0,1,. . .,0), . . ., (0,0,. . .,1). A simple function f0 satisfying this requirement is given by

f0(η1, η2, . . . , ηQ) =
Q∑

i=1

(
−1

2
α̂η2

i +
1

4
β̂η4

i

)
+ γ̂

Q∑
i=1

Q∑
j �=i

η2
i η

2
j , (4)

where α̂, β̂ and γ̂ are phenomenological constants [20]. For α̂ = β̂ > 0 and γ̂ > β̂/2, f0 has
2Q minima when ηj = ±1 and ηi = 0 for all i �= j . Substitution of equations (3) and (4) into
equation (2) yields the equation of motion,

∂ηi

∂t
= −Li


α̂ηi + β̂η3

i + 2γ̂ ηi

Q∑
j �=i

η2
j − κi∇2ηi


 . (5)

Owing to the implementation of an APT algorithm [25], equation (5) had to be solved only
at and near the grain boundaries, a task that was accomplished using a simple forward-Euler
integration scheme [20]:

ηi(t + 	t) = ηi(t) +
∂ηi

∂t
	t + O((	t)2) ≈ ηi(t) +

∂ηi

∂t
	t. (6)

Although the forward-Euler approach lacks the exponential convergence of Fourier spectral
methods for solving the equations of motion [28], the adoption of equation (6) was a prerequisite
for implementing the APT algorithm.

For the sake of simplicity, we simulated an idealized model system—having uniform grain
boundary mobility and energy—rather than a specific polycrystalline material. All parameters
of the phase-field model are given in dimensionless units. We performed five sets of three-
dimensional simulations with a system size of 240 × 240 × 240 grid points and a grid spacing
of 	x = 1.2, assuming periodic boundary conditions. The coefficients in equation (5) were
chosen to be α̂i = β̂i = γ̂i = 1, κi = 2 and Li = 1 for all i, and the time step 	t in equation (6)
was set to 0.1. Under these conditions, each grain boundary in the phase-field simulation spans
approximately nine grid points; the kinetics of boundary migration are known to converge to the
sharp-interface limit when the smooth change in order-parameter values across the boundary
is mapped onto seven or more grid points [29]. We verified that the average grain size 〈D〉
increased with simulation time according to a power law 〈D(t)〉n − 〈D(t0)〉n ∝ (t − t0) with
initial time t0; a least-squares fit to the simulated growth curve yielded n = 1.98, which is
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Figure 1. Three-dimensional microstructures generated by phase-field simulation of grain growth
performed on a 2403 simple-cubic grid. The microstructures were visualized by mapping a
summation of the squared order-parameter values to a gray scale. (a) At 10 000 time steps, 148
grains were present in the simulation cell; (b) by 20 000 time steps, the number of grains had
dropped to 99.

indistinguishable within statistical error from the parabolic behavior (n = 2) that is expected
for normal grain growth [20].

At the start of a given simulation run, 320 grains were seeded at randomly chosen locations
in the simulation cell. Representative microstructures are shown in figures 1(a) and (b).
Approximately 30 h were required to calculate 40 000 time steps on a personal computer
equipped with a dual-core CPU and 2 GB of RAM.

3. Numerical evaluation of microstructural parameters

3.1. Numerical evaluation of mean width

In order to evaluate the right-hand side of the MacPherson–Srolovitz relation, equation (1), we
need a method for determining the mean width L(D) of a given grain D [15]. The mean width
can be calculated analytically for many shapes, such as spheres and flat-faced polyhedra [15];
however, for an arbitrary domain one must resort to numerical methods, such as the approach
proposed in the supplementary information to [15]. The latter method involves determining
the surface defined by the grain boundaries enclosing a given grain, triangulating that surface,
and measuring the shared edge length (εi) and exterior dihedral angle (βi) between each pair
of adjoining triangles in the triangulation. In terms of these quantities, the mean width can be
expressed as

L(D) = 1

2π

∑
i

εiβi, (7)

where βi is taken to be positive when the surface curvature in the direction perpendicular to
the shared edge is convex (with respect to the grain interior), and the summation extends over
all shared edges [15].

In a VBMR, the values of the order parameters are known only at the discrete grid points
spanning the simulation cell. In order to determine the location of a given grain’s surface
between grid points, we determined the isosurface for ηi = 0.5 using the linear interpolation
option of the isosurface subroutine in MATLAB7 2010a. Perhaps the most popular algorithm
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Figure 2. (a) Three-dimensional grain generated by phase-field grain growth simulation and
visualized using the isosurface subroutine in MATLAB. (b) Higher magnification region of (a), in
which the triangle-based surface mesh is clearly evident.

for isosurface extraction is the Marching Cubes algorithm [30], which returns a surface that is
tessellated with triangular regions. The MATLAB subroutine isosurface yields tessellations
of the same form, but it relies on a custom algorithm that—according to [31]—was written
to avoid infringing on the Marching Cubes patent4. The subroutine generates an output array
listing the vertices comprising each triangle of the isosurface, along with an array containing
the coordinates of each of these vertices. The grain itself is provided to the subroutine in the
form of a three-dimensional array constructed by allocating a grain orientation to each grid
point in the VBMR by selecting the order parameter having the largest value at that voxel: i.e.
if ηp is greatest among the order parameters at a certain voxel, the grain orientation at that
grid point is p. To achieve a relatively homogeneous mesh size on the isosurface, we imposed
a minimum nearest-neighbor separation of 2	x on vertices of the isosurface triangulation.
Figure 2(a) depicts a grain surface obtained in this manner; in the magnified region shown in
figure 2(b), the triangulation of the isosurface is visible.

From the contents of the array listing the vertices of the isosurface triangles, we can easily
determine which triangles share any given edge, and, from the coordinates of each vertex, it is
a simple step to calculate the shared edge lengths εi . In order to evaluate the exterior dihedral
angles βi between adjacent triangles, we calculate normal vectors to the triangles, choosing
the positive direction to point in the outward direction from the enclosed grain, and then define
βi to be the angle between the normal vectors.

In order to assess the accuracy of the mean width calculated by inserting these εi and βi

values into equation (7), we examined the cases of tetrahedral, cubic, octahedral and spherical
domains (table 1). The ‘true’ radius of the sphere and the ‘true’ edge lengths of the polyhedral
domains were determined analytically from the measured surface area of each domain and
used as the basis for analytic calculation of the mean width [15]. The small relative errors of
the numerically evaluated mean widths relative to the analytic values—given in the right-hand
column of table 1—validate the applicability of our mesh-based method not only to smoothly
bounded domains, such as spheres, but also to domains having abrupt edges.

3.2. Numerical evaluation of triple line length

In addition to the mean width, the right-hand side of equation (1) depends on the lengths of
the triple lines bounding the grain whose rate of volume change is being evaluated. Since the

4 The comparison carried out by Etiene et al [32] among a number of isosurfacing packages (primarily variants of
the Marching Cubes algorithm) found that the MATLAB algorithm manifests a comparable degree of topological
consistency and correctness.
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Table 1. Comparison of analytically calculated mean widths (Lanalytic) to values evaluated
numerically (Lnumeric) for isosurface triangulations of voxel-based representations of selected
domain shapes.

Analytically Numerically (Lnumeric(D)–
Surface Edge length calculated evaluated Lanalytic(D))/

Domain D area or radius Lanalytic(D) Lnumeric(D) Lanalytic(D) (%)

Tetrahedron 14 854.19 92.61 168.54 179.02 6.2
Cube 8046.18 36.62 109.86 110.16 0.3
Octahedron 33 117.33 97.78 229.77 222.99 −3.0
Sphere 31 399.15 49.99 199.95 203.95 2.0

isosurface extraction procedure described in the previous section was carried out on a grain-
by-grain basis, the triple lines were taken into account only to the extent that they modified the
surface topography of the grain. (No additional information is needed to calculate the mean
width according to equation (7).) This approach does not suffice, however, for determining
the lengths of the triple lines, as their locations depend on the positions of the surfaces of
neighboring grains, as well. An additional complication is presented by the VBMR itself, which
introduces an inherent roughness into the curve along which three grains meet; consequently,
the procedure for evaluating triple line lengths must not only identify the voxels bordering three
grains simultaneously, but also smooth out any fluctuations arising from the discrete nature of
the microstructural representation.

In order to determine which voxels belong to a triple line, we examine the grain orientations
of the six nearest-neighbor voxels to each grid point. If the grid point itself has the orientation
p and the set of neighboring orientations contains at least two numbers, q and r , differing from
each other and from p, then we consider the grid point in question to lie along a triple line.
In order to estimate the overall length of a triple line found in this manner more robustly, we
perform a principal component analysis (PCA) [33].

The PCA begins by constructing an N × 3 matrix X, consisting of N rows of the voxel
coordinates Xi = (xi, yi, zi) associated with the given triple line. Then, we calculate the
covariance matrix C of matrix X and determine the eigenvalues and eigenvectors of C. The
eigenvector corresponding to the largest eigenvalue is the principal component (P ), and each
eigenvector is a unit vector. To calculate the lengths �i in figure 3, we take the inner product
between Xi and P .

After calculating each �i = Xi ·P , we approximate the triple line length as the difference
between the maximum and minimum values of �i (for instance, �2 and �1 in figure 3).
Since the PCA method is a statistical approach, its reliability depends on the triple line
extending over a sufficient number of voxels to establish its location unambiguously—an
implicit assumption of our analysis. In figure 4, we plot the total length of triple lines
surrounding individual grains as a function of the cube root of their respective volumes
(dividing the triple line length by 6 in accord with the right-hand side of equation (1)). As
expected, the larger the grain volume, the longer is the overall triple line length bounding that
volume. In the same plot we show the mean width L of each grain calculated according to
equation (7). Least-squares fits to E = ∑

i ei/6 and L as a function of V 1/3 (normalized to
the average of the cube root of grain volume) yield the following relations as a function of
x = V 1/3/〈V 1/3〉:

E = 105.48x1.71 + 14.0 (8a)

L = 24.0x1.49 + 97.6 (8b)

6
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Figure 3. Principle component analysis of a triple line: blue dots mark the locations of voxels at
the triple line, and blue arrows indicate the position vectors Xi = (xi , yi , zi ), defined relative to the
arbitrarily chosen origin (red dot). The lengths �i denote the projections of Xi along the direction
of the principal component vector P .

Figure 4. The numerically evaluated mean width L of 459 individual grains and one-sixth of their
total triple line lengths, E, both plotted as a function of the normalized cube root of grain volume.
This figure includes the results of five separate grain growth simulations, with grain morphologies
evaluated after 20 000 time steps.

E/〈E〉 = 0.84x1.71 + 0.11 (8c)

L/〈L〉 = 0.20x1.49 + 0.80. (8d)

In figure 4, the intersection between the E and L curves defined by equations (8a) and (8b)
is located at approximately V 1/3/〈V 1/3〉 = 1.015. Additionally, we note a strong correlation
between V 1/3 and the number of faces f of a grain, as revealed in figure 5; a least-squares fit
to these data points yields

x = V 1/3/〈V 1/3〉 = 15.34f 0.058 − 16.80. (9)
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Figure 5. Plot of the normalized cubic root of grain volume against the number of faces (f ) for
the grains of figure 4.

Figure 6. Mean rate of volume change plotted against the number of grain faces f . The
MacPherson–Srolovitz (‘M-S’) volume-change rates were calculated using equation (1), and the
‘phase-field’ data were obtained from equation (12) applied to grain growth simulations. The
vertical bars superimposed on each data point represent the standard deviation of growth rates
within the given topological face number class.

Substituting the E/L-crossover value into equation (9) gives f = 13.2 for the average face
number of grains with zero growth rate, according to the MacPherson–Srolovitz relation.
This value is close to the result of an analytic derivation for the coarsening of 3D foams,
f = 13.85 [34]. Direct measurement of the growth rate as a function of the number of grain
faces (figure 6) reveals a slightly larger value of f ≈ 15 for stagnant grains in our phase-field
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simulations, in agreement with vertex modeling [18] and Monte Carlo Potts simulations of
grain growth [35]. A recent experimental study of β-Ti found that the integral mean curvature
of grain faces vanishes on average at f = 15.5, implying zero net growth rate for curvature-
driven boundary migration [36].

4. Evaluation of the MacPherson–Srolovitz relation

To test the extent to which the microstructural evolution generated by our phase-field model
satisfies equation (1), it is necessary to determine the value of Mγ for the simulated grain
boundaries. This can be performed by measuring the shrinkage rate of a single spherical
grain embedded in a uniform matrix and comparing the answer with the analytical solution
for curvature-driven grain growth. The assumption that the rate of boundary migration is
proportional to the local boundary curvature leads to the expression

dR

dt
= −2Mγ

R
, (10)

which links the rate of shrinkage of a spherical grain of radius R to the product of grain
boundary mobility M and energy γ [37]. The rate of volume change follows immediately
from equation (10):

dV

dt
= 4πR2 dR

dt
= −4(6π2)1/3MγV 1/3. (11)

We determine the left-hand side of equation (11) by measuring the volume of the spherical
grain at the time steps t ′ − 	t and t ′ + 	t and approximating dV /dt at t = t ′ as

dV

dt

∣∣∣∣
t=t ′

= Vt ′+	t − Vt ′−	t

2	t
. (12)

The volume at each time step was calculated using the voxel-counting method. Substituting
the latter values into equations (11) and (12) yields a value of 0.15 for the quantity Mγ .

Equation (12) was then applied to phase-field simulations of polycrystalline
microstructural evolution to obtain quantitative values for the rate of volume change of
individual grains during grain growth at 20 000 time steps of the grain growth simulation.
The rate of grain volume change can be calculated from the static microstructure at the same
time t ′ using the MacPherson–Srolovitz relation. In figure 6 we compare mean values of the two
rates of volume change as a function of the number of grain faces. There is good agreement
between the mean growth rates generated by the phase-field model and the predictions of
equation (1) for grains having nine or more faces, implying that the methods presented here
for evaluating the mean width and the length of triple lines are reasonably accurate.

Since only 7% of the grains in the simulation cell have eight or fewer faces, as revealed by
the distribution of the number of faces per grain (figure 7), the discrepancy between simulation
and theory is restricted to a small fraction of the sample. Moreover, it is evident in figure 8 that
the simulation growth kinetics tend to deviate significantly from the MacPherson–Srolovitz
prediction when the rate of volume change of an individual grain drops to values as highly
negative as −10. Not only do such rapidly shrinking grains tend to have a low number of faces
(figure 6), but, on average, they also tend to be much smaller in size (figure 5), suggesting that
the discrepancy between our mesh-based approach and the MacPherson–Srolovitz relation may
be traced to inaccuracies in isosurface triangulation and/or triple junction length measurement
when characteristic grain dimensions become comparable to the size of the underlying voxels.
In this limit, both the linear interpolation that occurs during isosurface extraction and the
determination of triple junction lengths via the PCA approach may become problematic, owing
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Figure 7. Frequency distribution of the number of faces per grain, calculated from the 459 grains
whose microstructural parameters are plotted in figures 4 and 5. Thirty-two of the grains were
found to have eight or fewer faces.

Figure 8. Plot of the rate of volume change of individual grains (open squares)—measured during
the phase-field simulation of grain growth—against the growth rate predicted by the MacPherson–
Srolovitz relation. The dashed line indicates equality of the measured and predicted values.

to steep gradients in order-parameter values and the small number of voxels located along each
triple junction.

Another possible source of error is the effect of the finite width of grain boundaries during
phase-field simulation, which causes the grain boundary velocity to deviate from the value
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entailed by curvature-driven grain growth when the grain size becomes comparable to the
boundary width. Under the simulation conditions of this study, however, such deviations are
expected only for grains having, on average, five or fewer faces, which is well below the onset
of the discrepancy between the curves plotted in figure 6.

5. Conclusions

We have developed methods for accurately evaluating the mean width and the length of triple
lines for three-dimensional grains represented on a uniform, discrete grid. Linear interpolation
was adopted to triangulate smooth grain surfaces, and a principal component analysis was
employed to estimate the lengths of individual triple lines. For grain growth of a space-filling
ensemble of grains, we compared the rates of volume change of individual grains calculated
directly by phase-field simulation to the rates predicted by the MacPherson–Srolovitz relation
applied to a static microstructure. The mean growth rates obtained by both methods agreed
reasonably well for grains having nine or more faces.
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