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Abstract

The effect of applied mechanical strains on the ferroelectric and dielectric properties of a model single crystal is investigated using

a phase field model based on the time-dependent Ginzburg–Landau equation, which takes both multiple-dipole–dipole-electric and

-elastic interactions into account. The evolution of the ferroelectric domain structure is simulated at different temperatures and

applied strains. The results show that the paraelectric/ferroelectric phase transition temperature linearly increases with the applied

mechanical strain under mechanical clamping conditions. Analogous to the classical Ehrenfest equation, a thermodynamics equa-

tion is derived to describe the relationship between the transition temperature and the applied strain. The change in the domain

structure with temperature under applied inequiaxial strains is different from that under applied equiaxial strains. The simulations

also illustrate the changes in the coercive field, the remanent polarization and the nonlinear dielectric constant with the applied

strain.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric materials have become preferred materi-

als in a wide variety of electronic and mechatronic de-

vices due to their pronounced dielectric, piezoelectric,
and pyroelectric properties. In applications, ferroelectric

devices usually undergo external mechanical loading,

such as the mismatch strain between a ferroelectric thin

film and its associated substrate, or hydrostatic pressure

in deep-water environments, etc. Mechanical loads and/

or constraints may cause lattice distortion, domain wall

motion, and changes in the domain structure [1] and

thus shift the paraelectric/ferroelectric phase transition
temperature and vary the ferroelectric and dielectric

properties. These effects induced by mechanical loads
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and/or constraints may enhance or damage the perfor-

mance of devices made of ferroelectric materials. There-

fore, it is of great importance to understand and predict

the effects of applied mechanical strains on the paraelec-

tric/ferroelectric phase transition and on the ferroelectric
and dielectric properties of ferroelectric materials.

A ferroelectric material exhibits spontaneous polari-

zation, spontaneous strain and a domain structure be-

low its Curie temperature. Inside an electric domain,

microscopic polarizations are homogeneously distrib-

uted and have the same orientation. A domain structure

consists of domains, which have different orientations,

and boundaries between the domains, which are called
domain walls. Sufficiently high electrical and/or mechan-

ical loads can change the polarizations and thus result in

domain nucleation, domain wall motion, domain

switching and/or a complete change in the domain struc-

ture. When a sufficiently high applied electric field
ll rights reserved.
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revises its direction, the macroscopic polarization of an

electric field-loaded ferroelectric material will switch

180� and exhibit a hysteresis loop of polarization versus

the electric field. The coercive field, the remanent polar-

ization and the nonlinear dielectric constant are all de-

fined based on the hysteresis loop. In addition to
electric fields, temperature and mechanical loads and/

or constraints play important roles in the material

behavior of ferroelectrics. For example, spontaneous

polarization decreases as temperature increases and van-

ishes above the Curie temperature in a ferroelectric

material. A high applied compressive stress is able to

convert a polydomain structure into a single domain [2].

In the study of the effects of temperature, external
mechanical loads and/or constraints on the phase dia-

gram, the spontaneous polarization, the coercive field,

the remanent polarization and the dielectric constant

of ferroelectrics [3–14], thermodynamic theories are

widely employed. For example, Oh and Jang [9] devel-

oped a two-dimensional (2D) thermodynamic model to

investigate the effects of film stresses on the phase stabil-

ity and various ferroelectric properties of epitaxially
oriented Pb(Zr,Ti)O3 thin films. A nonlinear thermody-

namic theory was used by Emelyanov et al. [8] to de-

scribe the influence of external mechanical constraints

on the ferroelectric, dielectric and piezoelectric proper-

ties of epitaxial thin films. They predicted that the

stress-induced ferroelectric-to-paraelectric phase transi-

tion might take place at room temperature in a BaTiO3

or PbTiO3 thin film subjected to a large compressive
mismatch strain. Phase field models are based on ther-

modynamic theories and kinetics and take into account

the gradient energy, i.e., the domain wall energy, and the

multiple-dipole–dipole-electric and -elastic interaction

energies, which play important roles in the formation

of domain structures and in the arrangements of dipoles

at the domain walls [15,16]. Moreover, phase field

models allow us to calculate the evolution of a micro-
structure, thereby providing detailed information about

the microstructure and the material behavior [15–24].

In a phase field model, thermodynamic energies are

described in terms of a set of continuous order parame-

ters. The temporal evolution of a microstructure is ob-

tained by solving kinetic equations that govern the

time-dependence of the spatially inhomogeneous order

parameters. A phase field model does not make any
prior assumptions about transient microstructures,

which may appear on a phase transformation path.

Phase transformation is a direct consequence of the min-

imization process of the total free energy of an entire

simulated system. Phase field models have been widely

used to study the domain structures in ferroelectric

materials and polarization switching [15–17,25–31].

For instance, Cao and Cross [25] proposed a 3D Lau-
dau–Ginzburg model to describe the tetragonal twin

microstructure in ferroelectrics. They presented quasi-
1D analytic solutions for the space profiles of the

order parameters for 180�- and 90�-twin microstruc-

tures. Based on the time-dependent Ginzburg–Landau

equation, Nambu and Sagala [26] simulated domain

structures in ferroelectrics with consideration of multi-

ple-dipole–dipole-elastic interactions. By taking into
account multiple-dipole–dipole-electric and -elastic

interactions, Hu and Chen [15,16] conducted 2D and

3D phase field simulations of ferroelectric domain struc-

tures and found that the multiple-dipole–dipole-elastic

interactions played a critical role in the formation of

the twin microstructures, whereas the multiple-dipole–

dipole-electric interactions were responsible for the

head-to-tail arrangements of the dipoles at the twin
boundaries (domain walls). Li et al. [28,29] extended

the phase field model to study the stability and evolution

of domain microstructures in thin films. Ahluwalia and

Cao [30,31] investigated the size dependence of domain

patterns and the influence of dipolar defects on the

switching behavior of ferroelectrics. Recently, Wang

et al. [17] simulated ferroelectric/ferroelastic polarization

switching based on a phase field model, which took into
account the multiple-dipole–dipole-electric and -elastic

interactions. Following this previous work [17], the

present work further studies the effect of applied mech-

anical strains on a single crystal under fully clamped

conditions.

The effect of applied mechanical strain on the phase

transition and on the ferroelectric and dielectric proper-

ties of a fully clamped single crystal is investigated in the
present work using a phase field model that is based on

the time-dependent Ginzburg–Landau equation and

takes the multiple-dipole–dipole-elastic and -electric

interactions into account. We numerically simulate the

electric field dependence of the polarization under differ-

ent applied mechanical strains, which yields the nonlin-

ear hysteresis loops of polarization versus external

electric field under different applied strains. From the
hysteresis loops, we have the changes in the coercive

field, the remanent polarization and the nonlinear

dielectric constant with the applied strains.
2. Simulation methodology

2.1. General approach of the phase field model

The paraelectric-to-ferroelectric phase transition oc-

curs in a ferroelectric material when its temperature is

lower than its Curie point. The spontaneous polariza-

tion vector, P = (P1, P2, P3), is usually used as the order

parameter to calculate thermodynamic energies of the

ferroelectric phase in the Laudau phase transformation

theory. In phase-field simulations, the time-dependent
Ginzburg–Landau equation,
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oP iðr; tÞ
ot

¼ �L
dF

dP iðr; tÞ
ði ¼ 1; 2; 3Þ; ð1Þ

is generally used to calculate the temporal evolution,

where L is the kinetic coefficient, F is the total free energy
of the system, dF/dPi(r,t) represents the thermodynamic

driving force of the spatial and temporal evolution of

the simulated system, r denotes the spatial vector, r =

(x1, x2, x3) and t denotes time. The total free energy of

the system includes the bulk free energy, the domain wall

energy, i.e., the energy of the spontaneous polarization

gradient, the multiple-dipole–dipole-electric and -elastic

interaction energies, and the elastic energy and the elec-
tric energy induced by applied electrical and mechanical

loads.

The bulk Landau free energy density is commonly ex-

pressed by a six-order polynomial of the polarization

components

fLðP iÞ ¼ a1ðP 2
1 þ P 2

2 þ P 2
3Þ þ a11ðP 4

1 þ P 4
2 þ P 4

3Þ
þ a12ðP 2

1P
2
2 þ P 2

2P
2
3 þ P 2

1P
2
3Þ þ a111ðP 6

1 þ P 6
2

þ P 6
3Þ þ a112½ðP 4

1ðP 2
2 þ P 2

3Þ þ P 4
2ðP 2

1 þ P 2
3Þ

þ P 4
3ðP 2

1 þ P 2
2Þ� þ a123P 2

1P
2
2P

2
3; ð2Þ

where a11, a12, a111, a112, a123 are constant coefficients

and a1 = (T � T0)/2e0C0. T and T0 denote the tempera-

ture and the Curie–Weiss temperature, respectively. C0

is the Curie constant and e0 is the dielectric constant

of vacuum.

In the Ginzburg–Landau theory, the free energy func-

tion also depends on the gradient of the order parame-

ter. For ferroelectric materials, the polarization
gradient energy represents the domain wall energy.

For simplicity, the lowest order of the gradient energy

density is used here, which takes the form:

fGðP i;jÞ ¼ 1
2
G11ðP 2

1;1 þ P 2
2;2 þ P 2

3;3Þ þ G12ðP 1;1P 2;2

þ P 2;2P 3;3 þ P 1;1P 3;3Þ þ 1
2
G44½ðP 1;2 þ P 2;1Þ2

þ ðP 2;3 þ P 3;2Þ2 þ ðP 1;3 þ P 3;1Þ2�

þ 1
2
G0

44½ðP 1;2 � P 2;1Þ2 þ ðP 2;3 � P 3;2Þ2

þ ðP 1;3 � P 3;1Þ2�; ð3Þ

where G11; G12; G44 and G0
44 are gradient energy coeffi-

cients, and Pi,j denotes the derivative of the ith compo-

nent of the polarization vector, Pi, with respect to the

jth coordinate and i, j = 1,2,3.

The elastic energy density, including the multiple-di-

pole–dipole-elastic interaction, is calculated from

fela ¼ 1
2
cijkleelaij e

ela
kl ; ð4Þ

where cijkl are the elastic constants and eelaij are the elastic

strain and take, if there is no applied strain, the form of
eelaij ¼ eðsÞij � e0ij, in which eðsÞij and e0ij are the local strain
and eigenstrain, respectively. The local strains, eðsÞij , re-

lated to the polarization, are calculated based on the

general eigenstrain theory described as follows. The

eigenstrains are linked to the polarization components

in the following form:

e011 ¼ Q11P
2
1 þ Q12ðP 2

2 þ P 2
3Þ;

e022 ¼ Q11P
2
2 þ Q12ðP 2

3 þ P 2
1Þ;

e033 ¼ Q11P
2
3 þ Q12ðP 2

1 þ P 2
2Þ;

e023 ¼ Q44P 2P 3;

e013 ¼ Q44P 1P 3;

e012 ¼ Q44P 1P 2;

ð5Þ

where Q11, Q12 and Q44 are the electrostrictive coeffi-

cients according to Voigt�s notation. When a dipole is
among other dipoles with different orientations, there

exist long-range dipole–dipole-elastic interactions. The

long-range elastic interactions play an essential role in

the formation of a domain structure. A twin-like do-

main structure is formed when multiple-dipole–dipole-

elastic interactions predominate [26]. It is still a

challenging task to calculate the long-range elastic inter-

action energy for arbitrary boundary conditions analyt-
ically. However, with periodic boundary conditions,

which are adopted in this study, the general solution

of the elastic displacement field is given in Fourier space

by [32]

�uðsÞi ðnÞ ¼ X jNijðnÞ=DðnÞ; ð6Þ

where X i ¼ �icijkle0klnj; i ¼
ffiffiffiffiffiffiffi
�1

p
; NijðnÞ are cofactors of

a 3 · 3 matrix K(n),

KðnÞ ¼
K11 K12 K13

K21 K22 K23

K31 K32 K33

2
64

3
75 ð7Þ

and D(n) is the determinant of matrix K(n). Note that

Kki(n) = ckjilnjnl, in which cijkl and ni are the elastic con-

stant components and coordinates in Fourier space,

respectively.
For ferroelectric materials with the perovskite crys-

tal structure, spontaneous polarization changes the

crystal system from cubic to tetragonal. In the present

simulations, we use the cubic paraelectric phase as the

background material such that all electric dipoles are

embedded within the background material. Below

the Curie temperature the elastic properties of a ferro-

electric tetragonal crystal are not cubic and are inho-
mogeneous for a multi-domain structure. For

simplicity, the cubic and the homogeneous approxima-

tions for the elastic properties are made to obtain the

elastic field as in the previous works [26–31]. For cu-

bic crystals, the explicit expressions of D(n) and Nij(n)

are
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DðnÞ ¼ l2ðkþ 2lþ l0Þn6

þ l0ð2kþ 2lþ l0Þn2ðn21n
2
2 þ n22n

2
3 þ n21n

2
3Þ

þ l02ð3kþ 3lþ l0Þn21n
2
2n

2
3;

N 11ðnÞ ¼ l2n4 þ bn2ðn22 þ n23Þ þ cn22n
2
3;

N 12 ¼ �ðkþ lÞn1n2ðln2 þ l0n23Þ;

ð8Þ

and the other components are obtained by the cyclical

permutation of 1, 2, 3, where

n2 ¼ nini; b ¼ lðkþ lþ l0Þ;
c ¼ l0ð2kþ 2lþ l0Þ; k ¼ c12; l ¼ c44 and

l0 ¼ c11 � c12 � 2c44; ð9Þ

in which, c11, c12 and c44 are three independent elastic

constants according to Voigt�s notation.
Spontaneous polarization changes the dimensions

and/or orientations of each crystalline cell in a ferroelec-

tric and thus produces elastic displacements, uðsÞi ; i ¼
1; 2; 3, and hence local strains, eðsÞij :

eðsÞij ¼ 1
2
ðuðsÞi;j þ uðsÞj;i Þ: ð10Þ

When there exists an externally applied homogeneous

strain, eðaÞij , the elastic strains, eelaij , in Eq. (4) should be

eelaij ¼ eðsÞij � e0ij þ eðaÞij : ð11Þ

As described above, the elastic strain energy density,

felaðP i; e
ðaÞ
ij Þ, is a function of polarization and applied

strains.

In the present phase-field simulations, each element is

represented by an electric dipole with the strength of the
dipole given by a local polarization vector. The electric

field produced by all dipoles forms an internal electric

field, which, in turn, exerts a force on each of the di-

poles. The multiple-dipole–dipole-electric interactions

play a crucial role in the formation of a head-to-tail do-

main structure and in the process of domain switching

as well [16]. The multiple-dipole–dipole-electric interac-

tion energy density is calculated from

fdip ¼ �1
2
Edip
i P i; ð12Þ

where Edip
i is the ith component of the electric field,

EdipðrÞ ¼ � 1

4pe0

Z
Pðr0Þ

jr� r0j3
� 3½ðr� r0Þ�½Pðr0Þ � ðr� r0Þ�

jr� r0j5

( )
d3r0

ð13Þ

at point r, induced by all dipoles, in which e 0 is a linear

dielectric constant, which will be described in detail in

the following. When there is an externally applied elec-
tric field, EðaÞ

i , an additional electrical energy density,

felec ¼ �EðaÞ
i P i; ð14Þ

should be taken into account in the simulations.

Integrating the free energy density over the entire vol-

ume of a simulated ferroelectric material yields the total
free energy, F, of the simulated material under externally

applied strains, eðaÞij , and an externally applied electric

field, EðaÞ
i . Mathematically, we have

F ¼
Z
V
½fLðP iÞ þ fGðP i;jÞ þ fdipðP iÞ þ felecðP i;E

ðaÞ
i Þ

þ felaðP i; e
ðaÞ
ij Þ� dV ; ð15Þ

where V is the volume of the simulated ferroelectric

material. By substituting Eq. (15) into Eq. (1), the tem-

poral evolution of the domain structures at different

temperatures and applied strains and the response of
polarization to an applied electric field under different

applied strains can be obtained after solving the equa-

tion numerically.

For convenience, we employ the following set of the

dimensionless variables for Eq. (1) [16,17]:

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja0j=G110

p
r; t� ¼ ja0jLt; P� ¼ P=P 0;

EðaÞ;�
i ¼ EðaÞ

i =ðja0jP 0Þ;
a�1 ¼ a1=ja0j; a�11 ¼ a11P 2

0=ja0j; a�12 ¼ a12P 2
0=ja0j;

a�111 ¼ a111P 4
0=ja0j; a�112 ¼ a112P 4

0=ja0j;
a�123 ¼ a123P 4

0=ja0j;
Q�

11 ¼ Q11P
2
0; Q�

12 ¼ Q12P
2
0; Q�

44 ¼ Q44P
2
0;

c�11 ¼ c11=ðja0jP 2
0Þ; c�12 ¼ c12=ðja0jP 2

0Þ;
c�44 ¼ c44=ðja0jP 2

0Þ;
G�

11 ¼ G11=G110; G�
12 ¼ G12=G110;

G�
44 ¼ G44=G110; G0�

44 ¼ G0
44=G110;

ð16Þ
where P0 is the magnitude of the spontaneous polariza-

tion at room temperature, G110 is a reference value of the

gradient energy coefficients and a0 represents the value

of a1 at 25 �C. The superscript asterisk, *, denotes the
dimensionless value of the corresponding variable.

With the dimensionless variables and Eq. (15), we re-

write the time-dependent Ginzburg–Landau equation as

oP �
i ðr�;t�Þ
ot�

¼�
d
R
½fLðP �

i ÞþfdipðP �
i ÞþfelecðP �

i ;E
ðaÞ;�
i ÞþfelaðP �

i ;e
ðaÞ
ij Þ�dV �

dP �
i

�
d
R
fGðP �

i;jÞdV �

dP �
i

: ð17Þ

In Fourier space, Eq. (17) takes the form

o

ot�
P̂ iðn; t�Þ ¼ �ff̂ ðP �

i Þgn � GiP̂ iðn; t�Þ; ð18Þ

where P̂ iðn; t�Þ and ff̂ ðP �
i Þgn are the Fourier transforma-

tions of

P �
i ðr�; t�Þ and

d
R
½fLðP �

i Þ þ fdipðP �
i Þ þ felecðP �

i ;E
ðaÞ;�
i Þ þ felaðP �

i ; e
ðaÞ
ij Þ� dV �

dP �
i

;
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respectively. The Gis are the gradient operators corre-

sponding to the ith component of the polarization field

and are defined as follows:

G1 ¼ G�
11n

2
1 þ ðG�

44 þ G0�
44Þðn

2
2 þ n23Þ;

G2 ¼ G�
11n

2
2 þ ðG�

44 þ G0�
44Þðn

2
1 þ n23Þ;

G3 ¼ G�
11n

2
3 þ ðG�

44 þ G0�
44Þðn

2
2 þ n21Þ:

ð19Þ

The semi-implicit Fourier-spectral method [16] was em-

ployed to solve the partial differential equation (18).
2.2. 2D simulation and used parameters

Two-dimensional simulations are conducted under

the plane-strain condition with all the strains related

to the x3-axis being zero, although the methodology de-

scribed in Section 2.1 can be applied to 3D simulations

as well. In the present 2D simulation, the polarization

component, P3 is treated as zero. The dielectric con-

stant, e 0, introduced in Eq. (13) is usually related to

the coefficient of the first right-hand term in Eq. (2),
i.e., the second order of polarizations. As mentioned

above, a1 = (T � T0)/2e0C0 is a function of temperature

under the constant stress condition. Under the constant

strain condition, the coefficient of the second order of

the polarization should be modified to ae1 ¼ a1�
ðq11e

ðaÞ
11 þ q12e

ðaÞ
22 Þ for P 1 and to ae2 ¼ a1 � ðq11e

ðaÞ
22 þ

q12e
ðaÞ
11 Þ for P 2 in a 2D system (see Appendix A for de-

tails). In the present model, we use e0 ¼
1=ð2ae1Þ for E

dip
1 and e0 ¼ 1=ð2ae2Þ for E

dip
2 when ae1 and

ae2 are larger than zero, and e0 ¼ �1=ð4ae1Þ for
Edip
1 and e0 ¼ �1=ð4ae2Þ for E

dip
2 when ae1 and ae2 are

smaller than zero. Clearly, the dielectric constant, e 0, is
a function of the temperature and the applied strains.

Here, we set the magnitude of the spontaneous polar-

ization at room temperature to P0 = |P0| = 0.757 C/m2,

the reference value of the gradient energy coefficients
to G110 = 1.73 · 10�10 m4 N/C2 and the value of a1 at

25 �C to a0 = a1,25 �C = (T � T0)/(2e0C0) = (25 � 479) ·
3.8 · 105 m2 N/C2, where T is the temperature with a

unit of �C [28]. The values of the dimensionless (normal-

ized) material coefficients of PbTiO3 used in the simula-

tions are listed in Table 1.

In the simulations, we use 32 · 32 discrete grid points

with a cell size of Dx�1 ¼ Dx�2 ¼ 1 and adopt periodic
boundary conditions in both the x1 and x2 directions.

The periodic boundary conditions imply that the simu-

lated domain structure denotes the one periodic domain

structure of a model single crystal in which the domains
Table 1

Values of the normalized coefficients used in the simulation

a�11 a�12 a�111 a�112 a�123 Q�
11 Q�

12 Q�
44

�0.24 2.5 0.49 1.2 �7.0 0.05 �0.015 0.0
are distributed periodically. The domain structure is rep-

resented by the polarization field, which varies spatially

and, at each grid, is characterized by a two-component

vector in the 2D simulations. The length and direction

of the vector denote the magnitude and direction of

the polarization, respectively. The time step is set to
Dt* = 0.04 and total number of steps is 2000 in solving

Eq. (18), which can ensure that the domain structure

reaches its steady state [17]. We report the simulation re-

sults only at the steady state.
3. Simulation results and discussion

3.1. The effects of external applied strain on the

ferroelectric properties

An equiaxial strain, eðaÞ11 ¼ eðaÞ22 ¼ eðaÞ; with eðaÞ12 ¼ 0,

was applied to the simulated system prior to simula-

tions. Figs. 1(a), (b), (c) and (d) show the ferroelectric

domain structures at room temperature under different

strains of e(a) = 0.008, 0, �0.008 and �0.012, respec-
tively. Under e(a) = 0.008, the domains form a twin

structure with 90� domain walls between two adjacent

domains. When the strain decreases from 0.008 to 0,

to �0.008, and to �0.012, the magnitudes of the sponta-

neous polarizations become smaller and smaller, as

shown in Figs. 1(a)–(d). Further decreasing the strain re-

duces the magnitude of the spontaneous polarization

eventually to zero and thus the domain structure
disappears.

Under the sustained strain boundary condition, the

change in the spontaneous polarization causes a change

in the internal stresses. The internal stresses related to

the spontaneous polarization were calculated from

Hooke�s law as r�
ij ¼ c�ijklðe

ðsÞ
kl � e0klÞ. Figs. 1(A), (B), (C)

and (D) show the stress distributions of r�
11 þ r�

22 corre-

sponding to the domain structures shown in Figs. 1(a),
(b), (c) and (d), respectively. Clearly, the internal stress

field is inhomogeneous due to the inhomogeneous distri-

butions of the spontaneous polarizations. The results

indicate that a tensile sustained strain enhances the mag-

nitude of the internal stresses, whereas a compressive

sustained strain reduces it. This is because a tensile (or

compressive) sustained strain increases (or decreases)

the magnitude of the spontaneous polarization.
Fig. 2 shows the temperature dependence of the aver-

age spontaneous polarization for different applied

strains. The average spontaneous polarization, ÆP*sæ, is
c�11 c�12 c�44 G�
11 G�

12 G�
44 G0�

44

19 1766 802 1124 1.60 0.0 0.8 0.8



Fig. 1. Domain structures (a–d) and the corresponding stress distributions (A–D) at 25 �C under sustained equiaxial strains of 0.008 for (a)-(A); 0 for

(b)-(B); �0.008 for (c)-(C) and �0.012 for (d)-(D).
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obtained by averaging the polarization magnitude,

P �
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P �2
1 þ P �2

2

q
, at each grid, over the entire simulated

ferroelectric material. Under a sustained strain, the aver-

age spontaneous polarization decreases continuously
down to zero with an increase of temperature. At a given

temperature, a tensile strain increases the average spon-
taneous polarization, while a compressive strain reduces

it. A continuous change of the average spontaneous

polarization with temperature implies that the paraelec-

tric/ferroelectric phase transition of PbTiO3 crystals is of

the second order under a sustained strain. Under a sus-
tained stress, however, the paraelectric/ferroelectric

phase transition is of the first order [13]. Applying a sus-
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tained strain linearly changes the phase transition tem-
perature, i.e., the Curie temperature, Tc. The linear

change is described by Tc = 480 + 31,250 · e(a) and is

shown in the inset of Fig. 2, indicating that a tensile

strain linearly increases the Curie temperature, while a

compressive strain linearly reduces it. This result is dif-

ferent from the results from the effect of a misfit strain

on the transition temperature in ferroelectric thin films

[3,6,19], in which both the compressive strain and the
tensile strain linearly increase the Curie temperature.

This is because the plane strain condition is adopted

and P3 is treated as zero here, while the plane stress con-

dition, r33 = r13 = r23 = 0, is used and P3 is treated as

nonzero in the ferroelectric thin films [3,6,19].

The average internal stress, hr�
iji, induced by the

spontaneous polarization was calculated by averaging

the internal stress, r�
ij, at each grid over the entire simu-

lated material. Under a sustained biaxial strain,

eðaÞ11 ¼ eðaÞ22 ¼ eðaÞ, the average internal stresses in the x1
and x2 directions are equal, i.e., hr�

11i ¼ hr�
22i ¼ hr�i.

Fig. 3 illustrates the temperature dependence of the

average internal stress, Ær*æ, under different sustained

strains, showing that the average internal stresses are

all compressive. This is because only the spontaneous

polarization-induced internal stress is considered and
the Curie temperature varies with the sustained strain.

For a given sustained strain, the magnitude of the aver-

age internal stress linearly increases as the temperature

decreases. The slopes of the curves are almost the same,

as shown in Fig. 3. Fig. 4 shows the strain dependence of

the average internal stress Ær*æ at a constant tempera-

ture, indicating that there is a linear relationship be-

tween the average internal stress and the sustained
strain and that the average internal stress versus the sus-

tained strain for different temperatures has the same

slope.
In a paraelectric/ferroelectric phase transition under a

sustained strain, the average internal stress, which is re-

lated to the spontaneous polarization, is a function of
temperature and the sustained strain in the absence of

external electric fields. Thus, we can write the average

internal stress, Ær*æ, in a differentiated form:

dhr�i ¼ ohr�i
oT

� �
eðaÞ

dT þ ohr�i
oeðaÞ

� �
T

deðaÞ ¼ b dT þ c deðaÞ;

ð20Þ
where b � ðohr�i=oT ÞeðaÞ denotes the change rate of the

average internal stress with temperature under a sus-

tained strain and c � ðohr�i=oeðaÞÞT stands for the

change rate of the average internal stress with the sus-

tained strain at a given temperature. Figs. 3 and 4 show
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that the average internal stress changes smoothly to zero

in the ferroelectric phase. Note that there is no internal

stress related to the spontaneous polarization in the

paraelectric phase because there is no spontaneous

polarization. Therefore, the average internal stress is

of continuity at the phase transition point, from which
we have dÆr*æferro = dÆr*æpara. Then, from Eq. (20) we

have

dT c

deðaÞ
¼ � Dc

Db
; ð21Þ

where Db = bferro � bpara and Dc = cferro � cpara are the

discontinuous changes of b and c at the Curie point,

respectively. Noting that the average internal stress,

Ær*æ, is zero in the paraelectric phase, we have bpara = 0

and cpara = 0 and then Db = bferro and Dc = cferro. From
the simulation results shown in Figs. 3 and 4, we deter-

mine the average values of Db = bferro and Dc = cferro to

be 0.1075 and �3315, respectively, for the ferroelectric
phase. Substituting the average values into Eq. (21)

leads to

dT c

deðaÞ
¼ ��3315

0:1075
¼ 30837

or

T cðeðaÞÞ ¼ T cðeðaÞ ¼ 0Þ þ 30837eðaÞ; ð22Þ

which is consistent with the equation obtained in Fig. 2.
For the second order ferroelectric phase transition under

constant pressure, the shift in the transition temperature,

Tc with the hydrostatic pressure, p, is described by the

well-known Ehrenfest equation, dT c=dp ¼ Dsv= Dav, in
which Dav and Dsv are the discontinuous changes in the

volume expansions and in the compression coefficients

at the Curie point, respectively [33]. Clearly, Eq. (21) is

a modified version of the Ehrenfest equation, which
describes the shift of the transition temperature with the

sustained strain in a fully clamped ferroelectric material.

Fig. 5 shows the temperature dependence of the aver-

age spontaneous polarization under different inequiaxial

strains. Under the inequiaxial strain of eðaÞ11 ¼ 0:004
and eðaÞ22 ¼ 0 or eðaÞ11 ¼ �0:004 and eðaÞ22 ¼ 0, there is a

jump in the average spontaneous polarization from

point B1 to point C1 or from point B2 to point C2, as
shown in Fig. 5. The changes in the domain microstruc-

ture with temperature corresponding to A1–B1–C1–D1

and A2–B2–C2–D2 in Fig. 5 are illustrated in Figs. 6

and 7, respectively. Along with the jumps in the average

spontaneous polarization in Fig. 5, the simulated ferro-

electric material changes its microstructure from a mul-

ti-domain state to a single-domain state, which is clearly

shown in Fig. 6B1 and C1 and in Fig. 7B2 and C2. For
comparison, Fig. 8 shows the domain structures at var-

ious temperatures under the equiaxial strain of

eðaÞ11 ¼ eðaÞ22 ¼ �0:004, corresponding to points A3–B3–

C3–D3 in Fig. 5. Under the equiaxial strain, the simu-
lated ferroelectric material maintains its multi-domain

structure until the spontaneous polarization vanishes,
showing completely different behavior from that under

the inequiaxial strains.

3.2. The effects of external applied strain on the nonlinear

dielectric properties

To characterize the nonlinear behaviors of ferroelec-

tric materials under different levels of applied strains, we
simulated the polarization response to different levels of

external electric loading under different levels of applied

equiaxial strains of eðaÞ11 ¼ eðaÞ22 ¼ eðaÞ. The external electric
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Fig. 8. Microstructures of ferroelectrics at different temperatures

under the applied equiaxial strain of eðaÞ11 ¼ eðaÞ22 ¼ �0:004.
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field was applied along the x2-axis, where a positive or

negative electric field meant that the field was parallel

or anti-parallel to the x2-direction. At each level of elec-

tric loading, we calculated the evolution of the domain

structure based on Eq. (18). The volume averages of

the polarizations along the x2-direction at the steady

state were taken as the macroscopic response of the sim-
ulated ferroelectric material to the applied electric field.

In the simulations, the applied dimensionless field was

increased from zero to a designed positive value, then,

decreased from the positive value to zero and then its

direction was reversed and further decreased to a de-

signed negative value. After that, the applied electric
field was increased from the designed negative value to

the designed positive value. One cycle of the electric

loading gives the P–E loop of the average polarization,

hP �
2i, versus the electric field, EðaÞ;�

2 . The P–E loops at

room temperature were calculated under eight different

levels of applied equiaxial strain. For example, Fig. 9

shows four P–E loops under the applied strains of

e(a) = �0.02, e(a) = �0.01, e(a) = �0.005 and e(a) = 0.01.
Obviously, the hysteresis loop of the average polariza-

tion versus the electric field becomes smaller when the

external applied strain, e(a), changes from 0.01 to

�0.01, and vanishes when e(a) = �0.02. The curve with

the applied strain, e(a) = �0.02, in Fig. 9 indicates that

the average polarization varies nonlinearly with the

external electric field without any hysteresis loop. The

vanishing of the hysteresis loop implies that the simu-
lated ferroelectric material loses its ferroelectric property

and is in the paraelectric phase, in which the polariza-

tion has the same direction as the external field. The

polarization distributions verify this conclusion. Figs.

10(Ap), (Bp), (Cp), (Dp) and (Ep) show the polarization

distributions corresponding to points Ap, Bp, Cp, Dp

and Ep in Fig. 9, respectively. If there is no applied elec-

tric field, i.e., at point Cp, there is no spontaneous polar-
ization in the simulated material. In the paraelectric

phase, polarizations are induced by an applied electric

field and the magnitude of the polarizations increases

nonlinearly with the level of the applied field, as shown

in Fig. 9. The polarization distribution in the ferroelectric



Fig. 10. Distribution of polarizations at different applied electric fields

with the equiaxial strain of eðaÞ11 ¼ eðaÞ22 ¼ �0:02. Fig. 11. Distribution of polarizations at different applied electric fields

with the equiaxial strain of eðaÞ11 ¼ eðaÞ22 ¼ 0:01.
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phase is totally different from that in the paraelectric

phase. Figs. 11(A0), (B0), (C0), (D0), (E0) and (F0) show

the distributions of the polarizations at different levels of

electric fields corresponding to points A0, B0, C0, D0, E0

and F0 in Fig. 9 with an applied equiaxial strain of

e(a) = 0.01. During the decrease in the applied electric

field from 0.8 to �0.5, i.e., from point A0 to point B0,
as shown in Fig. 9, the average polarization decreases

smoothly, which is attributed to the domain wall mo-

tion, as indicated by the domain structures illustrated

in Figs. 11(A0) and 11(B0). A further decrease of the ap-

plied electric field from �0.5 to �0.07, i.e., from point

B0 to point C0, cause the average polarization to de-

crease sharply, as shown in Fig. 9, which is attributed

to the nucleation of a new domain with a different polar-
ization direction from the parent domains, as illustrated

in the lower-left corner of Fig. 11(C0). When the electric

field reaches the coercive field, the average polarization

jumps from positive to negative, as indicated by points

C0 and D0 in Figs. 9. Figs. 11(C0) and 11(D0) illustrate

the domain structures before and after the jumps, thereby

indicating that the domain structure changes its config-
uration completely. When the applied electric field in-

creases from �0.8 to 0.5, to 0.7 and then to 0.8, i.e.,

from point D0 to point E0 to point F0 and to point A0

in Fig. 9, the average polarization increases smoothly

by domain wall motion first and then increases abruptly

by the nucleation of new domains and finally switches its

direction completely by the entire change in the domain

structure, as illustrated in Figs. 11(D0), (E0), (F0) and
(A0). From the hysteresis loops, we determine the coer-

cive field, E�
c , at which the average polarization reverses,

and the remanent polarization, P �
r , i.e., the average

polarization, hP �
2i, when the applied electric field is zero.

Fig. 12 shows the curves of the coercive field and the

remanent polarization versus the applied strain at a

room temperature of 25 �C. At the applied strain of

e(a) = 0.01, the coercive field and remanent polarization
are 0.75 and 0.547, respectively. Both the coercive

field and the remanent polarization decrease as the

applied strain, e(a), is reduced. When the applied strain

decreases to �0.015, both the coercive field and the rem-

anent polarization are zero. Within the range from
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e(a) = �0.015 to e(a) = 0.01, the variation in the coercive

field with the applied strain is approximately linear,

whereas the change in the remanent polarization is obvi-

ously nonlinear with the applied strain. The remanent

polarization changes greatly as the applied strain varies

from �0.013 to �0.015. The strain dependence of the

coercive field and the remanent polarization in Fig. 12

is very similar to the temperature dependence of the
coercive field and the remanent polarization [34], indi-

cating again that applied strains may have the same abil-

ity as temperature to vary and/or control the behavior of

ferroelectric materials.

In general, there are two kinds of dielectric con-

stants, linear and nonlinear dielectric constants, for

ferroelectric materials [35]. The linear or reversible

dielectric constant is defined by the slope of the P–E
curve at the origin under low levels of applied electric

fields such that no hysteresis loop is induced. The

nonlinear or irreversible dielectric constant is defined

as the slope of the P–E loop at the point with the

remanent polarization. In the present work, we stud-

ied the effect of applied equiaxial strain on the nonlin-

ear dielectric constant. From the P–E loops under

various levels of applied equiaxial strains, we calcu-
lated the nonlinear dielectric constants at room tem-

perature and plotted them in Fig. 13 as a function

of the applied strain. The nonlinear dielectric constant

increases from 0.17 to 3.84 when the strain decreases

from 0.01 to �0.015 and then decreases with the

strain after �0.015. There is a peak in the curve at

e(a) = �0.015, at which the coercive field and the rem-

anent polarization both decrease from finite values to
zero, as indicated in Fig. 12. The vanishing of the

coercive field and the remanent polarization implies

that the simulated material loses its ferroelectric prop-

erty, i.e., the ferroelectric–paraelectric phase transition

occurs at that level of the applied strain, meaning that

the simulated PbTiO3 is in the paraelectric phase when

the strain is less than �0.015, whereas it is in the fer-
roelectric phase when the strain is greater than

�0.015.
4. Concluding remarks

In summary, a phase field model was employed to

study the influence of external applied strains on the

spontaneous polarization and the ferroelectric and non-

linear dielectric properties of a single crystal. The simu-
lation results indicate that applied mechanical loads

and/or constraints may have the power to tailor the

material properties of ferroelectric materials similar to

temperature, which allows us to control, modify and

fully utilize the material�s properties by controlling tem-

perature and/or the mechanical loads and/or constraints.

As described above, the strength of phase field simu-

lation is that it does not make any prior assumptions
about transient microstructures, which may appear on

a phase transformation path. Phase transformation is

a direct consequence of the minimization process of

the total free energy of an entire simulated system. Phase

field simulations of ferroelectrics have the power to exhi-

bit detailed ferroelectric domain structures and to inves-

tigate the effects of applied mechanics strains and

temperature. In particular, a phase field model of ferro-
electrics can simulate or/and predict material behaviors

under applied electrical and/or mechanical loading at

various temperatures. However, a phase field model is

a phenomenological one. Material parameters used in

simulations are selected by fitting real material behav-

iors in certain circumstances. The material parameters

may have a limited application region. Therefore, the

material behaviors predicted by the phase field simula-
tion should be verified by experiments. Once verified,

the theoretical model provides a deep understanding of

the material behaviors.
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Appendix A

The elastic energy density equation, Eq. (4), can be
rewritten as [28]

fela ¼ 1
2
c11½ðeela11 Þ

2 þ ðeela22 Þ
2 þ ðeela33 Þ

2�
þ c12½eela11 eela22 þ eela22 e

ela
33 þ eela11 e

ela
33 �

þ 2c44½ðeela12 Þ
2 þ ðeela23 Þ

2 þ ðeela13 Þ
2�; ðA:1Þ

with three independent elastic constants, c11, c12 and c44,
according to Voigt�s notation. After substituting Eqs. (5)

and (11) into Eq. (A.1), the elastic energy density can be

separated into three parts,

fela ¼ fela1 þ fela2 þ fela3; ðA:2Þ

in which

fela1 ¼ 1
2
c11½ðeðsÞ11 þ eðaÞ11 Þ

2 þ ðeðsÞ22 þ eðaÞ22 Þ
2 þ ðeðsÞ33 þ eðaÞ33 Þ

2�
þ c12½ðeðsÞ11 þ eðaÞ11 Þðe

ðsÞ
22 þ eðaÞ22 Þ þ ðeðsÞ22 þ eðaÞ22 Þðe

ðsÞ
33 þ eðaÞ33 Þ

þ ðeðsÞ11 þ eðaÞ11 Þðe
ðsÞ
33 þ eðaÞ33 Þ�

þ 2c44½ðeðsÞ12 þ eðaÞ12 Þ
2 þ ðeðsÞ23 þ eðaÞ23 Þ

2 þ ðeðsÞ13 þ eðaÞ13 Þ
2�;
ðA:3Þ

is the energy density related to the total strain,

fela2 ¼ b11ðP 4
1 þ P 4

2 þ P 4
3Þ þ b12ðP 2

1P
2
2 þ P 2

2P
2
3 þ P 2

1P
2
3Þ
ðA:4Þ

is the additional energy density due to the constant

strain constraint and

fela3 ¼�½q11ðe
ðsÞ
11 þ eðaÞ11 Þþ q12ðe

ðsÞ
22 þ eðaÞ22 Þþ q12ðe

ðsÞ
33 þ eðaÞ33 Þ�P 2

1

� ½q11ðe
ðsÞ
22 þ eðaÞ22 Þþ q12ðe

ðsÞ
11 þ eðaÞ11 Þþ q12ðe

ðsÞ
33 þ eðaÞ33 Þ�P 2

2

� ½q11ðe
ðsÞ
33 þ eðaÞ33 Þþ q12ðe

ðsÞ
11 þ eðaÞ11 Þþ q12ðe

ðsÞ
22 þ eðaÞ22 Þ�P 2

3

� 2q44½ðe
ðsÞ
12 þ eðaÞ12 ÞP 1P 2 þðeðsÞ23 þ eðaÞ23 ÞP 2P 3

þðeðsÞ13 þ eðaÞ13 ÞP 1P 3�; ðA:5Þ

is the interaction energy density between total strain and

polarization, where
b11 ¼ 1
2
c11ðQ2

11 þ 2Q2
12Þ þ c12Q12ð2Q11 þ Q12Þ;

b12 ¼ c11Q12ð2Q11 þ Q12Þ
þ c12ðQ2

11 þ 3Q2
12 þ 2Q11Q12Þ þ 2c44Q

2
44;

q11 ¼ c11Q11 þ 2c12Q12;

q12 ¼ c11Q12 þ c12ðQ11 þ Q12Þ;
q44 ¼ 2c44Q44:

ðA:6Þ

By combining Eqs. (A.4) and (A.5) with Eq. (2), the

Landau expression can be rewritten as

fLðP iÞ ¼ ae1P
2
1 þ ae2P

2
2 þ ae3P

2
3

� 2q44½ðe
ðsÞ
12 þ eðaÞ12 ÞP 1P 2 þ ðeðsÞ23 þ eðaÞ23 ÞP 2P 3

þ ðeðsÞ13 þ eðaÞ13 ÞP 1P 3� þ ða11 þ b11ÞðP 4
1 þ P 4

2 þ P 4
3Þ

þ ða12 þ b12ÞðP 2
1P

2
2 þ P 2

2P
2
3 þ P 2

1P
2
3Þ

þ a111ðP 6
1 þ P 6

2 þ P 6
3Þ þ a112½ðP 4

1ðP 2
2 þ P 2

3Þ
þ P 4

2ðP 2
1 þ P 2

3Þ þ P 4
3ðP 2

1 þ P 2
2Þ� þ a123P 2

1P
2
2P

2
3;

ðA:7Þ

in which

ae1 ¼ a1 � ½q11ðe
ðsÞ
11 þ eðaÞ11 Þ þ q12ðe

ðsÞ
22 þ eðaÞ22 Þ þ q12ðe

ðsÞ
33 þ eðaÞ33 Þ�;

ae2 ¼ a1 � ½q11ðe
ðsÞ
22 þ eðaÞ22 Þ þ q12ðe

ðsÞ
11 þ eðaÞ11 Þ þ q12ðe

ðsÞ
33 þ eðaÞ33 Þ�;

ae3 ¼ a1 � ½q11ðe
ðsÞ
33 þ eðaÞ33 Þ þ q12ðe

ðsÞ
11 þ eðaÞ11 Þ þ q12ðe

ðsÞ
22 þ eðaÞ22 Þ�:

ðA:8Þ

According to the general eigenstrain theory, the local

strains, eðsÞij , are inhomogeneous and their volume aver-

ages are zeros, i.e. heðsÞij i ¼ 0, when the eigenstrains, e0ij,
are periodically distributed in an infinite elastic body
[32]. For simplicity, the value of the volume average of

Eq. (A.8) is usually and approximately used [28]. In this

case, Eq. (A.8) is reduced to

ae1 ¼ a1 � ðq11e
ðaÞ
11 þ q12e

ðaÞ
22 þ q12e

ðaÞ
33 Þ;

ae2 ¼ a1 � ðq11e
ðaÞ
22 þ q12e

ðaÞ
11 þ q12e

ðaÞ
33 Þ; ðA:9Þ

ae3 ¼ a1 � ðq11e
ðaÞ
33 þ q12e

ðaÞ
11 þ q12e

ðaÞ
22 Þ:
References

[1] Zhang TY, Zhao MH, Tong P. Adv Appl Mech 2002;38:147.

[2] Li Z, Foster M, Dai XH, Xu XZ, Chan SK, Lam DJ. J Appl Phys

1992;71:4481.

[3] Pertsev NA, Zembilgotov AG, Tagantsev AK. Phys Rev Lett

1998;80:1988.

[4] Kwak BS, Erbil A. Phys Rev Lett 1992;68:3733.

[5] Roytburd AL. J Appl Phys 1998;83:228.

[6] Pertsev NA, Koukhar VG. Phys Rev Lett 2000;84:3722.

[7] Oh SH, Jang HM. Appl Phys Lett 1998;72:1457.

[8] Emelyanov AY, Pertsev NA, Kholkin AL. Phys Rev B

2002;66:214108.

[9] Oh SH, Jang HM. Phys Rev B 2000;62:14757.

[10] Amin A, Newnhan RE, Cross LE. Phys Rev B 1986;34:1595.



J. Wang et al. / Acta Materialia 53 (2005) 2495–2507 2507
[11] Koukhar VG, Pertsev NA, Waser R. Appl Phys Lett 2001;78:530.

[12] Kelman MB, Mclntyre PC, Hendrix BC, Bilodeau SM, Roeder

JF. J Appl Phys 2003;93:9231.

[13] Oh SH, Jang HM. J Appl Phys 1999;85:2815.

[14] Yamamoto T, Makino Y. Jpn J Appl Phys 1996;35:3214.

[15] Hu HL, Chen LQ. Mater Sci Eng A 1997;238:182.

[16] Hu HL, Chen LQ. J Am Ceram Soc 1998;81:492.

[17] Wang J, Shi SQ, Chen LQ, Li YL, Zhang TY. Acta Mater

2004;52:749.

[18] Ahluwalia R, Lookman T, Saxena A. Phys Rev Lett

2003;91:055501.

[19] Li YL, Choudhury S, Liu ZK, Chen LQ. Appl Phys Lett

2003;83:1608.

[20] Chen LQ, Wolverton C, Vaithyanathan V, Liu ZK. MRS Bull

2001(March issue):197.

[21] Artemev A, Wang Y, Khachaturyan AG. Acta Mater

2000;48:2503.

[22] Cha PR, Kim SG, Yeon DH, Yoon JK. Acta Mater 2002;50:3817.
[23] Rodney D, Bouar YL, Finel A. Acta Mater 2003;51:17.

[24] Shen C, Wang Y. Acta Mater 2003;51:2595.

[25] Cao W, Cross LE. Phys Rev B 1991;44:5.

[26] Nambu S, Sagala DA. Phys Rev B 1994;50:5838.

[27] Gao YF, Suo Z. J Appl Mech 2002;69:419.

[28] Li YL, Hu SY, Liu ZK, Chen LQ. Acta Mater 2002;50:395.

[29] Hu SY, Li YL, Chen LQ. J Appl Phys 2003;94:2542.

[30] Ahluwalia R, Cao W. J Appl Phys 2001;89:8105.

[31] Ahluwalia R, Cao W. Phys Rev B 2000;63:012103.

[32] Mura T. Micromechanics of defects in solids. Boston: Kluwer

Academic Publishers; 1987.

[33] Mitsui T, Tatsuzaki I, Nakamura E. An introduction to

the physics of ferroelectrics. London: Gordon and Breach;

1976.

[34] Lines ME, Glass AM. Principles and applications of ferroelectrics

and related materials. Oxford: Clarendon Press; 1977.

[35] Fatuzzo E, Merz WJ. Ferroelectricity. New York: North-Hol-

land; 1967.


	The effect of mechanical strains on the ferroelectric and dielectric properties of a model single crystal  --  Phase field simulation
	Introduction
	Simulation methodology
	General approach of the phase field model
	2D simulation and used parameters

	Simulation results and discussion
	The effects of external applied strain on the ferroelectric properties
	The effects of external applied strain on the nonlinear dielectric properties

	Concluding remarks
	Acknowledgments
	Appendix A
	References


