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Abstract

Polarization switching in a ferroelectric subjected to an electric field or a stress field is simulated using a phase-field model based

on the time-dependent Ginzburg–Landau equation, which takes both multiple-dipole–dipole–electric and multiple-dipole–dipole–

elastic interactions into account. The temporal evolution of the polarization switching shows that the switching is a process of

nucleation, if needed, and growth of energy-favorite domains. Macroscopic polarization and strain are obtained by averaging

polarizations and strains over the entire simulated ferroelectric. The simulation results successfully reveal the hysteresis loop of

macroscopic polarization versus the applied electric field, the butterfly curve of macroscopic strain versus the applied electric field,

and the macroscopically nonlinear strain response to applied compressive stresses.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric materials have become preferred mate-

rials in a wide variety of electronic and mechatronic

devices due to their pronounced dielectric, piezoelectric,

and pyroelectric properties. These distinct dielectric,
piezoelectric, and pyroelectric properties are related

to ferroelectric domain structures and polarization

switching. If one can design, fabricate, and/or control

the domain structures and polarization switching, one

should be able to take full advantage of ferroelectric

materials in manufacturing modern electronic and

mechatronic devices. It is therefore of great importance

to understand and predict the ferroelectric domain
structures and polarization switching when such mate-

rials are subjected to external electrical and/or me-

chanical loading.
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A ferroelectric material possesses spontaneous po-

larization, spontaneous strain and a domain structure

below its Curie temperature. The spontaneous strain is a

measure of the lattice distortion induced by the spon-

taneous polarization. Due to the crystalline anisotropy,

the direction of the spontaneous polarization in a lattice
cell is along one of the polar axes in the crystal. An

electric domain represents a region in which all lattice

cells have the same polarizations. A domain structure of

a ferroelectric consists of domains with different orien-

tations and boundaries between the domains, which are

called domain walls. Sufficiently high electrical and/or

mechanical fields can switch polarizations by 180� or

about 90� from one polar axis to another and thus result
in domain nucleation, domain wall motion, domain

switching and/or a complete change in the domain

structure. In an electrical field-loaded ferroelectric, the

macroscopic polarization switches 180� and causes a

hysteresis loop of polarization versus the electric field

and an associated butterfly loop of strain versus the

electric field when the applied electric field reverses its

direction. Switching a polarization by 180� causes little
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or no mechanical distortion because the spontaneous

strain has a 180�-symmetry, whereas 90�-polarization
switching involves a change in the orientation of the

spontaneous strain by about 90� and thus changes in-

ternal stresses. Clearly, the macroscopic behavior of a
ferroelectric under applied electrical and/or mechanical

loading is a statistically averaged response over entire

polarizations of crystalline cells.

Many theoretical studies have been conducted to

understand and predict the nonlinear behavior caused

by polarization switching [1–17]. Thermodynamic ap-

proaches are usually used to establish switching criteria

and the switching region is usually assumed to be a do-
main. For example, a thermodynamic energy-based cri-

terion for an individual domain states that a domain

switches when the electric work plus the mechanical work

exceed a critical value [8].According to the criterion, 180�-
switching, where stresses are irrelevant, is activated if

EiDPi P 2PsEc; ð1Þ

where Ei and Pi are the electric field strength and the

polarization vectors, respectively, Ps is the magnitude of

the spontaneous polarization, Ec is the absolute value of

the coercive field, and the D denotes a change of a
property before and after the switching. With 90�-
switching, the work done by mechanical stresses has to

be taken into account, and the criterion is then

rijDeij þ EiDPi P 2PsEc; ð2Þ
where rij and eij denote the stress and the strain tensors,

respectively. Note that 90�-switching may occur without

the presence of external electric fields. Eqs. (1) and (2)

represent typically simplified versions of thermodynamic

energy-based switching criteria, where the magnitude of

polarization is generally assumed to be constant. Fur-
thermore, the inclusion model is often adopted in the

development of a polarization-switching criterion, in

which the switching criterion is derived from the po-

tential energy of an infinite homogeneous ferroelectric

medium containing a single ellipsoidal and transform-

able inclusion [9].

In general, a domain-switching model requires the

development of new constitutive equations and exten-
sive numerical calculations. For example, a nonlinear

constitutive model was proposed for ferroelectric poly-

crystals under a combination of mechanical stress and

electric field by employing self-consistent analysis, as an

extension of the self-consistent crystal plasticity scheme,

to address ferroelectric switching and to estimate the

macroscopic response of tetragonal crystals under a

variety of loading paths [10]. This model has the ability
to capture several observed features of ferroelectrics

such as the shapes of the dielectric hysteresis and the

butterfly loop, the Bauschinger effect under mechanical

and electrical loads, and the depolarization of a poly-

crystalline by compressive stresses. In numerical simu-
lations of the nonlinear behavior of a ferroelectric

polycrystal, the response of the ferroelectric polycrystal

to applied loads was predicated by averaging the re-

sponse of individual grains that were considered to be

statistically random in orientation [8]. The nonlinear
electric displacement versus electric field hysteresis loops

[11] and stress–strain curves [12] were simulated by using

a finite element model in which each finite element

represented one crystallite and was randomly assigned a

crystallographic orientation and a polarization direc-

tion. The material responses to the applied electric and/

or mechanical fields were averaged over the switching

responses of many randomly oriented elements [11,12].
Furthermore, a continuous domain orientation distri-

bution function (ODF) could be used to develop

domain-switching models with the consideration of

electromechanical interactions in a self-consistent man-

ner and with different constitutive laws to account for

strain saturation, asymmetry in tension versus com-

pression, Bauschinger effects, reverse switching and

spontaneous strain reorientation [13–17].
It should be noted that most works available on an-

alytical modeling of domain switching are first order

approximations, since the related analyses do not take

into account the interactions between domains during

the switching process. Secondly, many analytical models

assume that the switching is the entire response of an

‘‘inclusion’’ and no partial transformation is allowed. In

a lot of cases, the electric characteristics, such as the
electric boundary conditions between domains, are ig-

nored. In fact, domain switching is a gradual process

and crystalline cells in a domain do not all switch si-

multaneously. The process of domain switching may

start with few crystalline cells, i.e., with nominal new

domain nucleation and then proceed by domain wall

motion. Obviously, the process of domain switching is

strictly a kinetic process involving changes in the do-
main microstructure and a reverse in the macroscopic

polarization might be induced by a microscopically

complete change in the domain structure. On this aspect,

phase-field simulations of the nonlinear behavior of

ferroelectrics are able to give insights into the switching

mechanism.

Phase-field theory is based on fundamental principles

of thermodynamics and kinetics. It provides a powerful
method for predicting the temporal evolution of mi-

crostructures in materials [18–24]. In a phase-field

model, thermodynamic energies are described in terms

of a set of continuous order parameters. The temporal

evolution of a microstructure is obtained by solving

kinetics equations that govern the time-dependence of

the spatially inhomogeneous order parameters. A phase-

field model does not make any prior assumptions about
transient microstructures, which may appear on a phase

transformation path, and about transformation criteria.

Phase transformation is a direct consequence of the
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minimization process of the total free energy of an entire

simulated system. Phase-field models have been widely

used to study domain structures in ferroelectric materi-

als and polarization switching under an electric field

[25–37]. For example, Cao and Cross [27] proposed a
three-dimensional Landau–Ginzburg model to describe

the tetragonal twin microstructure in ferroelectrics. They

presented quasi-one-dimensional analytic solutions for

the space profiles of the order parameter for 180�- and
90�-twin microstructures. Based on the time-dependent

Ginzburg–Landau equation, Nambu and Sagala [28]

simulated domain structures in ferroelectrics with con-

sideration of multiple-dipole–dipole–elastic interactions.
By taking into account multiple-dipole–dipole–electric

and multiple-dipole–dipole–elastic interactions, Hu and

Chen [30,31] conducted the two- and three-dimensional

phase-field simulations of ferroelectric domain struc-

tures and found that the multiple-dipole–dipole–elastic

interactions played a critical role in the formation of the

twin microstructure, whereas the multiple-dipole–di-

pole–electric interactions were responsible for the head-
to-tail arrangements of the dipoles at twin boundaries.

Recently, Li et al. [33–35] extended the phase-field model

to study the stability and evolution of domain micro-

structures in thin films and the effect of electrical

boundary conditions as well. Ahluwalia and Cao [36,37]

investigated the size dependence of domain patterns and

the influence of dipolar defects on the switching behavior

of ferroelectrics. However, the polarization switching of
ferroelectrics subjected to external electrical and/or me-

chanical loading has not been comprehensively simu-

lated with the phase-field theory.

In this paper, we conduct phase-field simulations of

ferroelectric/ferroelastic polarization switching in a sin-

gle ferroelectric crystal subjected to external electrical

and/or mechanical loading. The phase-field simulations

are based on the time-dependent Ginzburg–Landau
equation, which takes the multiple-dipole–dipole–elastic

and -electric interactions into account. The phase-field

model does not make any prior assumptions about the

evolution of the domain structure. Polarization switch-

ing is a natural process occurring during the minimiza-

tion of the total free energy of the entire simulated

ferroelectric with given boundary and/or loading con-

ditions. With phase-field simulations, we investigate the
temporal evolution of polarization under an applied

electric field or mechanical stress, the domain configu-

ration, and the macroscopically electrical and mechan-

ical responses to applied electrical and mechanical loads.
2. Simulation methodology

The paraelectric-to-ferroelectric phase transition oc-

curs in a ferroelectric material when its temperature is

lower than its Curie point. The spontaneous polariza-
tion vector, P ¼ ðP1; P2; P3), is usually used as the order

parameter to calculate thermodynamic energies of the

ferroelectric phase in the Landau phase transformation

theory. As mentioned above, the ferroelectric phase

forms a domain structure consisting of domains and
domain walls. In most circumstances, domains arrange

themselves in a head-to-tail manner. Applying an elec-

tric and/or stress field has the tendency to move domain

walls or the tendency to nucleate new domains. Polari-

zation switching occurs when the applied electric and/

or stress field is high enough to move domain walls and/

or to nucleate new domains. In the process of polari-

zation switching, the spontaneous polarization vector,
P, changes with time and location such that a new do-

main configuration is formed with a free energy lower

than that of the initial domain configuration. In phase-

field simulations, the time-dependent Ginzburg–Landau

equation,

oPiðr; tÞ
ot

¼ �L
dF

dPiðr; tÞ
ði ¼ 1; 2; 3Þ; ð3Þ

is generally used to calculate the temporal evolution,

where t denotes time, L is the kinetic coefficient, F is the

total free energy of the system, dF =dPiðr; tÞ represents

the thermodynamic driving force for the spatial and
temporal evolution of the simulated system, and r de-

notes the spatial vector, r ¼ ðx1; x2; x3Þ. In the present

study, we adopt Eq. (3) to simulate the spontaneous

polarization and the process of polarization switching in

a ferroelectric under an applied electrical or mechanical

field. The total free energy of the system includes the

bulk free energy, the domain wall energy, i.e., the energy

of the spontaneous polarization gradient, the multiple-
dipole–dipole–electric and multiple-dipole–dipole–elas-

tic interaction energies, and the elastic energy and the

electric energy induced by an applied electrical or me-

chanical load.

For a ferroelectric material, the bulk Landau free

energy density is commonly expressed by a six-order

polynomial of the spontaneous polarization [31], i.e.,

fL ¼ a1ðP 2
1 þ P 2

2 þ P 2
3 Þ þ a11ðP 4

1 þ P 4
2 þ P 4

3 Þ
þ a12ðP 2

1 P
2
2 þ P 2

2 P
2
3 þ P 2

1 P
2
3 Þ þ a111ðP 6

1 þ P 6
2 þ P 6

3 Þ
þ a112½P 4

1 ðP 2
2 þ P 2

3 Þ þ P 4
2 ðP 2

1 þ P 2
3 Þ þ P 4

3 ðP 2
1 þ P 2

2 Þ�
þ a123P 2

1 P
2
2 P

2
3 ; ð4Þ

where a11; a12; a111; a112; a123 are constant coefficients and

a1 ¼ ðT � T0Þ=2e0C0 ¼ 1=2e is linked to the dielectric

constant, e, for T > T0, T and T0 denote temperature

and the Curie–Weiss temperature, respectively, C0 is the
Curie constant, and e0 is the dielectric constant of

vacuum.

In the Ginzburg–Landau theory, the free energy

function also depends on the gradient of the order

parameter. For ferroelectric materials, the polarization
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gradient energy represents the domain wall energy. For

simplicity, the lowest order of the gradient energy den-

sity is used here, which takes the form [31]:

fGðPi;jÞ ¼
1

2
G11ðP 2

1;1þP 2
2;2þP 2

3;3Þ

þG12ðP1;1P2;2þP2;2P3;3þP1;1P3;3Þ

þ1

2
G44½ðP1;2þP2;1Þ2þðP2;3þP3;2Þ2þðP1;3þP3;1Þ2�

þ1

2
G0

44½ðP1;2�P2;1Þ2þðP2;3�P3;2Þ2þðP1;3�P3;1Þ2�;

ð5Þ
where G11;G12;G44; and G0

44 are gradient energy coeffi-

cients and Pi;j denotes the derivative of the ith compo-

nent of the polarization vector, Pi, with respect to the jth

coordinate and i; j ¼ 1; 2; 3.
In the present phase-field simulations, each element is

represented by an electric dipole with its strength of the

dipole being given by a local polarization vector. The

electric field produced by all dipoles forms an internal
electric field, which, in turn, exerts a force on each of the

dipoles. The multiple-dipole–dipole–electric interactions

play a crucial role in the formation of a head-to-tail

domain structure and in the process of domain switch-

ing as well. The multiple-dipole–dipole–electric interac-

tion energy density is calculated from [31]

fdip ¼ � 1

2
E

ðiÞ
dip � PðiÞ; ð6Þ

where

E
ðiÞ
dip¼� 1

4pe

Z
PðrjÞ
ri�rj
�� ��3�3 ðri�rjÞ

� �
PðrjÞ�ðri�rjÞ
� �
ri�rj
�� ��5

( )
d3rj

ð7Þ
is the electric field at point ri induced by all dipoles in-

cluding the image electric field produced by dipole PðriÞ
itself. When there is an externally applied electric field,

Ee
i , an additional electrical energy density,

felec ¼ �Ee
i Pi ð8Þ

should be taken into account in the simulations.

As mentioned above, spontaneous strains are asso-
ciated with spontaneous polarizations. The spontaneous

eigenstrains are linked to the spontaneous polarization

components in the following form,

e011 ¼ Q11P 2
1 þ Q12ðP 2

2 þ P 2
3 Þ;

e022 ¼ Q11P 2
2 þ Q12ðP 2

3 þ P 2
1 Þ;

e033 ¼ Q11P 2
3 þ Q12ðP 2

1 þ P 2
2 Þ;

e023 ¼ Q44P2P3;

e013 ¼ Q44P1P3;

e012 ¼ Q44P1P2;

ð9Þ

where Qij are the electrostrictive coefficients. When a

dipole is among other dipoles with different orientations,
there exist multiple-dipole–dipole–elastic interactions.

The multiple-dipole–dipole–elastic interactions play an

essential role in the determination of a domain structure.

A twin-like domain structure is formed when the

multiple-dipole–dipole–elastic interactions predomi-
nate [30]. It is still a challenging task to calculate the

multiple-dipole–dipole–elastic interaction energy for

arbitrary boundary conditions. However, with periodic

boundary conditions, which are adopted in this study,

the general solution of the elastic displacement field is

given in Fourier space by [38,39]

uiðnÞ ¼ XjNijðnÞ=DðnÞ; ð10Þ
where Xi ¼ �iCijkle0klnj, i ¼

ffiffiffiffiffiffiffi
�1

p
, NijðnÞ are cofactors of

a 3� 3 matrix KðnÞ,

KðnÞ ¼
K11 K12 K13

K21 K22 K23

K31 K32 K33

2
4

3
5; ð11Þ

and DðnÞ is the determinant of matrix KðnÞ. Note that

KkiðnÞ ¼ Ckjilnjnl, in which Cijkl and ni are the elastic

constant components and coordinates in Fourier space,

respectively.

In the present simulations, we consider a ferroelectric

material, which has a perovskite crystal structure and its

lattice changes from cubic to tetragonal when sponta-

neous polarization occurs. In this case, the cubic para-
electric phase serves as the background material such

that all electric dipoles are embedded within the back-

ground material. For cubic crystals, the explicit ex-

pressions of DðnÞ and NijðnÞ are
DðnÞ ¼ l2ðkþ 2lþ l0Þn6 þ l0ð2kþ 2lþ l0Þ

� n2ðn21n
2
2 þ n22n

2
3 þ n21n

2
3Þ

þ l02ð3kþ 3lþ l0Þn21n
2
2n

2
3;

N11ðnÞ ¼ l2n4 þ bn2ðn22 þ n23Þ þ cn22n
2
3;

N12 ¼ �ðkþ lÞn1n2ðln2 þ l0n23Þ;

ð12Þ

and the other components are obtained by the cyclical

permutation of 1, 2, 3, where

n2 ¼ nini; b ¼ lðkþ lþ l0Þ;
c ¼ l0ð2kþ 2lþ l0Þ; k ¼ c12; l ¼ c44;

and l0 ¼ c11 � c12 � 2c44: ð13Þ

Polarization and/or polarization switching change the

dimensions and/or orientations of each crystalline cell in

the solid and thus produce local displacements, uðsÞi ,

i ¼ 1; 2; 3, and strains. We may call these the polariza-
tion-related displacements and strains and they are

linked by the equation:

eðsÞij ¼ 1

2
uðsÞi;j

�
þ uðsÞj;i

�
: ð14Þ

Due to the constraint of the surroundings, the polari-

zation-related strains include two parts: the elastic
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strains and the eigenstrains. The elastic strains related to

polarization and/or polarization switching are given by

eela;sij ¼ eðsÞij � e0ij: ð15Þ
When there exists an externally applied homogeneous
stress, re

kl, using the superposition principle, we have the

total elastic strains of the system:

eelaij ¼ eðsÞij � e0ij þ Sijklre
kl; ð16Þ

where Sijkl is the elastic compliance matrix of the back-

ground material. Finally, the elastic strain energy den-

sity under the cubic approximation is given by

fE ¼ 1

2
c11½ðeela11 Þ

2 þ ðeela22 Þ
2 þ ðeela33 Þ

2�

þ c12½eela11 eela22 þ eela22 e
ela
33 þ eela11 e

ela
33 �

þ 2c44½ðeela12 Þ
2 þ ðeela23 Þ

2 þ ðeela13 Þ
2�: ð17Þ

As described above, the elastic strain energy density is a

function of polarization and applied stresses. An applied

electric field can change the polarization and conse-

quently vary the elastic strain energy density. On the
other hand, an applied stress field can also change the

polarization and thus change the electric energy density.

Integrating the free energy density over the entire

volume of a simulated ferroelectric yields the total fee

energy, F, of the simulated ferroelectric under externally

applied electrical and mechanical loads, Ee
i and rekl.

Mathematically, we have

F ¼
Z
V

�
fL Pið Þþ fGðPi;jÞþ fdipðPiÞþ felecðPi;Ee

i Þþ fEðPi;re
klÞ
�
dV ;

ð18Þ
where V is the volume of the simulated ferroelectric.

For convenience of simulations, we employ the fol-

lowing set of the dimensionless variables as used in the

literature [31]

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja1j=G110

p
r; t� ¼ ja1jLt; P� ¼ P=P0;

a�1 ¼ a1=ja1j; a�11 ¼ a11P 2
0 =ja1j; a�12 ¼ a12P 2

0 =ja1j;
e� ¼ 1=ð2 a�1

�� ��Þ;
a�111 ¼ a11P 4

0 =ja1j; a�112 ¼ a112P 4
0 =ja1j;

a�123 ¼ a123P 4
0 =ja1j;

Q�
11 ¼ Q11P 2

0 ; Q�
12 ¼ Q12P 2

0 ; Q�
44 ¼ Q44P 2

0 ;

Ee;� ¼ Ee=ð a1j jP0Þ; re;�
kl ¼ re

kl=ðja1jP 2
0 Þ;

c�11 ¼ c11=ðja1=P 2
0 Þ; c�12 ¼ c12=ðja1jP 2

0 Þ;
c�44 ¼ c44=ðja1jP 2

0 Þ;
G�

11 ¼ G11=G110; G�
12 ¼ G12=G110;

G�
44 ¼ G44=G110; G0�

44 ¼ G0
44=G110;

ð19Þ
Table 1

Values of the normalized coefficients used in the simulation [34]

a�1 a�11 a�12 a�111 a�112 a�123 Q�
11 Q�

12 Q

)1 )0.24 2.5 0.49 1.2 )7 0.05 )0.015 0
where P0 ¼ jP0j ¼ 0:757 C=m2 is the magnitude of the

spontaneous polarization at room temperature, a1 ¼
ðT � T0Þ=ð2e0C0Þ ¼ ð25� 479Þ3:8� 105 m2N=C2, and

G110 ¼ 1:73� 10�10 m4N=C2 is a reference value of the

gradient energy coefficients [34]. The values of the di-
mensionless (normalized) material coefficients used in

the simulations are listed in Table 1.

With the dimensionless variables and Eq. (18), we

rewrite the time-dependent Ginzburg–Landau equation

oP �
i ðr�;t�Þ
ot�

¼�
d
R

fL P �
i

	 

þfdipðP �

i ÞþfelecðP �
i ;E

e;�
i ÞþfEðP �

i ;r
e;�
kl Þ

� �
dV �

dP �
i

�
d
R
fG P �

i;j

� �
dV �

dP �
i

: ð20Þ

In Fourier space, Eq. (20) takes the form [31]

o

ot�
P̂iðn; t�Þ ¼ �ff̂ ðP �

i Þgn � GiP̂iðn; t�Þ; ð21Þ

where P̂iðn; t�Þ and ff̂ ðP �
i Þgn are the Fourier transfor-

mations of P �
i ðr�; t�Þ and

d
R
½fLðP �

i Þ þ fdipðP �
i Þ þ felecðP �

i ;E
e;�
i Þ þ fEðP �

i ; r
e;�
kl Þ�dV �

dP �
i

;

respectively. Gis are the gradient operators correspond-
ing to the ith-component of the polarization field, which

are defined as follows:

G1 ¼ G�
11n

2
1 þ ðG�

44 þ G0�
44Þðn

2
2 þ n23Þ;

G2 ¼ G�
11n

2
2 þ ðG�

44 þ G0�
44Þðn

2
1 þ n23Þ;

G3 ¼ G�
11n

2
3 þ ðG�

44 þ G0�
44Þðn

2
2 þ n21Þ:

ð22Þ

The semi-implicit Fourier-spectral method [31] was

employed to solve the partial differential equation (21)
in the present work.
3. Simulation results and discussion

The methodology described in Section 2 is for three-

dimensional simulations. In the present study, we con-

ducted two-dimensional (2D) simulations of polariza-
tion and polarization switching under the plane-strain

condition. In the 2D simulations, electric charges and

dipoles should be regarded as line charges and dipoles

and the pre-factor, 1=ð4peÞ, in Eq. (7) should be changed

to 1=ð2peÞ. In the simulations, we used 32� 32 discrete

grid points with a cell size of Dx� ¼ Dy� ¼ 1 and adopted

periodic boundary conditions in both the x and y
�
44 c�11 c�12 c�44 G�

11 G�
12 G�

44 G0�
44

.019 1766 802 1124 1.60 0.0 0.8 0.8
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directions. The periodic boundary conditions imply that

the simulated domain structure reflects a domain

structure within an infinitely large single crystal, in

which there are no free edges and thus the edge effect is

not considered. In 2D phase-field simulations, a domain
structure is represented by a polarization field, which

varies spatially and, at each lattice site, is characterized

by a two-component vector. To visualize the simulation

results, we denote the magnitude and direction of each

polarization vector by the length and direction of an

arrow in the plots. In the numerical calculations of Eq.

(21), the time step was set at Dt� ¼ 0:04.

3.1. Formation of a ferroelectric domain structure

Fig. 1 shows the temporal evolution of a domain

structure without applied electrical and mechanical

loading, but with the mechanical clamped boundary

conditions, which mean that the dimensions of the

simulated region are fixed. At the beginning of the

evolution, a Gaussian random fluctuation was intro-
duced to initiate the polarization evolution process.
Fig. 1. Temporal evolution of domain structure formation in a two-

dimensional model: (a) 40 steps; (b) 80 steps; (c) 120 steps; (d) 240

steps; (e) 500 steps and (f) 1000 steps.
After 40 steps, the polarization is still in the nucleation

state, as shown Fig. 1(a), in which the arrows at the

center grid points are longer than those in the other

regions and align along a direction, thereby looking like

a domain nuclei. Fig. 1(b) illustrates the polarization
distribution after 80 steps of evolution, indicating that

the domain at the center grows. 90�-domain walls ap-

pear after 120 steps of evolution, as shown in Fig. 1(c).

Figs. 1(d) and (e) demonstrate the temporal structures

after 240 and 500 steps of evolution, respectively,

showing that the magnitude of the maximum polariza-

tion does not increase any more, but the domain struc-

ture changes by domain wall motion. It is interesting to
note that there is a 180�-domain wall between the left

corner domain and the center domain in Fig. 1(d) or (e),

at which the polarizations change the magnitude to form

the head-to-head 180�-domain wall with almost zero

magnitude of polarizations at the middle of the wall.

The domain at the left bottom corner in Fig. 1(d) or (e)

shrinks, as the evolution proceeds, and the other three

domains continue to grow, finally forming a twin
structure after 1000 steps of evolution, as shown in

Fig. 1(f). A twin-like domain structure indicates that the

strain energy predominates in the simulated system.

After 1000 steps of evolution, the domain structure be-

comes steady and no longer changes with time. At the

steady state, the dipoles at the twin boundaries all have

head-to-tail arrangements, which is consistent with a

previous study [30]. It should be pointed out that a
nonzero value of the average polarization over the entire

simulated region exists in the steady domain structure

and associated with the nonzero average polarization is

an internal stress field in the simulated region with

nonzero average stresses, which are induced by the fixed

dimensions. Nevertheless, when the spontaneous do-

main structure is available, we are able to simulate po-

larization switching of the domain structure under
external electrical or mechanical loading.

3.2. Polarization switching subjected to an applied electric

field

Figs. 2(a)–(f) show the temporal evolution of polari-

zation switching when an external electric field with a

dimensionless strength of Ee;�
x ¼ 0:5 is applied along the

positive x-direction to the initial domain structure il-

lustrated in Fig. 2(a), which is a copy of Fig. 1(f). Again,

the periodic boundary conditions are adopted here with

the fixed dimensions of the simulated region. Comparing

Fig. 2(a) and (b) indicates that the applied electric field

drives the domain walls to move at the early stage of

switching. The motion of the domain walls causes the

domains with the original polarization parallel to the
positive y-direction to grow and the other domains to

shrink. More important and significant than the do-

main wall motion is that the dipoles in the two growing



Fig. 2. Temporal evolution of polarization switching under an exter-

nally applied electric field of Ee;�
x : (a) initial state; (b) 70 steps; (c) 100

steps; (d) 110 steps; (e) 140 steps and (f) 200 steps.
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domains rotate their polarization directions clockwise
ununiformly by certain degrees, trying to align them-

selves with the applied field, as seen in Fig. 2(b), and

meanwhile the domain walls also become wider. After

100 and 110 evolution steps, the initial domain structure

fades away and new domains, in which dipoles have

aligned themselves completely with the applied field,

begin to nucleate symmetrically about the original do-

main wall, as seen in Figs. 2(c) and (d). The newly
formed domains are then expanded through the motion

and change of the newly formed, curved and irregular

domain walls. Fig. 2(e) shows that the new domains

gradually become large, but the domain walls are still

not straight after 140 steps of evolution. Finally, the new

domain structure reaches a steady state after 200 steps of

evolution. At the steady state, all domain walls are

straight again and no longer move under the external
electric field, as shown in Fig. 2(f). By comparing

Fig. 2(f) and (a), one can see that the applied electric

field changes the average polarization in the x-direction,

P �
x , from negative in the initial state, as shown in

Fig. 2(a), to positive in the final state, as shown Fig. 2(f),
thereby revising the average polarization, P �
x . In addi-

tion to the alignment of the average polarization along

the direction of the applied electric field, the applied field

increases the magnitude of P �
x from )0.3463 to 0.5311,

thereby indicating that some dipoles with initial polar-
izations along the y-direction switch their polarizations

by 90�. Actually, from Figs. 2(a)–(f), one can find that

some dipoles rotate by 90�, some rotate by 180�, and
some remain unchanged. The results indicate that the

external electric field can simultaneously induce both

90�-and 180�-polarization switching and the polariza-

tion switching is not constrained within certain original

domains. The ratio of the polarization along the y-axis
to the polarization along the x-axis changes from about

)1.185 at the initial state to about 0.4824 at the final

steady state. The temporal evolution results indicate that

the macroscopic reversal of the average polarization, P �
x ,

does not simply imply a microscopic 180�-switch of the

domains originally having a polarization along the x-

direction. The minimization of the free energy of the

entire system under the external electric field changes the
domain structure completely. The temporal evolution of

polarization switching in Figs. 2(a)–(f) also shows

that the domain switching is a kinetic process of the

disappearance of old domains and the nucleation and

growth of new domains, in which the new domain

growth is accomplished mainly through domain wall

motion. Not only are the directions of the domains after

switching different from those of the initial domains, but
the domain size and configuration are also different.

The domain structure is completely changed after the

switch.

3.3. Polarization switching subjected to an external stress

We simulated polarization switching induced by an

applied compressive stress along the y-direction with a
dimensionless level of re;�yy ¼ �14, which corresponded a

strain field, eeij ¼ Sijklrekl. The stress was applied prior to

the evolution and the periodic boundary conditions were

again adopted in the evolution calculations with the fixed

dimensions. Since the evolution was calculated at the

fixed dimensions, stresses changed during the evolution

but the applied strains remained unchanged. Exactly

speaking, we simulated polarization switching subjected
to an external strain field. Figs. 3(a)–(f) show the tem-

poral evolution of polarization switching, in which

Fig. 3(a) copied from Fig. 1(f) shows the initial domain

configuration. Since the energy-favorite domains exist in

the initial domain structure, no domain nucleation is

needed in the polarization switching. The polarization

switching is accomplished by domain wall motion. As a

result of the domain wall motion, the domains with
original orientations parallel to the y-axis shrink,

whereas the domains with original orientations perpen-

dicular to the y-axis grow, as shown in Figs. 3(b)–(d).



Fig. 3. Temporal evolution of polarization switching subjected to an

external compressive stress of re;�yy ¼ �14: (a) initial state; (b) 15 steps;

(c) 25 steps; (d) 45 steps; (e) 105 steps and (f) 200 steps.
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Fig. 3(e) illustrates the temporal configuration of the

domain structure after 105 steps of evolution, showing a

wide transition region. The wide transition region is

formed at a temporal state, at which the original do-

main wall between the domains with initial polariza-

tions parallel to the x- and y-direction merges with the
next original domain wall between the domains with

initial polarizations parallel to the y- and x-direction,

and the original domains with initial polarizations par-

allel to the y-direction disappear. After 200 steps of

evolution, the entire region becomes a single domain

with all dipoles parallel to the x-axis, as seen in Fig. 3(f).

Li et al. [40] investigated the process of 90�-domain

switching in tetragonal BaTiO3 and PbTiO3 single crys-
tals under external stresses. Our simulation results agree

with their experimental observations that single-domain

crystals can be obtained from polydomain-structured

specimens by the application of a compressive stress. The

single-domain structure is steady under the compressive

stress and does not change with time any more. Com-

paring the final state to the initial state of the domain

structure, as shown in Figs. 3(a) and (f), indicates that
only 90�-polarization switching occurs under the exter-

nally applied stress. The 90�-polarization switching

changes the strain distribution, lowers the strain energy,

and then minimizes the free energy of the entire system.

There is no 180�-polarization switching under the stress
load because the 180�-polarization switching does not

change the strain energy in the materials. The results are

consistent with the predictions from the continuum

theory that mechanical loading can cause only 90�-
polarization switching in ferroelectric materials.
3.4. Polarization versus electric field and strain versus

electric field

It is polarization switching that causes ferroelectric

materials to exhibit nonlinear electrical and mechanical

behaviors. In order to characterize the nonlinear be-

haviors of ferroelectric materials, we simulated the po-

larization and strain responses at different levels of

external electric loading with the periodic boundary

conditions and the fixed dimensions of the simulated
region. The external electric field was applied prior to the

evolution calculations along the y-axis, where a positive

or negative electric field meant that the field was parallel

or anti-parallel to the y-direction. In the simulations, the

applied dimensionless field increased from 0 to 0.5, then

decreased from 0.5 to )0.6, and then increased from )0.6
to 0.5 at the same increment or decrement amount of

0.05 in the dimensionless electric field strength. At each
level of electric field loading, we calculated the evolution

of the domain structure in the same way as described

above, but only the final state of polarization distribu-

tion was considered to be the corresponding response of

the simulated system under such a level of electric load-

ing. At the time step of Dt� ¼ 0:04, 2000 steps of evolu-

tion conducted at each level of the applied electric

field were sufficient to ensure that the domain struc-
ture reached a steady state. At each final steady state,

the average polarization and the average strain along

the y-direction were taken as the macroscopic re-

sponse of the simulated ferroelectric to the applied

electric field. As mentioned above, the simulations were

conducted at fixed dimensions. Thus, macroscopically

average strains should remain zero or predescribed val-

ues during the evolution calculations. However, fixed
dimensions cause macroscopically average stresses to

change during domain structure evolution. To present

the simulation results in a conventional manner, we

convert macroscopically average stresses to macroscop-

ically average strains via Hooke�s law. Without any ap-

plied mechanical loads, from Eq. (16) and Hooke�s law,
we have the stresses, rðsÞkl , linked to polarizations

rðsÞ
kl ¼ cklije

ela;s
ij ¼ cklij eðsÞij

�
� e0ij

�
: ð23Þ
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Since we fixed the dimensions in the simulations, the

average strains, heðsÞij i, were all zero. The average strains,
he0iji, were then determined from the average stresses,

hrðsÞ
kl i,

e0ij

D E
¼ �Sijkl rðsÞ

kl

D E
: ð24Þ

Eq. (24) indicates that the average strains, he0iji, repre-
sent the average stresses hrðsÞ

kl i induced by domain

structure evolution under the condition of fixed dimen-
sions. We may image that after the evolution, the av-

erage strains, he0iji, will be produced if we release the

average stresses hrðsÞ
kl i. Note that domain structure evo-

lution under the condition of fixed dimensions could be

completely different from that under fixed average

stresses. For simplicity, we shall not discuss the differ-

ence further.

In the present study, we use the average strain, he0yyi,
to represent the relative change in the dimension of a

ferroelectric along the y-direction, i.e., along the applied

field direction. The average strain, he0yyi, could be ob-

tained by using Eq. (9) to calculate the value of e0yy at

each point on the grid and then averaging e0yy over the

simulated region. Alternately, the average strain, he0yyi,
could be obtained from the average stresses,

hrðsÞkl i, which were calculated by taking the average of the
polarization-linked stresses, rðsÞkl , at each point on the

grid. Due to the nonlinear behavior, the response of a

ferroelectric material to an applied load depends on the

loading history. Therefore, the final state of the domain

structure under a given level of loading was taken as the

initial state for the next level of loading in the simula-

tions. The final state of the spontaneous polarization

shown in Fig. 1(f) was used as the starting state of
the domain structure. As mentioned above, the initial

residual average polarization and the initial residual

average strain have finite values, which are 0.325 and

0.535%, respectively, and shown by point O in Figs. 4

and 5.

Fig. 4 shows simulated results of the average polari-

zation versus the electric field, while Fig. 5 illustrates

simulated results of the average strain versus the electric
field. The domain structures corresponding to points O

and A–H on the graphs in Figs. 4 and 5 are shown in

Figs. 2(f) and 6(a)–(h). From the starting point, O, ap-

plying a positive electric field increases the average po-

larization, hP �
y i, and the average strain, he0yyi, as shown in

Figs. 4 and 5. At the applied electric field of 0.5, the

average polarization, hP �
y i, and the average strain, he0yyi,

reach 0.441 and 0.934%, respectively, as marked by A in
Figs. 4 and 5, and the corresponding domain structure is

shown in Fig. 6(a). Comparing Fig. 6(a) with Fig. 1(f)

indicates that the domains having polarizations along the

positive y-direction grow, whereas the domains having

polarizations along the x-direction shrink. Since energy-

favorite domains exist, no domain nucleation occurs and
the change in the domain structure is accomplished by

domain wall motion. At point A, however, the simulated

region still contains many domains, indicating that the

domain structure has not reached a saturated state with
only a single domain. During the decrease of the applied

electric field from A to B and to zero, the average po-

larization and the average strain decrease smoothly, as

shown in Figs. 4 and 5, respectively, which is attributed

to the smooth domain wall motion, as indicated by the

domain structures illustrated in Figs. 6(a) and (b). Note

that domain wall motion means partial domain switch-

ing, i.e., the regions swept by the domain walls are
switched. When the applied electric returns to zero, the

residual average polarization and the residual average

strain are slightly higher than the corresponding original

values, as shown Figs. 4 and 5. Then, the applied electric

field changes its sign to negative. The smooth changes in

the average polarization and the average strain with the



Fig. 6. Domain structures corresponding to points A–H in Figs. 4 and 5.
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applied field continue until point C marked in Figs. 4 and

5, at which jumps occur. The jump in the average po-

larization reverses the direction of the average polariza-

tion, whereas the jump in the average strain does not

change the sign of the average strain because the average

strain is calculated by taking the paraelectric phase as the

stress-free or strain-free state. As expected, the jumps are

attributed to a great change in the domain structure,
which is demonstrated in Figs. 6(c) and (d), showing that

the dipoles parallel to the y-axis all change their direc-

tions. Macroscopically, the absolute strength of the ap-

plied electric field reversing the average polarization

direction is called the coercive field, which is 0.2 in the

dimensionless units for the simulated ferroelectric. At

the coercive field, the domain structure changes its
configuration completely. As demonstrated in Section

3.2, the complete change in the domain structure is ac-

complished by nucleation and growth of new domains

because there are no energy-favorite domains in the old

domain structure. One of the advantages of the phase-
field model in predicting ferroelectric nonlinear behavior

is that it does not need a domain-switching criterion and

the reverse in the average polarization occurs automati-

cally. Comparing Fig. 6(c) and (d) indicates also that

some dipoles with polarizations parallel to the negative

x-direction remain unchanged during the complete

change in the domain structure. Further increasing the

negative field strength from the coercive field to )0.6
increases the absolute value of the negative average po-

larization to )0.419 and the amount of the average strain

to 1.02%, indicated by point E marked in Figs. 4 and 5.

Next, decreasing the applied negative field from )0.6 to

)0.25 and then to 0 increases the average polarization

from )0.419 to )0.346 and then to )0.248, and decreases

the average strain from 1.02% to 0.796% and then to

0.582%. The residual negative average polarization of
)0.248 has a lower magnitude than the residual positive

average polarization of 0.334 and the residual average

strain, 0.582%, yielded from lowering the negative ap-

plied electric field is slightly higher than that, 0.554%,

resulting from lowering the positive applied electric field.

After the zero field, the applied field changes to positive

again. Then, the average polarization and the average

strain increase smoothly with the applied field until oc-
currence of jumps, as marked by point G in Figs. 4 and 5.

As mentioned above, the smooth changes in the average

polarization and the average strain are mainly accom-

plished by smooth motion of domain walls, i.e., by par-

tial domain switching. When the electric field reaches the

coercive field, the average polarization jumps from neg-

ative to positive, while the average strain jumps also, as

indicated by points G and H in Figs. 4 and 5. Figs. 6(g)
and (h) illustrate the domain structures before and after

the jumps. As expected, the domain structure changes its

configuration completely. It is clearly shown in Figs. 4

and 5 that the coercive field at point G, 0.15, is slightly

lower than that, 0.2, at point C, the absolute value of the

average polarization at point G, )0.103, is lower than

that, 0.228, at point C, and the average strain, 0.378%, at

point G is higher than that, 0.321%, at point C, thereby
indicating again the asymmetric behavior of the simu-

lated system. The asymmetric behavior of the simulated

system might be attributed to the insufficient number of

domains used in the present study and/or other reasons.

Nevertheless, point H almost coincides with point B in

Figs. 4 and 5 and, as expected, the domain structures

shown in Figs. 6(b) and (h) are almost identical if one

keeps periodic patterns in mind. At this state, the simu-
lated hysteresis loop of average polarization versus the

applied electric field and the simulated butterfly loop

of average strain versus the applied electric field are
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Fig. 8. Domain structures corresponding to points A–F in Fig. 7.
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completed. After that, further changes in the applied

electric field within the range from )0.6 to 0.5 repeat the

curves shown in Figs. 4 and 5.

3.5. Stress versus strain

3.5.1. Loading-rate-independent behaviors

In Section 3.3, we report the temporal evolution of

the domain structure under an applied compressive

stress. In this section, we report the average strain re-

sponse of the simulated ferroelectric to applied com-

pressive stresses. A uniform stress with its magnitude

ranging from 0 to )20 at an increment of 1 in the di-
mensionless units was applied, prior to the evolution of

the domain structure, along the y-axis and the average

strain along the same direction was calculated based on

the phase-field method. Again, the periodic boundary

conditions were adopted in the evolution calculations

with the fixed dimensions. As mentioned above, under

the condition of fixed dimensions, applied stresses are

actually applied strains and the material response to the
applied strains is a stress field. However, we convert the

applied strains and the material-responded stresses to

the applied stresses and the material-responded strains

through Hooke�s law to present the simulation results in

a conventional manner. With applied mechanical load-

ing, the total average strain including two parts. One

part is given by eeyy ¼ Syyklrekl, which is attributed the

deformation of the background paraelectric material.
The other average strain, he0yyi, is linked to the material-

responded stresses, as described in Section 3.4. Thus, the

total average strain response to an applied load is given

by

etotalyy

D E
¼ eeyy þ e0yy

D E
: ð25Þ

Again, 2000 steps of evolution, which were sufficient at

the time step of Dt� ¼ 0:04 for the simulated ferroelectric
to reach the steady state, were conducted at each level of

applied stress. During the simulations, we found that

stress–strain curves during the first loading-unloading

cycle were different, to some extent, from those during

the second loading-unloading cycle and they were

completely repeatable in further loading-unloading cy-

cles. Therefore, we report here the stress–strain curves

during the second loading-unloading cycle to under-
stand the steady mechanical response of the simulated

ferroelectric to applied compressive stresses. Fig. 7

shows the stress–strain curves for the loading and un-

loading processes, where the loading curve is indicated

by sequences of points A–B–C–D and the unloading

curve is indicated by sequences of points D–E–F–A. The

corresponding domain structures at points A–F are il-

lustrated in Figs. 8(a)–(f).
From point A to point B in Fig. 7, the applied stress,

re;�yy , is linearly proportional to the average strain, hetotalyy i,
and the slope of the applied stress over the average

strain is 666.6, which represents the elastic stiffness of

the simulated ferroelectric under simple compression.

Figs. 8(a) and (b) indicate that when the compressive

stress increases, domain walls move such that the

domains parallel to the direction of the applied



Fig. 9. Temporal evolution of polarization switching when the com-

pressive stress decreased from )6 to )5.
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compressive stress shrink and the domains perpendicu-

lar to this direction grow. In addition to the domain wall

motion, all dipoles in the domains parallel to the di-

rection of the applied compressive stress rotate towards

the direction perpendicular to the applied compressive
stress. When the compressive stress increases its mag-

nitude from )8 to )9, as marked by points B and C in

Fig. 7, the average strain has a jump from �6:44� 10�3

to �9:72� 10�3. This macroscopic strain jump is at-

tributed to the change in the microscopic domain

structure in which all domains with the original polari-

zation direction parallel to the compressive stress di-

rection disappear. Under this level of loading, all of the
dipoles are parallel to the direction of the x-axis and

form a single-domain structure, as shown in Fig. 8(c).

The results indicate that the single-domain structure has

a free energy lower than that in a polydomain structure

when the magnitude of applied compressive stress is

higher than a critical value. After the jump in the av-

erage strain, the applied stress, re;�yy , is linearly propor-

tional to the average strain, hetotalyy i, again and the slope
of the applied stress over the average strain is 1136.4 in

the CD region, which is larger than 666.6 in the AB

region. The simulated ferroelectric has a single-domain

structure in the CD region, as indicated in Figs. 8(c) and

(d). Therefore, no domain wall motion is involved in the

deformation of the simulated ferroelectric in the CD

region. The most of the linear parts of the unloading

curve coincide with the loading curve except the jump, at
which the average strain jumps backwards from

�7:03� 10�3 to �1:79� 10�3 when the load decreases

from )6 to )5, as marked by points E and F in Fig. 7.

Fig. 8(e) and (f) illustrate the corresponding domain

structures. During the unloading process, the single-

domain structure has a free energy higher than that in

a polydomain structure when the magnitude of the

applied compressive stress is lower than a critical value.
However, the critical magnitude of the applied com-

pressive stress causing the jump during unloading differs

from that during loading. It is the jump difference dur-

ing loading and unloading that forms the hysteresis

loop, BCEF, in the stress–strain curves. The simulated

ferroelectric changes its single-domain structure before

the reverse jump to a polydomain structure after the

reverse jump. The evolution from the single-domain
structure to the polydomain structure was achieved by

new domain nucleation and growth, which was revealed

in the transient patterns of the domain structures, as

shown in Fig. 9. Since Fig. 8 illustrates only steady

domain structures, it does not show the detail of the new

domain nucleation process. The polydomain structure at

point F is similar to the structures at points A and B.

Since the mechanical load at point F is higher than that
at point A and lower than that at point B, the per-

centage of the domains with the polarization basically

parallel to the y-axis at point F is smaller than that at
point A, but larger than that at point B, as shown in

Figs. 8(a), (b) and (f).

As mentioned above, the elastic stiffness of the po-

lydomain-structured ferroelectric is lower than that of

the single-domain-structured ferroelectric. This is at-

tributed to domain wall motion, which occurs in the

polydomain-structured ferroelectric. Arlt et al. [41] and

Fu and Zhang [42] have proposed that 90�-domain wall
motion will generate mechanical deformation. In the

90�-domain wall kinetics model [42,43], the total elastic

compliance, s, is attributed to volume and domain wall

contributions, i.e., s ¼ sV þ sD, where the subscripts �V�
and �D� denote volume and domain wall, respectively.

The elastic stiffness, c, is the reciprocal of the elas-

tic compliance, i.e., c ¼ 1=s ¼ 1=ðsV þ sDÞ. For the



Fig. 10. Average polarizations versus applied compressive stress.
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single-domain-structured ferroelectric, no domain wall

motion occurs and the contribution from domain wall

motion to elastic compliance is zero, i.e., sD ¼ 0. As a

result, the elastic stiffness in the single-domain-struc-

tured ferroelectric, c ¼ 1=sV, is larger than that in the
multi-domain state, c ¼ 1=ðsV þ sDÞ. With the phase-

field model, we are able to analyze qualitatively the

contribution from the changes in polarizations including

domain wall motion to the elastic compliance. Using

Eqs. (24) and (25), the elastic compliances in the AB and

CD regions are calculated by

sAB ¼
etotalyy

D EB

� etotalyy

D EA

re
yy

D EB
� re

yy

D EA

¼
�Syykl rðsÞ

kl

D EB

� rðsÞ
kl

D EA
� �

re
yy

D EB
þ Syyyy ; ð26aÞ

sCD ¼
etotalyy

D ED

� etotalyy

D EC

re
yy

D ED

� re
yy

D EC

¼
�Syykl rðsÞ

kl

D ED

� rðsÞ
kl

D EC
� �

re
yy

D ED

� re
yy

D EC
þ Syyyy ; ð26bÞ

respectively, where superscripts A, B, C, and D denote,

correspondingly, points A, B, C, and D in Fig. 7. It

should be noted that due to the excellent linearity in

either the AB or the CD region, we may arbitrarily

choose two points in the AB region or in the CD region

without changing the result. Also, the excellent linearity

in either the AB or the CD region yields a constant
elastic compliance in each region. The first term on the

right-hand side of Eq. (26a) or (26b) represents

the contribution from the changes in polarizations to the

elastic compliance and the second term on the right-

hand side of Eq. (26a) or (26b) is a material constant,

Syyyy ¼ s�11 ¼ 7.909� 10�4 in the dimensionless units, used

as an input datum in the present study. Thus, the con-

tribution from the changes in polarizations to the elastic
compliance must be a constant in each region because

the elastic compliance in each region is a constant. Then,

we can denote the first term on the right-hand side of

Eq. (26a) or (26b) by sp;AB or sp;CD correspondingly, for

simplicity. Moreover, a constant contribution from the

changes in polarizations implies that the average stresses

induced by polarization changes must be linearly pro-

portional to the applied compressive stress, which is
consistent with the prediction from the domain wall

kinetics model [42,43]. From the simulated results,

sAB ¼ 1:5� 10�3and sCD ¼ 8:8� 10�4, and the input

datum, s�11 ¼ 7.909� 10�4, we have sp;AB ¼ 7.0� 10�4
and sp;CD ¼ 0.909� 10�4. Clearly, the value of sp;AB is

much larger than the value of sp;CD, which is attributed

to domain wall motion in the polydomain-structured

ferroelectric. However, the nonzero value of sp;CD indi-

cates that in addition to domain wall motion, any
changes in polarization will contribute to mechanical

deformation, as indicated by Eq. (9). In the single-do-

main-structured ferroelectric, the polarizations vary

with the applied compressive stress. Fig. 10 shows the

changes in the average polarization components, hP �
x i

and hP �
y i, with applied compressive stress. The average

polarization component,hP �
y i, is nonzero in the single-

domain-structured ferroelectric, which is visible if one
zooms-in in Figs. 8(c)–(e), but its magnitude is about

five orders smaller than the magnitude of hP �
x i. Thus, the

magnitude of the average polarization is determined by

the magnitude of hP �
x i, which increases almost linearly

with the applied compressive stress, as shown in Fig. 10.

As a direct result, we may state that an applied com-

pressive stress increases the magnitude of the average

polarization of a single-domain-structured ferroelectric.
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3.5.2. Loading-rate-dependent behaviors

In this section, we report simulation results of the

mechanical response of the average strain to applied

stresses under two loading rates. We used the same

simulation conditions as these described in Section 3.5.1
except that the total steps of evolution at each level of

applied stress were set at 200 or 20, which corresponded

to a loading-unloading rate of 1/8 or 10/8 in the di-

mensionless units for the time step of Dt� ¼ 0:04 and the

stress increment of 1. Fig. 11 shows the stress–strain

curves at the loading-unloading rate of 1/8, where the

loading curve is indicated by sequences of points O–A–

B–C and the unloading curve is indicated by sequences
of points C–D–E–F–G–H. The initial domain structure
Fig. 12. Domain structures corresponding to points A–H in Fig. 11.
at point O is the same as that shown in Fig. 3(a) and

the domain structures corresponding to points A–H in

Fig. 11 are shown as Figs. 12(a)–(h). Comparing Fig. 11

with Fig. 7 indicates that the area of the hysteresis loop

in Fig. 11 is larger than that in Fig. 7. The jump mag-
nitudes in the loading-rate-dependent stress–strain

curves shown in Fig. 11, are correspondingly smaller

than the jump magnitudes in the loading-rate-indepen-

dent stress–strain curves shown in Fig. 7. At the loading

rate of 1/8, the loading curve shows two linear regions,

which are similar to the loading-rate-independent load-

ing curve shown in Fig. 7, whereas the unloading curve

reveals only one linear region, which differs from the
unloading curve of two linear regions in Fig. 7. Clearly,

the difference is caused by a fast loading rate, at which

the simulated ferroelectric cannot reach a steady state at

each level of loading. As expected, transitional domain

structures appear in the dynamic loading-unloading

process, as shown by Figs. 12(d)–(g), especially when

new domain nucleation and growth occur during the

unloading process. Figs. 12(d)–(g) seem to be similar to
the transitional domain structures illustrated in Figs.

1(c)–(e). Therefore, we will not discuss Figs. 12(d)–(g) in

detail for concise.

Increasing the loading rate further to 10/8 expands

the hysteresis loop, as shown in Fig. 13. Fig. 13 indicates

the loading-unloading curves at the loading rate of 10/8,

where the loading curve is indicated by sequences of

points A–B–C–D–E and the unloading curve is indi-
cated by sequences of points E–D–F–G–H. The corre-

sponding domain structures to points A–H are

illustrated in Figs. 14(a)–(h). At the loading rate of 10/8,

the jumps occurring in the loading-rate-independent

stress–strain curves disappear and are replaced by

smooth curves. When the load is completely released,

the average strain cannot return to its original point, as
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Fig. 13. Loading-rate-dependent stress–strain curves at the loading

rate of 10/8.
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shown by point H in Fig. 13. Fig. 14(h) illustrates the

domain structure, indicating that the new domains ap-
pear just at the left-bottom and right-top corners.

Again, the loading curve reveals two linear regions and

the unloading curve shows only one linear region at the

loading rate of 10/8. As mentioned above, elastic con-

stants can be determined from the linear regions. It is

interesting to find that increasing the loading rate does

not change the elastic compliances, but it extends both

the high elastic compliance region during loading and
the low elastic compliance region during unloading. The

faster the loading-unloading rate is, the greater the ex-

tension will be. The result is expected because a fast

loading-unloading rate shortens the time such that the

domain structure cannot reach its steady state.
4. Concluding remarks

Phase-field simulations were conducted in the present

work to understand the paraelectric–ferroelectric phase

transformation, the material responses of a ferroelectric
to external electric fields or mechanical stresses. The

temporal evolution of polarizations shows that domain

switching is a kinetic process of the disappearance of old

domains and the nucleation and growth of new domains

and the domain growth is accomplished through domain

wall motion, i.e., partial domain switching. The applied

electric fields can induce both 180�- and 90�-polarization
switching. Although the applied stresses cause only 90�-
polarization switching during the loading process, 180�-
domain walls appear during the unloading process with

new domain nucleation, as shown in Figs. 12(f) and (g).

The simulation results confirm the analytic predictions

from the domain wall kinetics model [42,43] that the

macroscopic elastic compliance consists of two parts.

One part of the elastic compliance is independent of

polarizations and the other depends on polarizations.
The polarization-linked compliance has two values, de-

pending on that whether domain wall motion occurs.

In a polydomain-structured ferroelectric, domain wall

motion occurs and then results in a high value of

the polarization-linked compliance, whereas in a single-

domain-structured ferroelectric, applied stresses en-

hance the magnitude of polarizations and then yield a

low value of the polarization-linked compliance. The
simulation results demonstrate also that the loading rate

plays an important role in the material responses to

external fields. In summary, phase-field simulations in-

deed yield physical insights into the domain switching

mechanism.
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