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Quantitative interface models for simulating microstructure evolution
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Abstract

To quantitatively simulate microstructural evolution in real systems, we investigated three different interface models: a sharp-

interface model implemented by the software DICTRA and two diffuse-interface models which use either physical order parameters

or artificial order parameters. A particular example is considered, the diffusion-controlled growth of a c0 precipitate in a super-

saturated cmatrix in Ni–Al binary alloys. All three models use the thermodynamic and kinetic parameters from the same databases.

The temporal evolution profiles of composition from different models are shown to agree with each other. The focus is on examining

the advantages and disadvantages of each model as applied to microstructure evolution in alloys.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

There have been significant advances in recent years

in modelling the interface formation and motion during

solid-state phase transformations and the subsequent

microstructure coarsening processes employing various

computation models. There are generally two types
of approaches for treating the interfaces: the sharp-

interface description [1–4] and the diffuse-interface

description [5–7].

In a sharp-interface description, different phases are

modelled as distinct regions in space separated by in-

terfaces with zero thickness. For a diffusion-controlled

process, microstructure evolution is modelled by solving

the non-steady state diffusion equation with appropriate
boundary conditions specified at the interfaces. Typical

boundary conditions assume a local equilibrium coupled

with mass conservation conditions.

An alternative to the sharp-interface modelling is the

phase-field method which describes a microstructure

using a set of physical and/or phase-field variables. The

interfaces are represented by diffuse regions with a cer-
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tain thickness where the phase-field variables change

continuously. Complex two- (2D) and three-dimen-

sional (3D) microstructures can be easily modelled since

there is no need to explicitly track the interfaces. There

are basically two types of phase-field models. In the first

type, the field variables, also known as the phase-fields,

are introduced for the sole purpose of avoiding tracking
the interfaces. The thermodynamic and kinetic coeffi-

cients in a phase-field model are then chosen to fit the

corresponding parameters in the conventional sharp- or

thin-interface equations through asymptotic analysis. In

the second type, the field variables correspond to well-

defined physical order parameters such as long-range

order parameters for order–disorder transformations

and the composition fields for phase separation. Both
these two types of models assume that the microstruc-

ture evolution during a given process is governed by the

phase-field equations, and in principle, all the thermo-

dynamic and kinetic coefficients can be related to mi-

croscopic parameters.

Phase-field methods have been applied to a wide

range of microstructural evolution problems including

grain growth, spinodal decomposition, ordering and
antiphase domain coarsening, solidification, ferroelec-

tric domain formation, martensitic transformation and

precipitation under applied stress [6,7]. It has been
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demonstrated that the microstructures predicted from

phase-field simulations show remarkable agreement

with experimental observations, at least qualitatively as

long as the model incorporates the essential thermody-

namic and kinetic features for a given process. However,
despite its great progress, the phase-field model has not

been established as a computational tool which can

routinely take the real thermodynamic and kinetic pa-

rameters as input and predict the quantitative micro-

structure evolution although a number of attempts have

been made in this direction [8–10].

The main purpose of this paper is to examine two dif-

ferent types of phase-field models: a model based on the
physical order parameters which we call the physical

model and that based on artificial order parameters which

is similar to the KKS model [11,12] by quantitatively

studying the microstructural evolution using thermody-

namic and kinetic parameters directly from existing da-

tabases and by comparing the kinetics of microstructure

evolution obtained from the DICTRA code based on a

sharp-interface description. Specifically we investigated
the one-dimensional (1D) diffusion-controlled growth of

a c0 precipitate from the supersaturated cmatrix in a Ni–

Al binary system. The focus of the discussion is on the

advantages and disadvantages of eachmodel as applied to

microstructure evolution in alloys.
2. Models

2.1. Thermodynamic and atomic mobility descriptions

A typical microstructure of Ni-base alloys consists of

a dispersion of ordered intermetallic precipitate particles

of the type L12 (c0) embedded in a fcc matrix (c). Ac-

cording to Ansara et al. [13], the molar Gibbs free en-

ergy Gm is modelled by a two sub-lattice model as
follows:

Gm ¼ Gdis
m ðxiÞ þ Gord

m ðy0i ; y00i Þ � Gord
m ðxiÞ; ð1Þ

where xi is the composition of component i, and y0i , y
00
i

are the two site fractions of component i in the different

sub-lattices. Gdis
m ðxiÞ is the Gibbs free energy of the dis-

ordered state, Gord
m ðy0i ; y00i Þ is the Gibbs energy described

by the sub-lattice model and Gord
m ðxiÞ is the energy con-

tribution of the disordered state to the ordered state.

The free energy describing both ordered phase and dis-
ordered phases are evaluated independently and com-

piled into thermodynamic Thermo-Calc databases

which include phase constituents, reference states of el-

ements and interaction parameters.

The database for the atomic mobility of species in

individual phases is constructed to obtain the kinetic

information of a microstructural evolution. In particular

for the diffusion-controlled process in our study, the
diffusion in the ordered L12 phase is ignored and
the diffusional mobility in the fcc phase is considered as

the main factor determining the kinetics. Assuming

diffusion occurs through the vacancy exchange mecha-

nism and all elements are substitutional, the intrinsic

diffusion coefficient, Dkj (the diffusivity of component k
with respect to the gradient of component j), is related
to the atomic mobility Mi (i for all the elements in a

phase) as [14,15],

Dkj ¼
Xn

i¼1

ðdik � xkÞxiMi
oli

oxj
; ð2Þ

where dik is the Kronecker-delta function and li is the

chemical potential of component i derived from the

Gibbs energy of the phase. The quantity oli=oxj defined
the thermodynamic factor which can be evaluated from

the thermodynamic database. Mi in the database is as-
sessed from the tracer or self-diffusion coefficient D�

i by

Mi ¼ D�
i =ðRT Þ which is determined from experimental

diffusion studies using isotopes.

2.2. DICTRA simulations based on the sharp-interface

description

In the sharp-interface model, a local equilibrium at
the moving interface between c and c0 phases is assumed.

The multicomponent diffusion equation in each phase

needs to be solved

Jk ¼ �
Xn�1

j¼1

~Dn
kjrcj;

ock
ot

¼ �divðJkÞ;

ð3Þ

where Jk is the diffusional flux of element k, ~Dn
kj repre-

sents the interdiffusion coefficient matrix calculated

from atomic mobilities [15], andrcj is the concentration
gradient. The phase interface migration is determined by

the flux-balance equation for conserving the number of
moles of a component k as [4]

vcðcck � cc
0

k Þ ¼ J c
k � J c0

k ; k ¼ 1; 2; . . . ; n; ð4Þ
where vc is the interface migration rate, cck and cc

0

k are the

concentrations of component k in c and c0 close to the

phase interface, and J c
k and J c0

k are the corresponding

diffusional fluxes.
The simulation of 1D diffusion-controlled growth is

carried out by using the software DICTRA (DIffusion

Controlled TRAnsformations in multicomponent al-

loys). DICTRA is linked with Thermo-Calc software,

which provides all necessary thermodynamic calculations

[3,4].
2.3. Phase-field model with physical order parameters

In this model, two sets of field variables, i.e., the local

composition c of alloy species and a three-component
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physical long-range order parameter field (g1, g2, g3)
were used to describe cþ c0 two-phase microstructures.

The composition field specifies the local compositional

distributions of all the species and the long-range order

parameter field describes the four types of possible L12
ordered domains related by a lattice translation and

distinguishes the structural difference between ordered

precipitates and the disordered matrix related by the L12
ordering. The three-component order parameter is se-

lected to represent fcc!L12 ordering based on atomic

site locations [16–18]. Thus the order parameters gi
(i ¼ 1; 2; 3) are physical parameters which can be asso-

ciated with the site fractions y0i and y00i as introduced in
the thermodynamic database. We refer this model as the

physical model.

Considering Eq. (1) which describes the total Gibbs

energy in terms of the composition and two site frac-

tions by a two sub-lattice model in the thermodynamic

database, we have employed a four sub-lattice model

with Ni and Al soluble in each sub-lattice to model the

total Gibbs free energy as

Gm ¼ GdisðcÞ þ Gordðc; g1; g2; g3Þ � Gordðc; gi ¼ 0Þ; ð5Þ
where each term has essentially the same meaning as in

Eq. (1). Details of formulating Eq. (5) in terms of

composition and order parameters can be found in [19]

where we have obtained a complete Gibbs free energy

description of both phases in Ni-base alloys by linking

to the thermodynamic database. The Gibbs free energy

Gm in the unit of J/mol obtained from the thermody-
namic database is then converted to the free energy

density f ðc; giÞ in the unit of J/m3 by the molar volume

Vm as f ðc; giÞ ¼ Gm=Vm.
In order to compare with the results by DICTRA

simulations which do not include the elastic energy cal-

culation, we consider a Ni–Al system at a high tempera-

ture when the lattice mismatch between precipitate and

matrix is so small that the elastic energy contribution can
be ignored. The general form for the total stress-free

chemical free energy in the phase-field model is [20]

F ¼
Z
V

f ðc; giÞ½ þ a
2
ðrcÞ2 þ

X3

p¼1

bijðpÞ
2

rigprjgp

#
dV ;

ð6Þ

where ri ¼ o=oxi is the ith component of the vector

operator r and xi is the ith component of the spatial
coordinate vector. In Eq. (6), a and bijðpÞ are gradient

energy coefficients that control the diffuse-interface

thickness and interfacial energies. The gradient energy

coefficient for the orientation field variables bijðpÞ is

written in a tensor form so as to incorporate the inter-

facial energy anisotropy. An isotropic interfacial energy

is assumed in the present work for simplicity.

Microstructural evolution is assumed to be governed
by two sets of non-linear time-dependent field equations:
the Cahn–Hilliard equation for the composition field

and the Ginzburg–Laudau equation for the long-range

order parameters [20,21]:
ocðr; tÞ
ot

¼ r � Mr dF
dcðr; tÞ

� �
; ð7Þ

ogiðr; tÞ
ot

¼ �Li
dF

dgiðr; tÞ
; i ¼ 1; 2; 3; ð8Þ
where c is the mole fraction of Al. Li and M are the

structural relaxation kinetic coefficient and the diffu-

sion mobility, respectively. The diffusion mobility term
M is related to the atomic mobilities of Ni and Al

through M ¼ cAlcNi½cAlMNi þ cNiMAl�, where MNi and

MAl are obtained from the atomic mobility database of

fcc phase [15]. There is no direct experimental data

available to determine the kinetic coefficient Li for the

structural order parameters. However, it can be ap-

proximated as a measure of the inverse of time it takes

for the diffusing species to make a unit jump to its
nearest neighbor sites in a fcc lattice. Following [22],

the quantity of Li is estimated using M ¼ Lia20=16,
where a0 is the lattice parameter. It should be noted

that an accurate quantity of Li is not necessary in our

particular study since the structural relaxation is much

faster than diffusion and the interface migration ve-

locity is mainly controlled by the diffusion mobility.

We have developed an accurate and efficient semi-
implicit Fourier spectral method for solving the two

sets of kinetic equations [23].

Assuming the three-order parameter gradient coeffi-

cients are equal and isotropic, denoted as b, we can write

the interfacial energy in one-dimension with the com-

position and order parameter inhomogeneity as [20]

r ¼
Z 1

�1
Df ðc; giÞ½ þ a

2

dc
dx

� �2

þ b
2

X
i

dgi
dx

� �2
#
dx; ð9Þ

where Df ðc; giÞ is the free energy of the homogeneous

alloy with respect to the free energy of the equilibrium

two-phase mixture. The above equation means there are

two contributions to the interfacial energy of a diffuse

interface: the excess free energy term and the gradient

terms. At equilibrium, the field variables, composition
and/or order parameter, will vary in a way that the in-

tegral in Eq. (9) is minimized. A further analysis shows

that the contribution of excess free energy term and the

gradient terms to the total interfacial energy is equal at

equilibrium [20]. Therefore, Eq. (9) can be simplified as

r ¼ 2
R1
�1 Df ðc; giÞdx. The gradient energy coefficients

need to be determined to match the experimentally de-

termined interfacial energy and anti-phase boundary
energy.
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2.4. Phase-field model with artificial order parameters

In this model, we adopted the phase-field formulation

originally developed for studying the solidification of

alloys [11,24,25]. A composition c and four artificial
order parameter fields (/1;/2;/3;/4) are used to dis-

tinguish the four types of ordered domains of the c0

phase and the disordered c phase. These order param-

eters are artificial in a sense that they do not have direct

physical meaning other than representing the ordered

regions.

Since in this paper we only consider the growth of a

single ordered precipitate in a disordered matrix in one
dimension, one artificial order parameter is sufficient.

The total free energy is written as

F ¼
Z
V

f ðc;/Þ½ þ e2

2
ðr/Þ2

�
dV ; ð10Þ

where e2 is the gradient energy coefficient of order pa-

rameter. The diffuse-interface region is regarded as a

mixture of disordered phase and ordered phase with

different compositions as in the KKS model [11,12],

c ¼ hð/Þcp þ ð1� hð/ÞÞcm; f p
cpðcpÞ ¼ f m

cmðcmÞ; ð11Þ

where hð/Þ is a monotonously changing function from

hð0Þ ¼ 0 and hð1Þ ¼ 1. f p is the chemical free energy of

the precipitate phase and f p
cp is the derivative of f p with

respect to cp. f m and f m
cm follow similar meanings for the

matrix phase. Therefore, the interface region is defined

as a mixture of precipitate phase and matrix phase with

the same chemical potential. In the KKS model, cp and
cm are not the compositions of precipitate and matrix

sides across the interface, but the compositions of the

precipitate and matrix phases that make up the inter-

face. Each point in the interface is considered as a

mixture of cp and cm where Eq. (11) is satisfied.

The free energy density of the system f ðc;/Þ is de-

fined as [11]

f ðc;/Þ ¼ hð/Þf pðcpÞ þ ð1� hð/ÞÞf mðcmÞ þ wgð/Þ;
ð12Þ

where gð/Þ is the double-well potential associated with

phase change and w is the double-well potential height.

Following [26], we choose the functions gð/Þ ¼
/2ð1� /Þ2 and hð/Þ ¼ /3ð6/2 � 15/þ 10Þ. Thermody-

namic databases can provide us with the full description

of the Gibbs free energies of both phases, f p and f m, as a
function of composition at a given temperature. For gi-

ven c and /, theoretically cp and cm can be obtained by

numerically solving Eq. (11). However, since the data-

bases use non-linear description of the Gibbs free energy,

numerical approximation has to be employed and it

would be computationally intensive to find the numerical

solutions of cp and cm. For simplicity, the free energy of

both phases can be approximated as parabola functions
whose first and second derivatives are imported from the

thermodynamic databases. With a parabola approxi-

mation of the free energy density, cp and cm can be easily

solved. Another solution is to tabulate the introduced

variables cp and cm in terms of composition and order
parameter by using the Gibbs free energy in the ther-

modynamic database. From our tests, no significant

difference has been found for the solution of cp and cm

between the parabola approximation and tabulation

approach.

The evolution equations are written in a form similar

to that used in [11]

o/
ot

¼ �L
dF
d/

¼ Lðe2r2/� f/Þ; ð13Þ

oc
ot

¼ r �
~DðcÞ
fcc

rfc

� �
; ð14Þ

where ~D is the interdiffusion coefficient (or called

chemical diffusion coefficient) obtained from the diffu-

sion mobility of fcc phase by ~D ¼ M d2f m

dc2 and d2f m

dc2 as well

as fcc are obtained from the thermodynamic database.

The phase field mobility L can be estimated in a similar

way as discussed in the physical model. Parameters e2

and w, which determine the interfacial width 2k, need to

be evaluated by the interfacial energy value r. From the

1D equilibrium analysis, the interfacial energy r can be

calculated by r ¼ e2
R1
�1

d/0

dx

� �2
dx, where /0 is the order

parameter profile at the equilibrium state [27]. From the

definition of interface energy and interface thickness, w
and e can be determined by r ¼ e

ffiffiffi
w

p

3
ffiffi
2

p and 2k ¼ a
ffiffiffi
2

p
effiffiffi
w

p ,

where a is a constant dependent on the definition of
interface thickness 2k [11].
3. Results

3.1. Equilibrium properties of interface

The equilibrium properties of the c=c0 interface in the
diffuse-interface models can be obtained by the evolution

of an initial system with one interface separating two

phases which have reached their equilibrium state. Fig. 1

shows the composition profile, order parameter profile

andGibbs free energy across an equilibrium c=c0 interface
obtained using the physical and the KKS models at 1300

K. Each symbol represents the corresponding values at

the grid points. For the physical model, the gradient en-
ergy coefficients a and b are chosen as 3.6� 10�9 J/m and

3.6� 10�12 J/m, respectively. For the KKS model,

e2 ¼ 5.6� 10�11 J/m andw¼ 1.3� 108 J/m3. In both cases,

the unit grid size dx ¼ 0:1 nm and the interfacial energy

r ¼ 0:02 J/m2 were used.

In Fig. 1(a) we observe a smooth change of the equi-

librium composition value from cc0 ¼ 0:2287 in the c0

phase to cc ¼ 0:1595 in the c phase. The equilibrium



0 50 100 150 200 250 300 350 400

distance (nm)

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

m
ol

e 
fr

ac
tio

n 
of

 A
l

Sharp-interface model
Diffuse-interface physical model
Diffuse-interface KKS model

a

b

c

d

Fig. 2. Temporal evolution of composition profiles obtained by

different models: (a) t ¼ 0:1 s; (b) t ¼ 0:3 s; (c) t ¼ 0:5 s; (d) t ¼ 0:7 s.

-25 -20 -15 -10 -5 0 5 10 15 20 25
grid number

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

M
ol

e 
fr

ac
ti

on
 o

f 
A

l

Physical model
KKS model

-25 -20 -15 -10 -5 0 5 10 15 20 25

grid number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

or
de

r 
pa

ra
m

et
er

Physical model
KKS model

-25 -20 -15 -10 -5 0 5 10 15 20 25
grid number

0

20

40

60

80

100

120

140

160

fr
ee

 e
ne

rg
y 

∆G
 (

J/
m

ol
)

Physical model
KKS model

φ η1

 

∆Gmax

(c)

(b)

(a)

Fig. 1. The obtained composition, order parameter and free energy

across the interface in the diffuse-interface models: (a) composition; (b)

order parameter; (c) free energy DGm.
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composition profiles obtained by both models match

each other very well. However, there is a significant dif-

ference of the order parameter profile between the results

obtained by two models as shown in Fig. 1(b). In the

physical model, the equilibrium values of the composi-

tion and order parameters, predetermined by the mini-
mization of the free energy with respect to the

composition and order parameters, are automatically
obtained through the solution of phase-field equations.

In the KKS model, the order parameter equilibrium

value is 0 for disordered phase and 1 for ordered phase

determined by the double well function gð/Þ. An ana-

lytical solution exists for the equilibrium order parame-
ter profile which is given by [28] as /0ðxÞ ¼ 1

2
½1

� tanhð
ffiffiffi
w

pffiffi
2

p
e
xÞ�. The solid line obtained by the KKS model

simulation in Fig. 1(b) agrees exactly with this analytical

solution. Fig. 1(c) shows the free energy densities DGm

obtained by Eqs. (5) and (12) where the common tangent

line is subtracted, i.e., with the equilibrium mixture of c
and c0 as the reference state. It can be seen that the KKS

model has a wider interface and lower maximum DGmax

for the same fixed interfacial energy.

The integral of the free energy DGm with respect to

the position along the interface, i.e., the area under the

curve in Fig. 2(c), is equal to half of the interface energy

r. The interfacial width 2k can thus be roughly esti-

mated from the interfacial energy r and the free energy

maximum DGmax by 2k � rVm=DGmax. In the physical

model, the interfacial width is a physical property de-
scribing the thickness of the region separating the two

phases. With r obtained from experimental results and

DGmax estimated from the free energy description in the

thermodynamic database, the interfacial width 2k is thus
determined. Therefore, the interfacial width in the

physical model is independent of the unit grid size dx. In
the numerical grids, the number of points N representing

the diffuse-interface is roughly proportional to 2k=dx.
Thus, the larger dx, the less N in the interface. However,

since there must be a minimum N (usually 4–5 points) in

the interface to maintain numerical accuracy and sta-

bility, the maximum unit grid size, and consequently the

maximum system size the physical model can handle, are

therefore limited by the physical interfacial width. For

example, taking the c=c0 interfacial energy value r¼ 0.02

J/m2, DGmax ¼ 160 J/mol at 1300 K and the molar vol-
ume Vm ¼ 7� 10�6 m3/mol, we estimate the interfacial
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width 2k � 1 nm. Assuming there are 5 points to resolve

the interface, dx is thus 0.2 nm.

In the KKSmodel, the interface is no longer a physical

entity, but an artificially introduced region for technical

convenience as mentioned earlier [11]. The double well
potential function gð/Þ is also artificially introduced to

obtain the ordered and disordered equilibrium phases.

The double well potential height w in Eq. (12), repre-

senting the maximum free energy DGmax in Fig. 1(c), de-

termines the interfacial width 2k for a given interfacial

energy. The parameter w is selected dependent on the in-

terfacial width. Therefore there is one degree of freedom

in eitherw or 2k to match a fixed interfacial energy.Much
thicker interface can be chosen with a smaller w without

fundamentally altering the physical properties under

consideration. As a result, larger unit grid size dx can be

used than that in the physical model.

3.2. Kinetics of interface motion

The interface models were used to simulate the dif-
fusion-controlled growth of a c0 precipitate in a disor-

dered cmatrix in the Ni–Al binary system at 1300 K and

the average mole fraction of Al c0 ¼ 0:2. The system size

is 2 lm. For the sharp-interface model implemented by

DICTRA, the initial composition is a constant every-

where throughout the system. A nucleus with size 0.1

nm is introduced at time t > 0. It is noted that since the

interfacial energy contribution to the total free energy is
not included in the DICTRA simulation, any size of new

phase particle will grow, i.e. the critical size is zero. For

the initial configuration in the diffusion-interface mod-

els, a precipitate with equilibrium composition and/or

order parameter values is placed in the middle of the

disordered matrix with a periodic boundary condition.

Fig. 2 shows the simulated growth of a c0 precipitate
by plotting the composition profiles as a function of
time obtained by different models. For the DICTRA

simulation, an initial time step dt of 10�7 s is used and

adaptive time step followed by adaptive time steps.

Based on the local equilibrium hypothesis, the compo-

sitions at the sharp-interface always assume the equi-

librium values cc0 ¼ 0.2287 and cc ¼ 0.1595 at 1300 K. As

seen in the solid lines in Fig. 2, the composition every-

where in the precipitate is constant cc0 and has a sharp
change cc at another side of the interface.

The diffuse-interface model simulations agree well

with the results from DICTRA as seen by the dashed line

(the physical model) and dot-dashed line (the KKS

model) in Fig. 2 except that the compositions change

continuously with values close to the equilibrium com-

positions across the interface. An interfacial energy value

r ¼ 0:02 J/m2 was used. Since the precipitation process is
driven by the bulk free energy reduction, the magnitude

of the interfacial energy has no effect on the kinetics but

determines how many points existing across the inter-
face. In the physical model simulation, the unit grid size

dx is 0.325 nm and the time step is 10�7 s. The gradient

energy coefficients a and b are determined to be

3.8� 10�9 J/m and 5.6� 10�12 J/m, respectively. The
following parameters are selected for the KKS model

simulation: dx ¼ 1 nm, dt¼ 5� 10�6 s, w¼ 6.6� 107J/m3

and e2 ¼ 1.1� 10�10 J/m.

For a diffusion-controlled growth, it is well known

that the precipitate grows with time according to a

parabolic growth law as

R ¼ KðDtÞ1=2; ð15Þ
where R is the precipitate size and K is the rate constant.

The parabolic growth behavior is validated by the plot

in Fig. 3 where the interface position as a function of the

square root of time is shown. The data agree with each

other and can be fit into a straight line in all three dif-

ferent models.
4. Discussions

In the sharp-interface model, a phase transformation

is governed by diffusion and curvature (Gibbs–Thomson

effect). The interface motion velocity is determined from

a local mass balance and a calculation of the curvature.
For 1D simulation, the curvature effect is zero and mi-

crostructural evolution is modelled by tracking the in-

terface. In this paper, the software package DICTRA

was used for the sharp-interface simulation. Compared

with the other two diffuse-interface models, DICTRA

simulation is much simpler and at least one order of

magnitude faster but is only limited to simple 1D (pla-

nar, cylindrical and spherical) geometries.
The diffuse-interface phase-field models overcome the

difficulties of tracking phase boundaries of the sharp-

interface model and can be easily extended to 2D and

3D systems. Elastic effects can also be incorporated to
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the phase-field physical model [29]. The interfacial en-

ergy anisotropy can be incorporated in a natural and

physical way [30]. Therefore, most of the morphological

transformations in coherent solids can be satisfactorily

explained.
However, the physical system size and evolution time

are rather limited due to the nature of the physical

model. As mentioned earlier, since all the order pa-

rameters are physical, the interfacial width is also a

physical width determined by the chemical free energy

and the interfacial energy. In order to describe the mi-

crostructure evolution kinetics accurately, a certain

number of grid points are required to resolve an inter-
face. With a uniform grid, the total system size is limited

by the total number of grid points. For example, the

interfacial width of Ni–Al binary system in this model is

approximately 1 nm at 1300 K as estimated in the pre-

vious section. With at least 5 points to resolve the in-

terface, the unit grid size is 0.2 nm and the

corresponding time step is only about 10�7 s to maintain

the numerical stability. Considering a real microstruc-
ture evolution in a scale of 1 lm and a coarsening time

of 1 second, 50003 grid points in 3D and total time steps

in the order of 107 are required. A simulation with such

a large system size and computation time is still im-

possible to be practically carried out even with the most

powerful parallel supercomputer currently available.

Therefore, the simulations are often limited to small

systems with length scale usually hundreds of nanome-
ters 2D or tens of nanometers in 3D. Although such

small system sizes might be sufficient during precipitate

nucleation and growth, they are too small to obtain

good statistics for coarsening kinetics.

Most thermodynamic and kinetic properties under

consideration are treated in a similar way in the KKS

model and the physical model. The main advantage of

the KKS model is that the interface thickness can be
adjusted by changing the double-well potential height to

fit the actual interface energy. Thus, in principle, much

wider interface thickness can be chosen, allowing us to

increase the simulation system size significantly. Indeed,

we found that the unit grid size in the KKS model could

be at least one order of magnitude larger than that in the

physical model.

However, there are also a number of disadvantages
of the KKS model as compared to the physical model.

First of all, the order parameters are not physical, so

interfacial energy anisotropy, if required, has also to

be introduced artificially through the orientation de-

pendence of the gradient energy coefficient. Secondly,

Eq. (11) has to be solved at each time step to obtain

the two compositions that make up the interface. In

general, numerical solutions could be computationally
very expensive except for cases that a dilute solution

model can be employed or the second derivatives of

the free energy with respect to composition can be
assumed to be constant. Finally, it is tricky to intro-

duce the coherency elastic energy because of the as-

sumption of a mixture of precipitate and matrix

phases in the interfacial region and the additional

difficulty in solving the coupled evolution equations
when introducing coherency strain energy. In addition,

due to the wider interface, the elastic field calculated

around a precipitate with different interface widths

will also be different.
5. Summary

Three different quantitative computational tools for

modelling microstructure evolution have been investi-

gated including a sharp-interface model using DICTRA

and two diffuse-interface models which use either

physical order parameters or artificial order parameters

to describe the microstructure. By establishing links with

existing thermodynamic and kinetic databases, we have

compared each model by studying the diffusion-con-
trolled growth of an ordered precipitate from a disor-

dered matrix in a Ni–Al binary alloy. The interface

property in the two diffuse-interface models has been

compared by examining the composition, order pa-

rameter and free energy distribution across the interface.

Quantitative comparisons about composition evolution

profile and the growth kinetics show the feasibility of

these quantitative models in predicting microstructural
evolution. Each of the three models has its own ad-

vantages and disadvantages. The sharp-interface mod-

elling implemented by DICTRA software is the most

simple approach in obtaining quantitative kinetic in-

formation about a diffusion controlled transformation

in many cases of interest. However, it is only limited to

1D. The diffuse-interface physical model offers us with a

few advantages in that it uses the long-range order pa-
rameters as physical parameters to describe the micro-

structure and the free energy of different phases are

constructed directly from the thermodynamic databases.

It can be applied to phase transformations in 1D and

has been applied successfully for quantitative simula-

tions on relative small systems in 2D and 3D for rela-

tively short times. Larger system and longer time

simulation of complicated microstructures are possible
to be carried out by the diffuse-interface KKS model

which introduces artificial interface width for increasing

the length scale of the system although a few difficulties

exist including numerically solving a set of non-linear

equations at each time step.
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