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Coarsening kinetics from a variable-mobility Cahn-Hilliard equation:
Application of a semi-implicit Fourier spectral method
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An efficient semi-implicit Fourier spectral method is implemented to solve the Cahn-Hilliard equation with
a variable mobility. The method is orders of magnitude more efficient than the conventional forward Euler
finite-difference method, thus allowing us to simulate large systems for longer times. We studied the coarsen-
ing kinetics of interconnected two-phase mixtures using a Cahn-Hilliard equation with its mobility depending
on local compositions. In particular, we compared the kinetics of bulk-diffusion-dominated and interface-
diffusion-dominated coarsening in two-phase systems. Results are compared with existing theories and previ-
ous computer simulations.@S1063-651X~99!09809-8#

PACS number~s!: 64.10.1h, 64.70.2p, 81.30.Mh, 02.60.Cb
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I. INTRODUCTION

The diffuse-interface phase-field approach is emerging
a powerful mathematical model for simulating the mesosc
morphological pattern formation and interface motion. S
for example,@1# for a brief overview, and the reference
therein. It usually involves the numerical solution of a tim
dependent Ginzburg-Landau equation~TDGL!, or a Cahn-
Hilliard equation ~CH!, or systems of TDGLs and/or CH
equations. For example, a single CH equation has been
tensively applied to modeling coarsening kinetics of tw
phase microstructures. Microstructural instability as a re
of coarsening is of major concern for many structural ma
rials since the mechanical properties of a material usu
degrade as the microstructure coarsens. Within the ph
field context, the composition field, or more precisely, t
compositional deviation from the overall average compo
tion, acts as a phase field in an isostructural two-phase
tem.

There have been many existing simulations using a
equation employing a constant mobility, corresponding
bulk-diffusion-dominated coarsening@2–4#. It is generally
agreed that during late stages of coarsening, two-phase
crostructures exhibit dynamical scaling~or self-similarity!,
i.e., the morphology at a given time can statistically ma
that of an earlier time by a global change of scale. Con
quently, the growth of the system is characterized by a sin
length, the average microstructural length scale, to which
other relevant lengths must scale. For the bulk-diffusio
controlled coarsening, the average scale of a two-phase
crostructure,R̄3, is found to approximately follow the powe
law, R̄32R0

35Kt, whereR0 is the average length at timet
50 andK is the rate constant for coarsening.

However, there have been very few studies of the eff
of a variable mobility on the coarsening kinetics of a tw
PRE 601063-651X/99/60~4!/3564~9!/$15.00
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phase system. The direct numerical solution of a Ca
Hilliard equation with a variable mobility was performed b
Lacastaet al., who showed a significant effect of compos
tion dependence of the mobility on the coarsening kinetics
a two-phase mixture@5,6#. Similar results were obtained b
Yeunget al.using a cell dynamics model@7#. More recently,
Bray et al. derived a growth law corresponding to the C
equation with variable mobility, in the Lifshitz-Slyozov limi
where the minority phase occupies a vanishingly small v
ume fraction@8#.

Most of the existing phase-field simulations employed
explicit forward Euler method in time and finite difference
space. To maintain the stability and to achieve high accur
for the solutions, the time step and spatial grid size have
be very small, which seriously limits the system size a
time duration of a simulation.

Recently, we implemented an accurate and efficient se
implicit Fourier spectral method for solving the time
dependent Ginzburg-Landau equations@9#. Semi-implicit
Fourier spectral methods have been widely used in the fi
of fluid dynamics@10#. For the time variable, we employe
semi-implicit schemes in which the principal elliptic operat
was treated implicitly to reduce the associated stability c
straint, while the nonlinear terms were still treated explici
to avoid the expensive process of solving nonlinear eq
tions at each time step. Thus, at each time step, one solv
constant-coefficient elliptic problem which, in the case
periodic boundary conditions, can be solved efficiently a
accurately by the Fourier spectral method, whose conv
gence rate is exponential~for smooth functions! as opposed
to second-order by a usual finite-difference method.

For the fourth-order Cahn-Hilliard equation, explic
finite-difference schemes have an even more severe t
step constraint than the second-order TDGL equation. A
result, very small time-step sizes have to be employed
small grid sizes. Therefore, even for the case of a cons
3564 © 1999 The American Physical Society
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mobility, it is questionable that the so-called ‘‘scaling stat
of a microstructure has ever been reached in direct sim
tions because of the limit on simulation time and system s
The cell-dynamics system~CDS! simulation of coarsening
kinetics by Oonoet al. @11# does not involve the direct so
lution of the differential equations.

This paper has two main objectives. One is to propos
semi-implicit Fourier spectral method for solving the Cah
Hilliard equation. Since preliminary application to the Cah
Hilliard equation with a constant mobility showed orders
magnitude improvement in efficiency compared to the
plicit forward Euler method@9#, the emphasis here will be o
its application to the case with a variable coefficient~mobil-
ity! in the Cahn-Hilliard equation. The second objective is
study the coarsening kinetics of isostructural two-phase
tems using a CH equation with a variable mobility. Spec
cally, we make comparisons between the bulk-diffusion- a
interface-diffusion-controlled dynamics by studying the d
namical scaling features and the growth law of interco
nected two-phase microstructures.

II. CAHN-HILLIARD EQUATION

An isostructural two-phase system presents perhaps
simplest possible example of a phase-field description
two-phase microstructures. In this case, we need onl
single field, the compositional field,C(r ,t), to describe the
microstructure. Within the bulk of the two phases, the co
position field assumes the equilibrium values determined
the phase diagram. Across the interfaces from one phas
another, there is a gradual change in composition.

Since a two-phase microstructure is thermodynamic
stable, it will evolve to reduce the total interfacial area a
thus the total interfacial energy as a function of time. T
ratio of the driving force per atom for coarsening to the th
mal energykBT is relatively small compared to other pro
cesses such as bulk phase transformations. In this case
can safely apply the linear nonequilibrium thermodynam
according to which the atom flux is linearly proportional
the chemical potential gradient. In the laboratory refere
system, the flux equation is given by

J52NVM“m, ~1!

whereNV is the number of atoms per unit volume,M is the
mobility given by

M5C~12C!@CM11~12C!M2#, ~2!

whereM1 andM2 are atomic mobilities of species 1 and
respectively, andC is the composition of species 2. In E
~1!, the chemical potential,m, is actually the chemical po
tential difference between the two species, i.e.,

m5m22m1 , ~3!

wherem1 andm2 are the atomic chemical potentials of sp
cies 1 and 2, respectively. In an inhomogeneous and n
equilibrium system such as a two-phase mixture,C and m
vary in space, and thusC is a local composition field andm
is a local chemical potential field. The temporal evolution
’
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the composition, and thus the microstructural evolution,
described by the diffusion equation,

]C

]t
5NV“•M“m, ~4!

wheret is time.
In order for the diffusion equation~4! to be able to de-

scribe coarsening, the contribution of the interfacial ene
to the total free energy must be included in the local che
cal potential fieldm. In the Cahn-Hilliard diffuse interface
theory, the interfacial energy is introduced through the g
dient energy terms. The total free energy of an inhomo
neous system is then given by@12#

F5E
V
F f ~C!1

1

2
k~“C!2GdV, ~5!

where f (C) is the local free-energy density andk is the
gradient energy coefficient which can be related to int
atomic interaction parameters. The local chemical poten
is then given by

NVm5
dF

dC
5

d f

dC
2k¹2C, ~6!

wheredF/dC represents a variational derivative. Therefo
the nonlinear temporal evolution equation for the local co
position field~the nonlinearized Cahn-Hilliard equation! be-
comes

]C

]t
5“•M“F d f

dC
2k¹2CG . ~7!

To include the effect of thermal fluctuations, the follow
ing stochastic equation was proposed by Cook@13#:

]C

]t
5“•M“F d f

dC
2k¹2CG1h~r ,t !, ~8!

where the noise termh(r ,t) is a Gaussian random variab
satisfying the fluctuation dissipation theorem.

In most of the existing numerical simulations, the mob
ity, M, in the Cahn-Hilliard-Cook equation is assumed to
independent of the concentration field variable. With
double-well potential function for the local free-energy de
sity, the Cahn-Hilliard equation with constant mobility ca
be presented in a scaled form as@2#

]C~r ,t !

]t
5¹2@2C1C32k¹2C#1h~r ,t !. ~9!

However, based on Eq.~2!, the mobility, M, should be
dependent on the composition field. This dependence m
produce quite important changes on the coarsening kine
A similar scaled form for the Cahn-Hilliard equation with
variable mobility was presented by Langeret al. @14# and
Kitahara and Imada@15#,

]C~r ,t !

]t
5“•~12aC2!“@2C1C32k¹2C#1h~r ,t !,

~10!
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where a is a positive constant. Whena50, the above-
modified Cahn-Hilliard-Cook equation has the same form
the Cahn-Hilliard-Cook equation with constant mobility, d
scribing the dynamics controlled by bulk diffusion. Whena
is equal to 1, the bulk diffusion is severely reduced, wh
corresponds to the interface-diffusion-controlled dynam
i.e., the coarsening process is mainly due to the diffus
along the interface between the two phases. The value ofa is
dependent on the temperature for a real system. It shoul
pointed out that Eq.~10! is essentially the same as that giv
in Eq. ~8!, but presented in a scaled form. Changinga allows
us to investigate the role of bulk and interface diffusion
the coarsening kinetics.

III. SEMI-IMPLICIT FOURIER SPECTRAL METHOD

A high-quality numerical study of the Cahn-Hilliard-Coo
equation requires enough computer time and memory to
a physically meaningful result. First, a large system size
necessary to have good statistics and to minimize the e
of periodicity imposed by periodic boundary conditions. Se
ond, in order to understand the scaling behavior of morp
logical pattern evolution, the system has to evolve lo
enough to reach the true scaling regime. To simplify
problem, we have not included the noise term in our stu
because it usually took a lot of CPU time for generating
Gaussian noise. The noise term has no significant effec
the time to get scaling results or the stabiliy of our numeri
algorithm. In this paper, we implement a semi-implicit Fo
rier spectral method for solving the Cahn-Hilliard-Coo
equation.

A. Cahn-Hilliard equation with a constant mobility

Instead of using a finite-difference approximation, w
propose using a Fourier spectral approximation to Eq.~9! by
transforming the partial differential equation into a seque
of ordinary differential equations in the Fourier space,

]C̃~k,t !

]t
52k2$2C1C3%k2kk4C̃~k,t !, ~11!

where k5(k1 ,k2) is a vector in the Fourier space,k
5Ak1

21k2
2 is the magnitude ofk, and C̃(k,t) and $2C

1C3%k represent the Fourier transform ofC(r ,t) and the
bulk driving force term2C1C3, respectively.

The explicit Euler Fourier spectral method is to appro
mate the above equations by

C̃n11~k,t !5C̃n~k,t !1Dt@2k2$2C1C3%k
n2kk4C̃n~k,t !#.

~12!

This scheme has been extensively used in numerical sim
tion of systems involving long-range interactions such
long-range elastic and Coulombic interactions for which a
lytical expressions exist in Fourier space~see@16,17#!. Un-
fortunately, although this scheme provides excellent spa
accuracy, it is only first-order accurate in time and suff
from the same very restrictive time-step constraint.

To remove the shortcoming with the small time-step s
associated with the explicit Euler scheme, we proposed tr
ing the linear fourth-order operators implicitly and the no
f
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linear terms explicitly. If we write the bulk driving force
term2C1C3 as f (C), the resulting first-order semi-implici
Fourier spectral scheme is

~11Dtkk4!C̃n11~k!5C̃n~k!2Dtk2$ f̃ ~Cn!%k . ~13!

The accuracy in time can be improved by using higher-or
semi-implicit schemes. For instance, a second-order ba
ward difference ~BDF! for ]C̃/]t and a second-orde
Adams-Bashforth~AB! for the explicit treatment of a non
linear term applied to Eq.~11! lead to the following second
order BDF/AB scheme:

~312Dtkk4!C̃n11~k!54C̃n~k!2C̃n21~k!

22Dtk2@2$ f̃ ~Cn!%k2$ f̃ ~Cn21!%k#.

~14!

We may use Eq.~13! to computeC̃1, and hencef̃ (C1),
which are needed to start the iteration in Eq.~14!. Compared
with the usual finite-difference method, the Fourier spec
method can solve the elliptic problem more efficiently a
accurately@10#. The semi-implicit treatment in time enable
us to use a considerably larger time-step size. Our preli
nary numerical simulations indicate that the time step in
semi-implicit method can be two orders of magnitude larg
than that in an explicit method.

B. Cahn-Hilliard equation with a variable mobility

In the modified Cahn-Hilliard-Cook equation with a var
able mobility, it is not convenient to accurately discretize t
gradient operator and divergence operator by using
finite-difference method. However, the Fourier spect
method allows us to numerically solve Eq.~10! without
much more difficulty than the case with a constant mobili
The Fourier form of Eq.~10! is

]C̃~k,t !

]t
5 ik•ˆ~12aC2!@ ik8„$2C1C3%k8

1kk82C̃~k8,t !…# r‰k . ~15!

The @ # r represents the inverse Fourier transform from
Fourier space to real space. The explicit Euler Fourier sp
tral treatment of the above equation is

C̃n11~k,t !2C̃n~k,t !

Dt
5 ik•ˆ~12aC2!@ ik8„$2C1C3%k8

n

1kk82C̃n~k8,t !…# r‰k . ~16!

However, the above scheme has a very severe time-step
straint of the form

DtkK4&1, ~17!

whereK is the number of Fourier modes in each directio
To alleviate this constraint, we consider a semi-implicit tre
ment for the above equation. The idea is to split the varia
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FIG. 1. Morphological patterns during spin
odal decomposition and subsequent coarsen
for bulk-diffusion-controlled dynamics:~a! t
5100, ~b! t52000, ~c! t510 000, ~d! t
530 000.
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mobility (12aC2) into A and (12aC2)2A, whereA is a
suitable constant, and treat them separately. More precis
we add the termAkk4C̃n11(k,t) to the left-hand side of Eq
~16! andAkk4C̃n(k,t) to the right-hand side of Eq.~16! to
obtain

~11ADtkk4!C̃n11~k,t !5~11ADtkk4!C̃n~k,t !

1Dt ik•ˆ~12aC2!

3@ ik8„$2C1C3%k8
n

1kk82C̃n~k8,t !…# r‰k . ~18!

If we chooseA5 1
2 @max(12aC2)1min(12aC2)#, then we

have

u~12aC2!2Au<A.

Therefore, we can expect that the time-step constraint of
form ~17! is no longer necessary. In practice, it is found th
A5 1

2 is a good approximation to1
2 @max(12aC2)1min(1

2aC2)#. Hence, the scheme~18! is only slightly more expen-
sive than Eq.~16!, while the time-step constraint is great
alleviated. A second-order variant of Eq.~18! can also be
constructed accordingly.

Our numerical study showed that such semi-implicit tre
ment of the variable mobility Cahn-Hilliard equation made
possible to use large time steps without losing stability a
ly,

e
t

-

d

accuracy. Consequently, we can perform long-time simu
tions with large system sizes using the Cahn-Hilliard eq
tion with a variable mobility.

IV. COMPUTER SIMULATION

Our simulations were performed on a square domain
cretized using a lattice of 102431024 grid points. Periodic
boundary conditions were employed. The overall sca
composition variable is zero~which corresponds to a rea
composition of 0.5 or critical composition!. The system was
initially prepared in a homogeneous state by assigning a
dom number to each lattice site. The random numbers w
uniformly distributed between 0.1 and20.1 as the initial
condition, corresponding to a high-temperature initial st
where the composition deviation from the average value
only caused by fluctuations. The structure function, the s
ing function, the pair correlation function, and the typic
length scale, which were often used to characterize the
namical system, were calculated after selected time st
Averages were performed over four simulation runs usin
different set of random numbers for each initial state. T
discretizing grid size is chosen to be 1.0 and the time stepDt
is 1.0. For the same parameters for the local free energy
spatial grid size, an explicit scheme will require a time-st
size which is more than two orders of magnitude sma
than 1.0, and much smaller than the dynamic time scale
the Cahn-Hilliard equation. The Cahn-Hilliard equation wi
a variable mobility was computationally a factor of about 2
slower than Cahn-Hilliard equation with a constant mobil
because extra computation time is needed to do the e
Fourier transforms in Eq.~18!. Furthermore, since the
growth rate is much slower when the coarsening proces
interface diffusion controlled, longer times were needed
reach the scaling regime.



-
ing

3568 PRE 60ZHU, CHEN, SHEN, AND TIKARE
FIG. 2. Morphological patterns during spin
odal decomposition and subsequent coarsen
for interface-diffusion-controlled dynamics:~a! t
5100, ~b! t52000,~c! t510 000,~d! t530 000.
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A. Morphological evolution

Figures 1 and 2 showed typical examples of tempo
evolution of morphological patterns during spinodal deco
position and subsequent coarsening for bulk-diffusio
controlled dynamics and for interface-diffusion-controll
dynamics, respectively, by using the same initial conditi
The gray levels represent the local compositions, with wh
representing high values and black representing low val
For this critical composition, there is symmetry between
two phases forming interconnected domains. Shortly a
the quench, there are well defined interfaces separating
gions of different phases. Domain coarsening is eviden
both cases. As expected, the interface-diffusion-contro
coarsening evolves much slower. However, if we comp
patterns with the same representative length scale, the
terns are similar.

B. Dynamic scaling

The morphology at late times is statistically independ
of time if all lengths are rescaled by a single characteri
length scaleR(t). That is, if we take the morphology at late
times in Fig. 1~or Fig. 2! and shrink it by an appropriat
factor, it would look statistically the same as the microstru
ture at earlier times. This characteristic length, which rep
sents the typical domain size, increases with time. The
ture we are interested in is the scaling behavior of the p
correlation function and the structure function.

It has been shown@2# that a two-phase morphology du
ing coarsening can be characterized by a time-depen
structure functionS(k,t),
l
-
-
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S~k,t !5
1

N K (
r

(
r8

e2 ik•r@C~r1r 8,t !C~r 8,t !2^C&2#L ,

~19!

where both sums run over the latticeL andN5L2 is the total
number of points in the lattice. Assuming the evolution to
isotropic, we compute the circularly averaged structure fu
tion S(k,t). The normalized structure functions(k,t) is de-
fined as

s~k,t !5
S~k,t !

N@^C2~r !&2^C&2#
, ~20!

where^ & denotes averaging over all lattice points.
Figure 3 shows an example of the normalized and cir

larly averaged structure functions(k,t) at eight different
time steps for interface-diffusion-controlled dynamics. T
lines are spline fits to the simulation data. As expected
time increases, the maximum value of the structure funct
increases and shifts to lowerk, indicating an increase in the
real-space average length scale.

Correlations of fluctuations aboutC were examined
through the radial pair correlation function. The pair corr
lation function was defined by

G~r ,t !5(
k

e2 ik•rS~k,t !. ~21!

We also consider a circularly averaged pair correlat
function G(r ,t) and normalized pair correlation functio
g(r ,t). A main feature of the dynamical scaling is that th
pair correlation functiong(r ,t) and the structure function
s(k,t) depend on time through the typical length scaleR(t)
only,
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g~r ,t !5G„r /R~ t !… ~22!

and

s~k,t !5R~ t !dF„kR~ t !…, ~23!

whered is the dimensionality of the system and the functio
G(r) andF(x) are the time-independent scaling functions
the system.

There are several ways to characterize the typical len
scaleR(t), such askm(t), the location of the maximum o
s(k,t), andk1(t), the first moment ofs(k,t), defined by

k1~ t !5
( ks~k,t !

( s~k,t !

. ~24!

In our study we did not usekm(t) because the discrete natu
of the lattice in numerical studies usually makes it difficult
determinekm precisely. The location of the first zero of th

FIG. 3. Structure function as a function ofk at eight different
time steps for interface-diffusion-controlled coarsening.
s
f

th

real-space correlation function,Rg , is also a good measur
of the average domain size. We compute this length b
linear interpolation of the two points closest to the first si
change ing(r ,t). Here we use the reciprocal of the fir
moment 1/k1 as the typical length scale. With this definitio
the scaling function isF(k/k1 ,t)5k1

2(t)s(k,t) for 2D. If the
structure function does indeed scale, then we exp
F(k/k1 ,t)5F(k/k1).

In Fig. 4 we have plotted the scaling functionk1
2(t)s(k,t)

as a function ofk/k1 for different times.~a! is for bulk-
diffusion-controlled coarsening and~b! is for interface-
diffusion-controlled coarsening. In the scaling regime th
should be a universal curve. Data were obtained from
different times: 20 000, 22 000, 24 000, 26 000, 28 000, a
30 000. They can be seen to lie on a smooth master cu
indicating that the scaling regime has been attained for b
cases. The system for bulk-diffusion-controlled coarsen
will reach the scaling regime earlier than that for interfac
diffusion-controlled coarsening because of its faster dyna
ics. It is interesting to note that the scaling functions of Fi
4~a! and 4~b! are quite similar, although they are obtaine
from quite different dynamics.

We made a comparison of the circularly averaged p
correlation function for bulk-diffusion-controlled dynamic
and interface-diffusion-controlled dynamics after the d
namical scaling was obeyed (t.20 000). As is shown in
Figs. 5~a! and 5~b!, this function exhibits characteristic os
cillations about zero, which reflects the composition dom
structure. From the figures we can also see that the shap
the curves are rather similar in spite of their different dyna
ics.

C. Growth law

Another important consequence of the dynamical sca
is that the characteristic domain sizeR(t) @given by either
1/k1(t) or Rg(t)# grows as a power law in time when the tru
regime is reached,

R~ t !̄n2R0
n5Kt, ~25!

whereR(t )̄ is the typical domain size at a given timet, R0 is
the initial length scale att50, andK is the rate for coarsen
ing.
g:
FIG. 4. Scaling function as a
function of k/k1 from six time
steps at a late stage of coarsenin
~a! for bulk-diffusion-controlled
dynamics; ~b! for interface-
diffusion-controlled dynamics.
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FIG. 5. Plot of the normalized
pair correlation functiong(r ,t) vs
rk1: ~a! for bulk-diffusion-
controlled dynamics; ~b! for
interface-diffusion-controlled dy-
namics.
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The rate of domain growth depends on the actual co
ening mechanism. Most authors find that for Cahn-Hillia
equation described dynamics, the growth exponentn53.
This exponent is the well-known Lifshitz-Slyozov law
which was originally derived from an evaporatio
condensation mechanism for the growth of overcritical dr
lets in nucleation processes. It also holds for the late-st
coarsening during a spinodal decomposition process. Fig
6 shows the time dependence of domain length character
by Rg ~a! and 1/k1 ~b! for bulk-diffusion-controlled dynam-
ics. A cubic growth law is observed. One can also write
time dependence of domain size asR(t)5A1Btm. We have
analyzed our data by this nonlinear fitting and foundm
50.33360.004.

The cubic growth law is thought to be due to long-ran
diffusion through the bulk. It can be expected that the coa
ening will be slower through the interface-diffusion mech
nism because the bulk diffusion is severely decreased, w
may lead to a largern in Eq. ~25!. In Fig. 7 we show a plot
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for the measure of the domain size@ploted as theRg
4 and

(1/k1)4] versus time for interface-diffusion coarsening. Th
data can be fitted as a straight line, implying that the grow
exponentn is 4 in this case. By doing the nonlinear fitting o
the form R(t)5A1Btm, the exponentm we get is about
0.24760.002, which is very close to14 .

V. DISCUSSION

From our observation of the scaling function and the p
correlation function of the coarsening system, both bu
diffusion-controlled coarsening and interface-diffusio
controlled coarsening showed very similar scaling behav
By varyinga in the variable mobility Cahn-Hilliard equation
it is possible for us to study the role of bulk diffusion in th
asymptotic ordering process. According to our results,
scaling function is independent ofa, i.e., the scaling behavio
does not depend on the detailed dynamics. Lacastaet al. @6#
found that this seemed to be true also for the off-critic
FIG. 6. The cubic of the average domain size vs time at the late stage of bulk-diffusion-controlled coarsening:~a! domain size
characterized byRg ; ~b! domain size characterized by (1/k1).
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FIG. 7. The fourth power of the average domain size vs time at the late stage of interface-diffusion-controlled coarsening:~a! domain size
characterized byRg ; ~b! domain size characterized by (1/k1).
s
s

e
ar

sm
di
u
ce

th
in

m
u

.2

e

bu

is

he
e
ti
(
if-
in

cu

e

-
tant

nc-

e-

e
ulk
to

me,
for
y.
e-
nt

and
f an
hn-
y.
n-
ed
vo-
is
rs-
s,

har-
c-

he
be
quenching with different volume fraction of the two phase
Furthermore, it may indicate that there is some univer
form for phase separation processes.

The growth law merits some comments because it is v
important to understand the kinetics of the late stage co
ening. The dynamical exponentsm in R(t)5A1Btm for dif-
ferent mechanisms have been noted by Furukawaet al. @18#.
For diffusion through the bulk, the coarsening mechani
was thought to be evaporation-condensation. Material
fuses from surfaces of high curvature to surfaces of low c
vature. This can be understood as a curvature-driven pro
which gives a dynamical exponentm of 1

3 . For diffusion
along interfaces, inhomogeneous composition profiles on
interface are smoothed out by diffusion. The correspond
exponentm would be 1

4 . Our simulations on a large syste
size and long times have confirmed the above results. Ye
et al. @7# also found the growth law ofR(t);t1/4 when dif-
fusion is only through the interface. The exponentm that
Lacasta obtained for interface-diffusion coarsening is 0
60.01 @5#, below the predicted value14 .

Changinga in the Cahn-Hilliard equation with variabl
mobility will affect the growth rate greatly. Whena is in the
range of 0–1, the coarsening mechanism contains both
and interface diffusion. The growth exponentm can be ex-
pected between13 and 1

4 , depending on which mechanism
dominant. For example, ifa50.9, we fit the data by the form
R(t)5A1Btm and get an approximate exponent ofm
50.30. For intermediate values ofa, it was mentioned by
Lacastaet al. that there was a crossover behavior of t
growth law @5#. They gave a qualitative estimation of th
crossover through the introduction of a critical characteris
domain size. It was expected that the cubic growth lawn
53) would dominate for very long times because bulk d
fusion will dominate the late stage of coarsening, recover
the ordinary Cahn-Hilliard-like behavior. Brayet al. derived
the more general growth law when the minority phase oc
.
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pies an infinitesimal volume fraction@8#. Instead of writing
the diffusion coefficient in the form of (12aC2), Brayet al.
use (12C2)a as the diffusion coefficient. They derived th
expression of the growth exponentR(t);t (11a).

For bulk-diffusion-controlled dynamics, it is usually ac
cepted that the noise term does not affect some impor
features of the late stages of evolution~such as the growth
law for the characteristic domain size and the scaling fu
tions! for spinodal decomposition. However, Yeunget al.
believed that noise might be more important in interfac
diffusion-controlled dynamics@7#. Noise may affect the mo-
bility, leading to a faster rate of growth. The effect of th
noise term on the kinetics of coarsening through both b
diffusion and interface diffusion remains a topic for us
carry out large scale and long time simulations.

VI. CONCLUSION

In this paper, an efficient and accurate numerical sche
the semi-implicit Fourier spectral method, was proposed
solving the Cahn-Hilliard equation with a variable mobilit
Compared with the conventional forward Euler finit
difference method, it is orders of magnitude more efficie
and accurate, thus allowing us to work on large systems
for long times. We have studied the coarsening kinetics o
interconnected two-phase microstructure from the Ca
Hilliard equation with a compositional-dependent mobilit
Particularly, we compared the kinetics of bulk-diffusio
controlled coarsening and interface-diffusion-controll
coarsening. It was shown that the morphological pattern e
lution in the interface-diffusion-controlled coarsening
much slower than that in the bulk-diffusion-controlled coa
ening. However, in spite of their quite different dynamic
the scaling behavior for the coarsened microstructure c
acterized by the scaling function and pair correlation fun
tion looks quite similar. Finally, we have also studied t
growth law for the characteristic domain size, which can
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characterized by either the inverse of the first momentk1(t)
or the location of the first zero of the real-space correlat
functionRg(t). Our analysis showed that a cubic growth la
R̄3;t was obeyed in the scaling regime for the bu
diffusion-controlled coarsening, while a fourth power grow
law R̄4;t was observed for interface-diffusion-controlle
coarsening.
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