Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO₃ thin films

J. X. Zhang,^{a)} Y. L. Li, Y. Wang, Z. K. Liu, and L. Q. Chen Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

Y. H. Chu, F. Zavaliche, and R. Ramesh

Department of Materials Science and Engineering and Department of Physics, University of California, Berkeley, California 94720

(Received 12 November 2006; accepted 15 April 2007; published online 13 June 2007)

A single-domain thermodynamic theory is employed to predict the spontaneous polarizations of $(001)_c$, $(101)_c$, and $(111)_c$ oriented epitaxial BiFeO₃ thin films grown on dissimilar substrates. The effects of various substrate-induced strains on the spontaneous polarization were studied. The dependences of the spontaneous polarization on film orientations and the types of substrate-induced strains were analyzed. © 2007 American Institute of Physics. [DOI: 10.1063/1.2743733]

I. INTRODUCTION

There has been considerable interest in developing BiFeO₃ magnetoelectric materials, which are simultaneously antiferromagnetic and ferroelectric.¹⁻³ In its bulk form, the ferroelectric phase of BiFeO₃ has a rhombohedrally distorted perovskite structure with space group R3c. The spontaneous polarization of BiFeO₃ is along the pseudocubic $\langle 111 \rangle_c$ crystallographic directions, and hence there are eight possible polarization variants: $r_1^+ = [111]_c$, $r_2^+ = [111]_c$, $r_3^+ = [111]_c$, r_4^+ $=[111]_c, r_1=[111]_c, r_2=[111]_c, r_3=[111]_c, \text{ and } r_4=[111]_c.$ However, for epitaxial BiFeO₃ thin films, the existence of a free surface and substrate constraint destroys the macroscopic symmetry of the system and may significantly affect the properties of BiFeO₃. Recently, large ferroelectric polarizations have been reported in heteroepitaxially constrained thin films of BiFeO₃. 1,4,5 Strong dependence of polarization on film thickness has also been observed in experiments, and a likely explanation is the change of strains with film thickness.¹ Previous studies have shown that substrateinduced strains can lead to a substantial increase in spontaneous polarization for conventional ferroelectric materials, e.g., BaTiO₃, PbTiO₃.^{6,7} However, the substrate-induced strain effect for BiFeO3 thin films is still unclear. For example, first-principles calculations showed^{8,9} that the spontaneous polarization is rather insensitive to substrate-induced strains compared to conventional ferroelectric systems, while a recent thermodynamic calculation showed a strong dependence of spontaneous polarization on substrate-induced strains (film thickness) for $(001)_c$ oriented BiFeO₃ thin films.¹⁰

Landau-type phenomenological theory has been extensively used to study the physical properties of single-domain ferroelectric thin films.^{11–15} In this article, we extend the thermodynamic theory of ferroelectric thin films to variously oriented [i.e., $(001)_c$, $(101)_c$, and $(111)_c$] epitaxial BiFeO₃ thin films with general substrate-induced strains. We focus

on the spontaneous polarization of $BiFeO_3$ thin films and its dependence on substrate-induced strains at room temperature. Our results are compared to previous experimental and theoretical studies.

II. RESULTS AND DISCUSSION

We consider a single-domain $(001)_c$ oriented BiFeO₃ thin film grown on a dissimilar substrate. For a phenomenological description of BiFeO₃ with coexistence of ferroelectric and antiferromagnetic orders, in principle, both the spontaneous polarization $\mathbf{P} = (P_1, P_2, P_3)$ and spontaneous magnetization $\mathbf{M} = (M_1, M_2, M_3)$ should be chosen as the order parameters. If we set up a rectangular coordinate system $\mathbf{x} = (x_1, x_2, x_3)$ with the x_1, x_2 , and x_3 axes along the $[100]_c$, $[010]_c$, and $[001]_c$ crystallographic directions of the BiFeO₃ film, respectively, the free energy of BiFeO₃ using a Landau type of expansion can be written as¹⁶

$$F(P,M,\varepsilon) = \alpha_1 (P_1^2 + P_2^2 + P_3^2) + \alpha_{11} (P_1^4 + P_2^4 + P_3^4) + \alpha_{12}$$

$$\times (P_1^2 P_2^2 + P_1^2 P_3^2 + P_2^2 P_3^2) + \beta_1 (M_1^2 + M_2^2 + M_3^2)$$

$$+ \beta_{11} (M_1^4 + M_2^4 + M_3^4) + \beta_{12} (M_1^2 M_2^2 + M_1^2 M_3^2)$$

$$+ M_2^2 M_3^2) + \gamma_{ijkl} P_i P_j M_k M_l + \frac{1}{2} c_{ijkl} \varepsilon_{ij} \varepsilon_{kl}$$

$$- \frac{1}{2} q_{ijkl} \varepsilon_{ij} P_k P_l - \frac{1}{2} \lambda_{ijkl} \varepsilon_{ij} M_k M_l + \cdots, \qquad (1)$$

where ε_{ij} are the strain components, α_1 , α_{ij} , β_1 , and β_{ij} are the phenomenological Landau expansion coefficients, γ_{ijkl} are the magnetoelectric coupling coefficients, c_{ijkl} and q_{ijkl} are the elastic constants and electrostrictive constants, respectively, and λ_{ijkl} are the magnetoelastic coupling coefficients. The summation convention for the repeated indices is

0021-8979/2007/101(11)/114105/6/\$23.00

101, 114105-1

^{a)}Electronic mail: jzz108@psu.edu

employed and i, j, k, l=1,2,3. The electrostrictive coefficients, q_{iikl} , defined here can be easily obtained from

$$q_{ijkl} = 2c_{ijmn}Q_{mnkl},\tag{2}$$

where Q_{mnkl} are the electrostrictive coefficients typically measured experimentally. Although sixth-order terms in polarization are required for a first-order ferroelectric transition in BiFeO₃,¹⁷ we only considered terms up to fourth order due to the lack of sufficient experimental data to obtain the numerical values of all the coefficients. Since our focus is on the effect of substrate-induced strains on the spontaneous polarization of BiFeO₃ thin films at room temperature, such approximation will not impact the main results of this article. We also neglect the magnetoelectric coupling term in Eq. (1) due to fact that BiFeO₃ has a large polarization but a quite small saturated magnetization,² and the coupling term should have small effect on the spontaneous polarization. With these approximations, the free-energy expression of BiFeO₃ was reduced to

$$F(P,\varepsilon) = \alpha_1 (P_1^2 + P_2^2 + P_3^2) + \alpha_{11} (P_1^4 + P_2^4 + P_3^4) + \alpha_{12} (P_1^2 P_2^2 + P_1^2 P_3^2 + P_2^2 P_3^2) + \frac{1}{2} c_{ijkl} \varepsilon_{ij} \varepsilon_{kl} - \frac{1}{2} q_{ijkl} \varepsilon_{ij} P_k P_l.$$
(3)

The elastic constants of cubic phase BiFeO₃ are used, $c_{1111} = 3.02 \times 10^{11}$ (N m⁻²), $c_{1122}=1.62 \times 10^{11}$ (N m⁻²), and $c_{1212} = 0.68 \times 10^{11}$ (N m⁻²), which were obtained from firstprinciples calculations. The Landau expansion coefficients and the electrostrictive coefficients were obtained by fitting them to experimental measurements,^{18–21} i.e., $\alpha_1=4.9(T - 1103) \times 10^5$ (C⁻² m² N), $\alpha_{11}=6.5 \times 10^8$ (C⁻⁴ m⁶ N), α_{12} = 1.0×10^8 (C⁻⁴ m⁶ N), $Q_{1111}=0.032$ (C⁻² m⁴), $Q_{1122}=$ -0.016 (C⁻² m⁴), and $Q_{1212}=0.01$ (C⁻² m⁴), where *T* is temperature in Kelvin. It should be noted that, due to the lack of reliable experimental data about the ferroelectric properties

TABLE I. Properties of BiFeO₃ films at room temperature, T=300 K.

Properties of BiFeO ₃ films (on SrTiO ₃ substrates)	This work ^a	Experimental measurements
Polarization (P ₃) of	0.63	0.55, ^b 0.64 ^c
$(001)_c$ BiFeO ₃ film (C/m ²)		
Polarization (P'_3) of	0.80	$0.80,^{b}0.81^{c}$
$(101)_c$ BiFeO ₃ film (C/m ²)		
Polarization (P'_3) of	0.96	1.00, ^b 0.96 ^c
$(111)_c$ BiFeO ₃ film (C/m ²)		
Dielectric constant of $(111)_c$ BiFeO ₃ film	62	45, ^b 60 ^c

^aThe substrate-induced strains were assumed to be $\varepsilon_{11}^0 = \varepsilon_{22}^0 = -0.015$, $\varepsilon_{12}^0 = 0$ in the calculations. ^bReference 20.

^cReference 21.

Reference 21

of bulk BiFeO₃, we calculated the ferroelectric properties of different oriented BiFeO₃ films grown on SrTiO₃ substrates, and fitted them with the corresponding experimental measurements of BiFeO₃ films^{20,21} to obtain the needed coefficients. The calculated ferroelectric properties of BiFeO₃ films at room temperature are compared in Table I with the available experimentally measured values.

For a general case, strains are imposed along the x_1 - x_2 directions, while all the stress components involving the x_3 direction are zero due to the existence of the free film surface, i.e.,

$$\varepsilon_{11} = \varepsilon_{11}^{0},$$

$$\varepsilon_{22} = \varepsilon_{22}^{0},$$

$$\varepsilon_{12} = \varepsilon_{21} = \varepsilon_{12}^{0},$$

$$\sigma_{13} = \sigma_{31} = \sigma_{23} = \sigma_{32} = \sigma_{33} = 0,$$
(4)

where the misfit strains ε_{ij}^0 depend on the lattice parameters of the film and substrate. With such specified boundary conditions, the free energy of $(001)_c$ oriented BiFeO₃ thin film is given by

$$F = \begin{bmatrix} \alpha_{1} - \frac{(c_{1111}q_{1111} - c_{1122}q_{1122})\varepsilon_{11}^{0} + (c_{1111}q_{1122} - c_{1122}q_{1122})\varepsilon_{22}^{0}}{2c_{1111}} \end{bmatrix} P_{1}^{2} \\ + \begin{bmatrix} \alpha_{1} - \frac{(c_{1111}q_{1122} - c_{1122}q_{1122})\varepsilon_{11}^{0} + (c_{1111}q_{1111} - c_{1122}q_{1122})\varepsilon_{22}^{0}}{2c_{1111}} \end{bmatrix} P_{2}^{2} \\ + \begin{bmatrix} \alpha_{1} - \frac{(c_{1111}q_{1122} - c_{1122}q_{1111})\varepsilon_{11}^{0} + (c_{1111}q_{1122} - c_{1122}q_{1111})\varepsilon_{22}^{0}}{2c_{1111}} \end{bmatrix} P_{3}^{2} \\ - 2q_{1212}\varepsilon_{12}^{0}P_{1}P_{2} + \left(\alpha_{12} - \frac{q_{1122}^{2}}{4c_{1111}}\right)P_{1}^{2}P_{2}^{2} + \left(\alpha_{12} - \frac{q_{1111}q_{1122}}{4c_{1111}} - \frac{q_{1212}^{2}}{2c_{1212}}\right) \left(P_{1}^{2}P_{3}^{2} + P_{2}^{2}P_{3}^{2}\right) + \left(\alpha_{11} - \frac{q_{1122}^{2}}{8c_{1111}}\right) \\ \times \left(P_{1}^{4} + P_{2}^{4}\right) + \left(\alpha_{11} - \frac{q_{1111}^{2}}{8c_{1111}}\right)P_{3}^{4} - \frac{c_{1122}^{2}(\varepsilon_{11}^{0} + \varepsilon_{22}^{0})^{2}}{2c_{1111}} + \frac{1}{2}c_{1111} \left[(\varepsilon_{11}^{0})^{2} + (\varepsilon_{22}^{0})^{2}\right] + c_{1122}\varepsilon_{112}^{0}\varepsilon_{22}^{0} + 2c_{1212}(\varepsilon_{12}^{0})^{2}. \tag{5}$$

FIG. 1. (a) Free energy (*F*) and P_s ; (b) polarization components of $(001)_c$ oriented BiFeO₃ thin films as a function of normal substrate-induced strains. [The free energy and P_s of rhombohedral phase (*R*) and tetragonal phase (*T*) were also given for comparison.]

It should be noted that Eq. (5) is essentially the same as that reported in Ref. 14 except for the sixth-order terms and the different notation of coefficients. The spontaneous polarization can be derived from Eq. (5) by solving $\partial F / \partial P_i = 0$ (*i* = 1,2,3).

For the case of a $(001)_c$ oriented BiFeO₃ film epitaxially grown on a $(001)_c$ oriented cubic single-crystal substrate with an in-plane orientation relationship of $[100]_c^{BiFeO_3} || [100]_c^s$, a constant dilatational plane strain, socalled biaxial strain, is imposed along the x_1 - x_2 directions,

$$\varepsilon_{11}^0 = \varepsilon_{22}^0, \quad \varepsilon_{12}^0 = 0,$$
 (6)

where $\varepsilon_{11}^0 = \varepsilon_{22}^0 = (a_s - a_{BiFeO_3})/a_{BiFeO_3}$, a_s and a_{BiFeO_3} are the lattice parameters of the substrate and film, respectively. The dependence of the polarizations on the substrate-induced strains is shown as Fig. 1. We can see that the in-plane components of polarization $(|P_1| = |P_2|)$ are not equal to the outof-plane component $|P_3|$ due to the constraint of the substrate. As expected, compressive substrate-induced strains lead to an increase in $|P_3|$ and decrease in $|P_1|$ and $|P_2|$, while tensile substrate-induced strains have the opposite effect. Therefore, the direction of the polarization vector deviates from its equilibrium $\langle 111 \rangle_c$ directions (toward $[001]_c/[001]_c$ compressive directions for strains and $[110]_{c}/[110]_{c}/[110]_{c}$ directions for tensile strains). As shown in Fig. 1(b), BiFeO₃ becomes the monoclinic M_A

FIG. 2. Free energy (*F*) and P_s of various polarization variants for $(001)_c$ oriented BiFeO₃ thin films as a function of (a) anisotropic normal substrate-induced strains and (b) shear substrate-induced strains.

phase and M_B phase,²² respectively, which is consistent with prior experimental observations.^{4,23} However, the change of the absolution value of the spontaneous polarization (P_s = |**P**|) with the substrate-induced strains is rather small as shown in Fig. 1(a). For example, a rather large compressive strain of 1.6% leads to an increase of P_s only about 0.3%. It should be noted that all eight polarization variants are degenerate in energy and hence should exist with the same probability in the (001)_c oriented BiFeO₃ thin film.

For the case of a $(001)_c$ oriented BiFeO₃ film epitaxially grown on a $(110)_o$ oriented orthorhombic substrate [for example $(110)_o$ oriented DyScO₃] with an in-plane orientation relationship of $[100]_c^{\text{BiFeO_3}} \| [\overline{110}]_o^s$ and $[010]_c^{\text{BiFeO_3}} \| [001]_o^s$, an anisotropic in-plane strain is imposed along the x_1 - x_2 directions, while there is no shear strain.

$$\varepsilon_{11}^0 \neq \varepsilon_{22}^0, \quad \varepsilon_{12}^0 = 0,$$
 (7)

where $\varepsilon_{11}^0 = (\sqrt{a_s^2 + b_s^2} - a_{\rm BiFeO_3})/a_{\rm BiFeO_3}$, $\varepsilon_{22}^0 = (c_s - a_{\rm BiFeO_3})/a_{\rm BiFeO_3}$, and a_s , b_s , and c_s are the lattice parameters of the orthorhombic substrate. By fixing the ratio of $\varepsilon_{11}^0/\varepsilon_{22}^0$, we plot the dependence of free energy and P_s on the substrate-induced strains in Fig. 2(a). It was interesting to note that all eight polarization variants have equal energy even under the anisotropic substrate-induced strains. The absolution value of the spontaneous polarization P_s is insensitive to the normal substrate-induced strains.

Shear substrate strain may also exist for $(001)_c$ oriented BiFeO₃ films, i.e., $\varepsilon_{11}^0 = \varepsilon_{22}^0 \neq 0$, $\varepsilon_{12}^0 \neq 0$. A potential example

would be a $(001)_c$ oriented BiFeO₃ film constrained by a $(001)_o$ orthorhombic substrate with an in-plane orientation relationship of $[100]_c^{\text{BiFeO_3}} || [110]_o^s$ and $[010]_c^{\text{BiFeO_3}} || [\overline{1}10]_o^s$. The shear strain is $\varepsilon_{12}^0 = \frac{1}{2} \cos \gamma$, where γ is the angle between $[110]_o$ and $[\overline{1}10]_o$ crystallographic axes of the substrate. For simplicity, we assume $\varepsilon_{11}^0 = \varepsilon_{22}^0 = 0$ in this work. Unlike previously studied cases, the energies of the eight polarization variants are no longer degenerate under the shear substrate-induced strain as shown in Fig. 2(b). Under a negative shear substrate-induced strain, four variants $(r_2^+, r_2^-, r_4^+, \text{ and } r_4^-)$ have lower energy, while under a positive shear substrate-induced strain the energies of the other four variants $(r_1^+, r_1^-, r_3^+, \text{ and } r_3^-)$ are lower. From Fig. 2(b), one can see that P_s

changes with the shear substrate-induced strain. For example, P_s (for r_1^+ , r_1^- , r_3^+ , and r_3^-) increases about 3.6% for a strain $\varepsilon_{12}^0 = 1.6\%$, which is significant compared to the effect of normal substrate-induced strains. However, the magnitude of change is still dramatically smaller than other traditional ferroelectric systems such as BiFeO₃.

For comparison, we also performed calculations by assuming that the symmetry of BiFeO₃ was fixed to be rhombohedral $(|P_1|=|P_2|=|P_3|=P_s/\sqrt{3})$ or tetragonal $(P_1=P_2=0, |P_3|=P_s)$. By reducing Eq. (5) with such symmetry relations, the corresponding spontaneous polarization can be obtained by solving $\partial F/\partial P_i=0$. For rhombohedral symmetry,

$$P_{s}^{2} = \frac{6c_{1212} \left[-6a_{1}c_{1111} + (c_{1111} - c_{1122})(q_{1111} + 2q_{1122})(\varepsilon_{11}^{0} + \varepsilon_{22}^{0}) \pm 4c_{1111}q_{1212}\varepsilon_{12}^{0} \right]}{c_{1212} \left[24(a_{11} + a_{12})c_{1111} - (q_{1111} + 2q_{1122})^{2} \right] - 8c_{1111}q_{1212}^{2}},$$
(8)

where "+" for the variants with $P_1 = P_2$ and "-" for the variants with $P_1 = -P_2$.

For tetragonal symmetry,

$$P_s^2 = \frac{-4a_1c_{1111} - 2(c_{1122}q_{1111} - c_{1111}q_{1122})(\varepsilon_{11}^0 + \varepsilon_{22}^0)}{8a_{11}c_{1111} - q_{1111}^2}.$$
(9)

From Eq. (8), one can see that, when BiFeO₃ has the rhombohedral symmetry, the effect of normal substrate-induced strains on P_s is highly related to the magnitude of $(q_{1111}+2q_{1122})$, which is given by

$$q_{1111} + 2q_{1122} = 2(c_{1111} + 2c_{1122})(Q_{1111} + 2Q_{1122}).$$
(10)

For BiFeO₃ (also true for many ferroelectrics), the magnitude of $(Q_{1111}+2Q_{1122})$ is quite small. Therefore, the dependence of P_s on normal substrate-induced strains is rather weak, and only a shear substrate-induced strain could affect the polarization effectively. However, P_s is only a function of normal substrate-induced strains when BiFeO₃ has a tetragonal symmetry [as shown in Eq. (9)]. It may explain the strong dependence of spontaneous polarizations on normal substrate-induced strains (film thickness) shown in Ref. 10, where the symmetry of BiFeO₃ was assumed to be tetragonal. It should be noted that the BiFeO₃ phases with tetragonal symmetry and rhombohedral symmetry have higher energy than the phase with monoclinic symmetry as shown in Fig. 1(a); therefore, they are unstable in the range of substrate-induced strains we studied.

We now discuss $(111)_c$ oriented BiFeO₃ thin films grown on a dissimilar substrate. Following Ref. 13, a new coordinate system, $\mathbf{x}' = (x'_1, x'_2, x'_3)$, is set up with the x'_1, x'_2 , and x'_3 axes along the $[0\overline{11}]_c$, $[\overline{2}11]_c$, and $[111]_c$ crystallographic directions of the BiFeO₃ film, respectively. The free energy of BiFeO₃ in the coordinate system \mathbf{x}' is given by

$$F(P',\varepsilon') = \alpha_1 [(t_{i1}P'_i)^2 + (t_{i2}P'_i)^2 + (t_{i3}P'_i)^2] + \alpha_{11} [(t_{i1}P'_i)^4 + (t_{i2}P'_i)^4 + (t_{i3}P'_i)^4] + \alpha_{12} [(t_{i1}P'_i)^2 (t_{i2}P'_i)^2 + (t_{i1}P'_i)^2 (t_{i3}P'_i)^2 + (t_{i2}P'_i)^2 (t_{i3}P'_i)^2] + \frac{1}{2} c'_{ijkl} \varepsilon'_{ij} \varepsilon'_{kl} - \frac{1}{2} q'_{ijkl} \varepsilon'_{ij} P'_k P'_l, \qquad (11)$$

where t_{ij} is the transformation matrix from the coordinate system **x** to the coordinate system **x**'. P'_i , ε'_{ij} , c'_{ijkl} , and q'_{ijkl} are the polarizations, strains, elastic constants, and electrostrictive constants in the coordinate system **x**', which are given by

$$P'_{i} = t_{ij}P_{j},$$

$$\varepsilon'_{ij} = t_{im}t_{jn}\varepsilon_{mn},$$

$$c'_{ijkl} = t_{im}t_{jn}t_{ko}t_{lp}c_{mnop},$$

$$q'_{ijkl} = t_{im}t_{jn}t_{ko}t_{lp}q_{mnop},$$
(12)

with the transformation matrix

$$t_{ij}^{(111)_c} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$
 (13)

For a $(111)_c$ oriented film deposited on a $(111)_c$ oriented cubic crystal substrate with an in-plane orientation relationship of $[1\overline{10}]_c^{\text{BiFeO}_3} || [1\overline{10}]_c^s$, the elastic boundary condition is given by

$$\varepsilon_{11}' = \varepsilon_{11}^0,$$

FIG. 3. (a) Free energy (F) and P_{s} ; (b) polarization components of various polarization variants for $(111)_c$ oriented BiFeO₃ thin films as a function of normal substrate-induced strains.

$$\varepsilon_{22}' = \varepsilon_{22}^{0},$$

$$\varepsilon_{12}' = \varepsilon_{21}' = 0,$$

$$\sigma_{13}' = \sigma_{31}' = \sigma_{23}' = \sigma_{32}' = \sigma_{33}' = 0,$$
(14)

where $\varepsilon_{11}^0 = \varepsilon_{22}^0 = (a_s - a_{BiFeO_3})/a_{BiFeO_3}$, a_s and a_{BiFeO_3} are the lattice parameters of the substrate and film, respectively. Unlike the $(001)_c$ oriented film, under a biaxial substrateinduced strain the polarization variants do not have equal energy except for a critical point at $\varepsilon_{11}^0 = \varepsilon_{22}^0 \sim 0\%$ as shown in Fig. 3(a). For a large compressive strain, the two polarization variants perpendicular to the film surface $(r_1^+ \text{ and } r_1^-)$ have lower energy than the others, and the compressive substrate-induced strains increase the P_s of the variants, which is consistent with prior first-principles calculations.^{8,9} It should be noted that in such a case, BiFeO₃ retains the rhombohedral (R) symmetry $(|P_1| = |P_2| = |P_3|)$ [as shown in Fig. 3(b), and indeed rhombohedral symmetry is found experimentally in $(111)_c$ epitaxial BiFeO₃ film deposited on a $(111)_c$ surface of SrTiO₃, which has smaller lattice parameters than BiFeO₃.^{4,5,24} At the right side of the critical point in Fig. 3(a), the other six polarization variants become more stable energetically. One can see that the substrate-induced strains also increase the P_s of these polarization variants. However, the symmetry of BiFeO₃ is no longer rhombohedral, and the stable phases have been marked in Fig. 3(b).

FIG. 4. (a) Free energy (F) and P_3 ; (b) polarization components of various polarization variants for $(101)_c$ oriented BiFeO₃ thin films as a function of normal substrate-induced strains.

We also study $(101)_c$ oriented BiFeO₃ thin films. The coordinate system \mathbf{x}' was set up with the x'_1 , x'_2 , and x'_3 axes along the[010]_c, [101]_c, and [101]_c crystallographic directions of the BiFeO₃ film, and the free energy of $(101)_c$ oriented BiFeO₃ thin films can be given by Eq. (11) with the transformation matrix from the coordinate system \mathbf{x} to the coordinate system \mathbf{x}' ,

$$t_{ij}^{(101)_c} = \begin{pmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}.$$
 (15)

For a $(101)_c$ oriented BiFeO₃ film deposited on a $(101)_c$ oriented cubic crystal substrate with an in-plane orientation relationship of $[010]_c^{\text{BiFeO_3}} || [010]_c^s$, the elastic boundary condition is given by

$$\varepsilon_{11}' = \varepsilon_{11}^{0},$$
$$\varepsilon_{22}' = \varepsilon_{22}^{0},$$
$$\varepsilon_{12}' = \varepsilon_{21}' = 0,$$

Downloaded 23 Oct 2007 to 128.118.53.4. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp

$$\sigma_{13}' = \sigma_{31}' = \sigma_{23}' = \sigma_{32}' = \sigma_{33}' = 0, \tag{16}$$

where $\varepsilon_{11}^0 = \varepsilon_{22}^0 = (a_s - a_{\rm BiFeO_3})/a_{\rm BiFeO_3}$. At a critical point $\varepsilon_{11}^0 = \varepsilon_{22}^0 \sim 0.25\%$, the energies of eight polarization variants are the same; otherwise their energies are different. Polarization variants $(r_1^+, r_1^-, r_4^+, \text{ and } r_4^-)$ have lower energy on the left side of the critical point, while the other four polarization variants are more stable energetically on the right side of the critical point. Consistent with the experimental observation, ^{4,25} the crystal structure of $(101)_c$ BiFeO₃ film loses the rhombohedral symmetry as shown in Fig. 4(b). The substrate-induced strains also change the P_s of these variants as shown in Fig. 4(a).

III. SUMMARY

In summary, we have extended the thermodynamic theory of ferroelectric thin films to a number of different oriented $[(001)_c, (101)_c, \text{ and } (111)_c]$ epitaxial BiFeO₃ thin films with general substrate-induced strains. Our calculations show that the substrate effect on ferroelectric polarization of BiFeO₃ films depends on the film orientations and the types of substrate-induced strains. For $(001)_c$ oriented BiFeO₃ films, only shear substrate-induced strain will have a significant effect on the absolute value of the spontaneous polarization P_s , while the normal substrate-induced strains only rotate the polarization direction without changing its magnitude. However, for $(111)_c$ and $(101)_c$ oriented BiFeO₃ films, normal substrate-induced strains can significantly alter the magnitude of the spontaneous polarization.

ACKNOWLEDGMENTS

The authors are grateful for the financial support by the National Science Foundation under Grant Nos. DMR-0507146, DMR-0213623, and DMR-0205232, and a Penn State MRI seed grant.

- ¹J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science **299**, 1719 (2003).
- ²T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater. **5**, 823 (2006).
- ³R. Ramesh and N. A. Spaldin, Nat. Mater. **6**, 21 (2007).
- ⁴J. F. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P.
- Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004).
- ⁵F. Bai, J. Wang, M. Wuttig, J. F. Li, N. Wang, A. P. Pyatakov, A. K. Zvezdin, L. E. Cross, and D. Viehland, Appl. Phys. Lett. **86**, 032511 (2005).
- ⁶K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, Science **306**, 1005 (2004).
- ⁷C. Bungaro and K. M. Rabe, Phys. Rev. B **69**, 184101 (2004).
- ⁸C. Ederer and N. A. Spaldin, Phys. Rev. Lett. **95**, 257601 (2005).
- ⁹C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 224103 (2005).
- ¹⁰Q. Jiang and J. H. Qiu, J. Appl. Phys. **99**, 103901 (2006).
- ¹¹N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).
- ¹²N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B 61, R825 (2000).
- ¹³A. K. Tagantsev, N. A. Pertsev, P. Muralt, and N. Setter, Phys. Rev. B 65, 012104 (2001).
- ¹⁴Z. G. Ban and S. P. Alpay, J. Appl. Phys. **91**, 9288 (2002).
- ¹⁵A. G. Zembilgotov, N. A. Pertsev, U. Böttger, and R. Waser, Appl. Phys. Lett. 86, 052903 (2005).
- ¹⁶G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982).
- ¹⁷R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phys. Rev. B **73**, 132101 (2006).
- ¹⁸F. Kubel and H. Schmid, Acta Crystallogr. 46, 698 (1990).
- ¹⁹B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A.
- K. Zvezdin, and D. Viehland, Phys. Rev. B 69, 064114 (2004).
- ²⁰J. Wang, Ph.D. thesis, University of Maryland, 2005.
- ²¹Y. H. Chu (unpublished).
- ²²D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 (2001).
- ²³G. Y. Xu, H. Hiraka, G. Shirane, J. F. Li, J. L. Wang, and D. Viehland, Appl. Phys. Lett. **86**, 182905 (2005).
- ²⁴M. K. Singh, H. M. Jang, S. Ryu, and M. H. Jo, Appl. Phys. Lett. **88**, 042907 (2006).
- ²⁵G. Y. Xu, J. F. Li, and D. Viehland, Appl. Phys. Lett. **89**, 222901 (2006).