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Abstract

A computational model is proposed to predict the stability of magnetic domain structures and their temporal evolution in giant

magnetostrictive materials by combining a micromagnetic model with the phase-field microelasticity theory of Khachaturyan. The

model includes all the important energetic contributions, including the magnetocrystalline anisotropy energy, exchange energy, mag-

netostatic energy, external field energy, and elastic energy. While the elastic energy of an arbitrary magnetic domain structure is

obtained analytically in Fourier space, the Landau–Liftshitz–Gilbert equation is solved using the efficient Gauss–Seidel projection

method. Both Fe81.3Ga18.7 and Terfenol-D are considered as examples. The effects of elastic energy and magnetostatic energy on

domain structures are studied. The magnetostriction and associated domain structure evolution under an applied field are modeled

under different pre-stress conditions. It is shown that a compressive pre-stress can efficiently increase the overall magnetostrictive

effect. The results are compared with existing experiment measurements and observations.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Magnetostriction is a phenomenon in which a mate-

rial changes its physical dimensions when there is a

change in its magnetization. The change in magnetiza-
tion can be induced by the application of a magnetic

field or a stress field. Magnetostriction is observed, to

differing degrees, in all ferromagnetic materials. While

typical magnetostrictive strains of magnetic materials

are of the order of 10�5–10�6, some compounds con-

taining rare earth elements have magnetostriction as

high as 10�3. Among these, Terfenol-D (TbxDy1�xFe2,

x = 0.3) has been extensively investigated for use in sen-
sor and actuator devices because of its high magneto-

striction to anisotropy ratio [1,2]. It has been recently
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found that large magnetostriction (over 200 ppm) at

room temperature also occurs in FeGa alloys with disor-

dered body-centered cubic a-Fe structure [3–5].

Giant magnetostrictive materials often display com-

plex domain structures that arise from the competition
of the magnetocrystalline anisotropy energy, exchange

energy, magnetostatic energy, external field energy,

and elastic energy. The domain evolution under applied

fields is directly responsible for the overall strain re-

sponse of the materials. Therefore, the domain struc-

tures and their evolution have been extensively studied

experimentally [6–15]. To explain the observed magnetic

behavior, there have also been a number of theoretical
developments for magnetostrictive materials, including

the works by Brown [16], James and Kinderlehrer

[17,18], and DeSimone and James [19]. However, due

to the rather complicated elastic solutions associated

with an arbitrary domain structure, there has been
ll rights reserved.
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essentially no simulation of macroscopically inhomoge-

neous domain patterns and their evolution under exter-

nal fields in giant magnetostrictive materials.

One type of approach assumed that the magnetiza-

tions of domains are constrained by the anisotropy

energy to lie along the easy magnetic axes. The ferro-
magnetic constitutive behavior was then described by

the distribution of a fixed quantity of available magnetic

domains within materials among all the possible direc-

tions. The model assumed that each domain is magne-

tized independently without being affected by the

magnetization states of neighboring domains. This type

of approach has been used in many works to study the

magnetostriction under an external magnetic field [20–
24]. But this model is not suitable for describing a mate-

rial with low magnetocrystalline anisotropy or the

system states close to saturation when the magnetic field

is applied along directions far away from those of easy

axes. Zhu et al. [25] studied the influence of external

stress on the cohesive field in magnetic thin films. In

their micromagnetic model, without solving the total

compatible strain, they use the stress-free magnetostric-
tive strain caused by the magnetization instead; thus the

intrinsic stress resulting from the elastic incompatibility

of magnetostrictive strains is not taken into account.

The intrinsic stress is critically important for materials

with large magnetostriction [26]. Fabian and Heider

[27] have calculated the magnetostrictive self-energies

of a magnetic particle imbedded in a non-magnetic ma-

trix using the finite element method and the continuum
theory of defects. Recently, Shu et al. [26,28] developed

a modified boundary integral formalism to calculate the

intrinsic stress induced by incompatible magnetostrictive

strains, but their method is confined to some simple two-

dimensional (2D) cases due to the complexity of solving

the elastic equilibrium equations.

The main purpose of this paper is to describe a

computational approach to model the stability and evo-
lution of magnetic domain structures in giant magneto-

strictive materials. It combines the micromagnetic model

for magnetic domain evolution [29] and the phase-field

microelasticity theory [30,31] for the elastic solutions

in a magnetostrictive material with arbitrary distribu-

tions of magnetic domains. The phase-field microelastic-

ity theory has been extensively used in computer

simulations of structural phase transformations and
microstructure evolution in both bulk systems, see, for

example, Refs. [32–34], and for more extensive refer-

ences [35], and thin films [36–38]. The model is able to

predict the detailed domain structure and their evolution

under an applied field without a priori assumptions on

domain morphologies. The main limitation of the pres-

ent model as well as essentially all prior phase-field mod-

els for solid state phase transformations is the
assumption of periodic boundary conditions, and hence

the results are only valid when the simulation system size
is much smaller than the actual sample size. It will be

shown that the domain shapes and domain wall config-

uration in magnetostrictive materials predicted from the

model automatically satisfy the condition of magnetic

and elastic compatibilities. The domain structure and

magnetostriction evolution under a magnetic field will
also be studied for samples with different magnitudes

of applied pre-stress. The results predicted from our sim-

ulations will be compared with existing experimental

observation and theoretical predictions.
2. Micromagnetic model and phase-field elasticity theory

In a micromagnetic model, the domain structure is

described by the spatial distribution of the local magne-

tization M(r). The temporal evolution of the magnetiza-

tion configuration, thus the domain structure, is

described by the Landau–Lifshitz–Gilbert (LLG)

equation

ð1þ a2Þ oM
ot

¼ �c0M�Heff �
c0a
M s

M� ðM�HeffÞ; ð1Þ

where Ms is the saturation magnetization, c0 is the gyro-
magnetic ratio, a is the damping constant, and Heff is the
effective magnetic field, which can be represented as a

variational derivative of the total free energy of the sys-

tem with respect to magnetization

Heff ¼ � 1

l0

oE
oM

; ð2Þ

where l0 is the permeability of vacuum, the total free en-

ergy of magnetostricitve materials is given by

E ¼ Eanis þ Eexch þ Ems þ Eexternal þ Eelastic; ð3Þ
where Eanis, Eexch, Ems, Eexternal, Eelastic are the magneto-

crystalline anisotropy energy, exchange energy, magne-

tostatic energy, external field energy, and elastic

energy, respectively.

The magnetocrystalline anisotropy energy of a cubic

crystal is

Eanis ¼
Z

K1ðm2
1m

2
2 þ m2

1m
2
3 þ m2

2m
2
3Þ þ K2m2

1m
2
2m

2
3

� �
dV ;

ð4Þ
where mi are the components of the unit magnetization

vector, m = M/Ms. K1 and K2 are the anisotropy

constants.

The exchange energy is determined solely by the spa-
tial variation of the magnetization orientation and can

be written as

Eexch ¼ A
Z

ðm2
1;1 þ m2

1;2 þ m2
1;3 þ m2

2;1 þ m2
2;2 þ m2

2;3

þ m2
3;1 þ m2

3;2 þ m2
3;3Þ dV ; ð5Þ

where A is the exchange stiffness constant. In this paper,
a comma in a subscript stands for spatial differentiation,
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for example, mi,j = omi/oxj, where xj is the jth compo-

nent of position vector in the Cartesian coordinates.

The magnetostatic energy of a system can be written

as

Ems ¼ � 1

2
l0M s

Z
Hd �m dV ; ð6Þ

where Hd is the stray field that is determined by the

long-range interaction among the magnetic moments
in the system. The stray field Hd is governed by [29]

Hd1;1 þ Hd2;2 þ Hd3;3 ¼ �M sðm1;1 þ m2;2 þ m3;3Þ; ð7Þ
where Hdi are the components of Hd. By introducing

magnetic scalar potential /,

Hdi ¼ �/;i: ð8Þ

Eq. (7) is thus rewritten as,

D/ ¼ M sðm1;1 þ m2;2 þ m3;3Þ: ð9Þ
The solution of the potential for Eq. (9) is given in Fou-

rier space by,

/ðnÞ ¼ �i
M s½m1ðnÞn1 þ m2ðnÞn2 þ m3ðnÞn3�

n21 þ n22 þ n23
; ð10Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
; ni are the coordinates in Fourier space,

and /(n), mi(n) are the Fourier transforms of / and mi,

respectively. The value of / in real space can be ob-

tained through an inverse Fourier transform of /(n).
The value of Hd can then be calculated by Eq. (8).

Note that the origin of the Fourier space

(n1 = n2 = n3 = 0) is a singularity point in Eq. (10) and

its contribution corresponds to the demagnetization

field caused by the average magnetization of the system.

This can easily be seen by writing the local magnetiza-

tion field as

MðrÞ ¼ �Mþ dMðrÞ; ð11Þ
where �M is spatially independent average magnetization

and dM is the spatially dependent heterogeneous part of

the magnetization field. The average field �M is defined in

such a way that
R
dMðrÞ dV ¼ 0. Since the contribution

from (n1 = n2 = n3 = 0) is excluded in Eq. (10), it only in-

cludes the contribution from the heterogeneous part of

the magnetization field dM. Therefore, in order to con-

sider the demagnetization field caused by the average

magnetization in this work, we approximate the demag-

netization field by

Hdð �MÞ ¼ N �M; ð12Þ
where N is the demagnetizing factor, which depends

only on the shape of the specimen. It should be pointed

out since we assume periodic boundary conditions for

the heterogeneous magnetization, Eq. (12) is an approx-

imation for incorporating the effect of sample shape on
domain structures. Such an approximation is, in princi-

ple, only valid if the simulation system size is much
smaller than the real sample size to be simulated.

Although the demagnetization factor, N, is known for

certain specific shapes, in general, it has to be computed

numerically.

The effect of an external applied magnetic fieldHex on

the system energy can be taken into account through the
interaction between the magnetization and the external

field

Eexternal ¼ �l0M s

Z
Hex �m dV : ð13Þ

For a cubic magnetostrictive material, the deforma-

tion associated with the local magnetization is described

by the stress-free strain:

e011 ¼
3

2
k100 m2

1 �
1

3

� �
; e012 ¼

3

2
k111m1m2;

e022 ¼
3

2
k100 m2

2 �
1

3

� �
; e013 ¼

3

2
k111m1m3;

e033 ¼
3

2
k100 m2

3 �
1

3

� �
; e023 ¼

3

2
k111m2m3;

ð14Þ

where k100 and k111 are the magnetostrictive constants of

a cubic crystal.

To accommodate the local deformations arising from

the magnetostrictive effect, the elastic strains eij and thus

elastic energy Eelastic are generated in a magnetic domain

structure,

eij ¼ eij � e0ij; ð15Þ

where eij is the total strain. The corresponding elastic en-

ergy can be expressed as

Eelastic¼
Z

1

2
cijkleijekl dV ¼

Z
1

2
cijklðeij�e0ijÞðekl�e0klÞdV ;

ð16Þ
where cijkl is the elastic stiffness tensor. The summa-
tion convention for the repeated indices is employed

and i, j, k, l = 1, 2, 3. For a cubic material with its

three independent elastic constant c11, c12 and c44 in

the Voigt�s notation, the elastic energy can be rewrit-

ten as

Eelastic ¼
Z

1

2
c11ðe211 þ e222 þ e233Þ

�
þ c12ðe11e22 þ e22e33 þ e11e33Þ

þ2c44ðe212 þ e223 þ e213Þ
�

dV

¼
Z

1

2
c11½ðe11 � e011Þ

2 þ ðe22 � e022Þ
2 þ ðe33 � e033Þ

2�
�

þ c12½ðe11 � e011Þðe22 � e022Þ þ ðe22 � e022Þðe33 � e033Þ
þ ðe11 � e011Þðe33 � e033Þ� þ 2c44½ðe12 � e012Þ

2

þðe23 � e023Þ
2 þ ðe13 � e013Þ

2�
�

dV ð17Þ
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which can be separated into three contributions,

Eelastic ¼ Eelastic1 þ Eelastic2 þ Eelastic3 ð18Þ
with

Eelastic1 ¼
Z

1

2
c11ðe211 þ e222 þ e233Þ

�
þ c12ðe11e22 þ e22e33 þ e11e33Þ

þ2c44ðe212 þ e223 þ e213Þ
�

dV ; ð19Þ

Eelastic2 ¼
Z

2c44
3

2
k111

� �2

� ðc11 � c12Þ
3

2
k100

� �2
" #(

� ðm2
1m

2
2 þ m2

2m
2
3 þ m2

1m
2
3Þ
)

dV ; ð20Þ

Eelastic3 ¼
Z

� 3

2
k100ðc11 � c12Þðe11m2

1 þ e22m2
2 þ e33m2

3Þ
�

�6k111c44ðe12m1m2 þ e23m2m3 þ e13m1m3Þ
�

dV :

ð21Þ

Following Khachaturyan�s theory [31], the total

strain eij(r) may be represented as the sum of homoge-

neous and heterogeneous strains:

eijðrÞ ¼ �eij þ gijðrÞ: ð22Þ
The homogeneous strain is defined in such a way so thatZ

gijðrÞ dV ¼ 0: ð23Þ

The homogeneous strain represents the macroscopic

shape change of a system generated due to the formation

of a domain structure. The heterogeneous strain does

not affect the macroscopic shape of a system.
The equilibrium heterogeneous strain satisfies the

mechanical equilibrium condition given by the Euler

equation with respect to the elastic displacement

rij;j ¼ 0; ð24Þ
where rij are the stress components and are given by

rij ¼ cijklekl ¼ cijklðekl � e0klÞ.
For the case of homogeneous modulus approxima-

tion, the equilibrium heterogeneous strain can be calcu-
lated by solving the equation Eq. (24) in Fourier space.

First, we introduce a set of displacements ui(r),

gij ¼ 1
2
ðui;j þ uj;iÞ: ð25Þ

The equations of equilibrium (24) are thus rewritten as

cijkluk;lj ¼ cijkle0kl;j: ð26Þ

The general solution of the displacement field for
Eq. (26) is given in Fourier space by
uiðnÞ ¼ X jNijðnÞ=DðnÞ; ð27Þ
where X i ¼ �icijkle0klðnÞnj; uiðnÞ and e0klðnÞ are the Fou-

rier transforms of ui and e0kl, respectively, Nij(n) are

cofactors of a 3 · 3 matrix K[n],

K½n� ¼
K11 K12 K13

K21 K22 K23

K31 K32 K33

2
64

3
75 ð28Þ

and D(n) is the determinant of matrix K[n]. Note that

Kki = ckjilnjnl.
For cubic crystals, the explicit expressions of D(n)

and Nij(n) are:

DðnÞ ¼ l2ðkþ 2lþ vÞn6

þ lvð2kþ 2lþ vÞn2ðn21n
2
2 þ n21n

2
3 þ n22n

2
3Þ

þ v2ð3kþ 3lþ vÞn21n
2
2n

2
3;

N 11ðnÞ ¼ l2n4 þ lðkþ lþ vÞn2ðn22 þ n23Þ
þ vð2kþ 2lþ vÞn22n

2
3;

N 12ðnÞ ¼ �ðkþ lÞn1n2ðln2 þ vn23Þ

ð29Þ

and other components are obtained by the cyclical per-
mutation of 1, 2, 3, where

k ¼ c12; l ¼ c44; v ¼ c11 � c12 � 2c44; and n2 ¼ nini:

ð30Þ
The displacement field ui(r) in the real space can be

obtained through an inverse Fourier transform of

ui(n). Consequently, the heterogeneous strain can be cal-

culated by Eq. (25).

The value of the homogeneous strain depends on the

boundary conditions. For a clamped boundary condi-

tion, the system as a whole is not allowed to deform.
Therefore, the homogeneous strain is zero. When a sys-

tem is subject to a constant homogeneous applied strain

eaij, the homogeneous strain is simply equal to the ap-

plied strain. If there is no external stress applied and

the system is unconstrained with respect to the macro-

scopic deformation, the homogeneous strain is obtained

by minimizing the total elastic energy respect to the

homogeneous strain. Substituting Eq. (22) into the total
elastic energy given in Eq. (16) and using the fact of

Eq. (23), we obtain

Eelastic ¼
Z

1

2
cijkl

�
�eij þ gijðrÞ � e0ij

�
�ekl þ gklðrÞ � e0kl
� �

dV

¼ V
2
cijkl�eij�ekl � cijkl�eij

Z
e0kl dV þ cijkl�eij

Z
gklðrÞ dV

þ
Z

1

2
cijkl

�
gijðrÞ � e0ij

�
gklðrÞ � e0kl
� �

dV

¼ V
2
cijkl�eij�ekl � cijkl�eij

Z
e0kl dV

þ
Z

1

2
cijkl

�
gijðrÞ � e0ij

��
gklðrÞ � e0kl

�
dV ; ð31Þ

where V is the total volume of the system.
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Minimizing it with respect to the homogeneous

strain, i.e.,

oEelastic

o�eij
¼ 0 ¼ Vcijkl�ekl � cijkl

Z
e0kl dV ; ð32Þ

we have

�ekl ¼
1

V

Z
e0kl dV : ð33Þ

Using the stress-free strain given in Eq. (14), the

homogeneous strain is given by:

�e11 ¼
3

2
k100 m2

1 �
1

3

� �
; �e12 ¼

3

2
k111m1m2;

�e22 ¼
3

2
k100 m2

2 �
1

3

� �
; �e13 ¼

3

2
k111m1m3;

�e33 ¼
3

2
k100 m2

3 �
1

3

� �
; �e23 ¼

3

2
k111m2m3;

ð34Þ

where m2
i and mimj represent the volume average of

m2
i and mimj over a system containing a domain struc-

ture, respectively.
When a system is subject to a homogeneous applied

stress ra
ij, the total potential energy is given by the sum

of elastic energy of the system and the potential of the

mechanical loading,

Ep ¼ Eelastic � V ra
ij�eij: ð35Þ

Minimizing the total potential energy with respect to the

homogeneous strain, we have

oEp

o�eij
¼ oEelastic

o�eij
�
V ra

ij�eij
o�eij

¼ Vcijkl�ekl � cijkl

Z
e0kl dV � V ra

ij ¼ 0: ð36Þ

Therefore

�ekl ¼
1

V

Z
e0kl dV þ sijklra

ij; ð37Þ

where sijkl is the elastic compliance tensor. Using Eq.

(14), we obtain the homogeneous strain:

�e11 ¼ s11ra
11 þ s12ðra

22 þ ra
33Þ þ

3

2
k100 m2

1 �
1

3

� �
;

�e12 ¼
1

2
s44ra

12 þ
3

2
k111m1m2;

�e22 ¼ s11ra
22 þ s12 ra

11 þ ra
33

� 	
þ 3

2
k100 m2

2 �
1

3

� �
;

�e13 ¼
1

2
s44ra

13 þ
3

2
k111m1m3;

�e33 ¼ s11ra
33 þ s12ðra

11 þ ra
22Þ þ

3

2
k100 m2

3 �
1

3

� �
;

�e23 ¼
1

2
s44ra

23 þ
3

2
k111m2m3;

ð38Þ

where s11, s12, and s44 are the three independent compli-

ance constants for a cubic material in the Voigt�s notion.
The total strain can be calculated by Eq. (22). Conse-

quently, the elastic energy can be obtained for a magne-

tostrictive material with an arbitrary magnetic domain

structure by Eq. (16).
3. Simulation results and discussion

The magnetic domain structures are obtained by

the numerically solving the LLG equation using the

Gauss–Seidel projection method in this work [39]. The

LLG equation can be rewritten in dimensionless form,

by employing the following set of dimensionless

variables:

M ¼ M sm;

Heff ¼ M sheff ;

t ¼ 1þ a2

c0M s

s:

ð39Þ
The equation becomes,

om

os
¼ �m� heff � am� ðm� heffÞ: ð40Þ

We can rewrite the effective magnetic field as

heff ¼
1

M s

ðHeff1 þHeff2Þ

¼ 1

M s

� 1

l0

oEexch

oM

� �
þ � 1

l0

oE0

oM

� �
 �

¼ A�Dmþ 1

M s

� 1

l0

oE0

oM

� �
¼ A�Dmþ h½m�;

ð41Þ

where E 0 is the total free energy excluding the exchange

energy part. A* is defined as A� ¼ 2A=l0M
2
s l

2
d, where ld is

the cell size in the model.

Following Ref. [39], we solve the equation

om

os
¼ �m� ðA�Dmþ h½m�Þ � am� ðm� ðA�Dmþ h½m�ÞÞ

ð42Þ
in three steps:
Step 1:

gni ¼ ð1� A�DsDÞ�1ðmn
i þ Dshi½mn�Þ;

g�i ¼ ð1� A�DsDÞ�1ðm�
i þ Dshi½mn�Þ; i ¼ 1; 2; 3:

ð43Þ

m�
1

m�
2

m�
3

0
B@

1
CA ¼

mn
1 þ ðgn2mn

3 � gn3m
n
2Þ

mn
2 þ ðgn3m�

1 � g�1m
n
3Þ

mn
3 þ ðg�1m�

2 � g�2m
�
2Þ

0
B@

1
CA: ð44Þ
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Step 2:

m��
1

m��
2

m��
3

0
B@

1
CA ¼

m�
1 þ aDsðA�Dm��

1 þ h1½m��Þ
m�

2 þ aDsðA�Dm��
2 þ h2½m��Þ

m�
3 þ aDsðA�Dm��

3 þ h3½m��Þ

0
B@

1
CA: ð45Þ

Step 3:

mnþ1
1

mnþ1
2

mnþ1
3

0
B@

1
CA ¼ 1

m��j j

m��
1

m��
2

m��
3

0
B@

1
CA: ð46Þ

We solve Eqs. (43) and (45) by employing the Fourier

transform. For example, by Fourier transforming both
sides of Eq. (43), the equation becomes
Fig. 1. Domain evolution in the presence of elastic energy but the

absence of magnetostatic energy: (a) 4000 steps; (b) 40,000 steps; (c)

200,000 steps; (d) 400,000 steps. Black = [100] and ½�100� domains,

light gray = [010] and ½0�10� domains, and dark gray = [001] and ½00�1�
domains.
gni ðnÞ ¼
mn

i ðnÞ þ Ds~hi½mn�
1þ ðn21 þ n23 þ n23ÞA�Ds

; ð47Þ

where gni ðnÞ;mn
i ðnÞ; and ~hi½mn� are the Fourier trans-

forms of gni ;m
n
i ; and hi½mn�, respectively. The value of

gni in real space can be obtained by doing an inverse

Fourier transform of gni ðnÞ. Eq. (45) can be solved in a

similar way.

3.1. Domain structures and magnetostriction in FeGa

We first consider Fe81.3Ga18.7 as an example for the

numerical simulations. The corresponding material

parameters are from Refs. [3–5]: Ms = 1.432 · 106 A/m,

K1 = 2 · 104 J/m3, K2 = �4.5 · 104 J/m3, and

k100 = 2.64 · 10�4, k111 = 0. The bulk cubic elastic con-

stants are c11 = 1.96 · 1011 N/m2, c12 = 1.56 · 1011 N/

m2, and c44 = 1.23 · 1011 N/m2. To save the computa-

tional time and since the magnetic easy axes are along
Æ100æ directions, we performed the simulations with

(512 · 512 · 1 or 256 · 256 · 1) discrete cells, i.e., essen-

tially 2D systems. Periodic boundary conditions are ap-

plied along the x1, x2 and x3 axes. The magnetization is

assumed to be uniform in each cell, but it is allowed to

rotate in three dimensions (3D). For the damping con-

stant, a value of a = 0.5 is used in the simulation. In re-

duced variables, the exchange stiffness constant is chose
be A* = 0.0625, and the time step is Ds = 0.1.
3.1.1. Energetic contributions and domain structures

Giant magnetostrictive materials usually exhibit

rather complicated domain structures resulted from

competing energetic contributions such as elastic energy

and magnetostatic energy. To understand the relation of

each energetic contribution to the resulting domain
structure, we performed simulations taking into account

different energy contributions.

The domain structures obtained are shown in Figs. 1,

3–5. Fig. 1 shows the temporal evolution of a domain

structure in the presence of elastic energy but without
the magnetostatic energy. Mechanical clamped bound-

ary conditions were used, which means that the overall
dimensions of the system do not change. At the begin-

ning, the random initial configuration evolves to do-

mains as shown in Fig. 1(a). All the six different kinds

of orientation domains determined by the cubic anisot-

ropy energy, including the domains with magnetization

along the positive x1 direction ([100] domain), negative

x1 direction (½�100� domain), positive x2 direction ([010]

domain), negative x2 direction (½0�10� domain), positive
x3 direction ([001] domain), and negative x3 direction

(½00�1� domain), are present with almost equal fractions.

Fig. 1(b) illustrates the domain structure after 40,000

steps of evolution, indicating domain growth and coars-

ening. The domains are separated by 180� or 90� domain

walls. A schematic diagram showing the 180� domain

and 90� domain walls separating the domains is given

in Fig. 2. The 90� domain walls tend to align along
the [110] or ½1�10� directions separating [100] domain

(or ½�100� domain) and [010] domain (or ½0�10� domain).

The alignment becomes increasingly strong at the later

stage of evolution as shown in Fig. 1(c) and (d). Since

in this case, the magnetostatic energy is not included

and the exchange energy is isotropic, the domain wall

alignment must be entirely due to the anisotropic elastic

interactions. For 90� domain walls, the condition of
elastic compatibility between the associated domain

pairs requires that the tangential components of the



Fig. 3. Simulated domain structure in the absence of both magneto-

static and elastic energies. Black = [100] and ½�100� domains, light

gray = [010] and ½0�10� domains, and dark gray = [001] and ½00�1�
domains.

Fig. 4. Simulated domain structure with varying magnetostrictive

constants: (a)k100 = 1.32 · 10�4, k111 = 0; (b) k100 = 2.64 · 10�5, k111 =
0 (in the presence of elastic energy but the absence of magnetostatic

energy). Black = [100] and ½�100� domains, light gray = [010] and

½0�10� domains, and dark gray = [001] and ½00�1� domains.

(a) (b)

Fig. 2. Schematic diagram of the 180� domain wall and 90� domain

wall separating the domains: (a) 180� domain wall; (b) 90� domain

wall.
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stress-free strain must be equal in both domains for the

given wall orientation. For a pair of [100] (or ½�100�) and
[010] (or ½0�10�) domains, the corresponding wall plane

is (110) (or ð1�10Þ), which is automatically predicted

by the simulations without a priori assumptions. For
180� domain walls, since the magnetizations are anti-

parallel on either side of the wall and correspond to

identical strains, there is no preferred orientation of

the 180� domain walls as shown in Fig. 1(b) and (c). It

is interesting to note that the 180� domain walls become

straight and perpendicular to the neighboring 90� do-

main walls as shown in Fig. 1(d). The directional align-

ment for the 180� walls can be easily understood as a
result of domain wall minimization associated with the

straight domain walls. Periodic segments were observed

in some 180� domain walls as shown in Fig. (1). Similar

substructures along 180� domain walls have been ob-

served and studied experimentally [40], in which case

the subdivision of domain wall was explained as a result

of magnetostatic energy minimization. To reveal the ori-

gin of the subdivision of the 180� domain wall observed
here, we simulated the domain structure without consid-

ering both the magnetostatic energy and elastic energy.

As Fig. (3) shows, the substructures along 180� domain

walls still exist, which indicates that neither the magne-

tostatic energy nor elastic energy is responsible for the

formation of the substructure. They are formed due to

degeneracy of the domain wall with four different orien-

tations that have equal energy. It is also noted, as ex-
pected, that since the magnetostatic energy is absent,

both the head to tail and head to head (tail to tail) do-

main walls exist in the domain structure.

One may also notice that in Fig. 1 the fraction of

[001] domain and ½00�1� domain decreases with time.

Eventually as shown in Fig. 1(c) and (d), only those

[100] (or ½�100�) and [010] (or ½0�10�) domains survive.

This is easily understandable since this is a quasi 2D
simulation, and hence the domain walls between [001]
(or ½00�1�) domains and the other four domains with

magnetization perpendicular to the x3 axis are parallel

to the [001] direction instead of the energetically favor-

able ð011Þ=ð01�1Þ or ð101Þ=ð�101Þ planes.
Experimental results [3–5] showed that the magneto-

strictive constant of FeGa alloy is sensitive to the mate-

rial composition and temperature. Therefore, it is useful

to study the domain structure of magnetostrictive mate-
rials with different magnetostriction constants. Fig. 4

shows the simulated domain structure with varying

magnetostrictive constants: k100 = 1.32 · 10�4, 2.64 ·
10�5 (k111 = 0), which are 0.5 and 0.1 times of that for

Fe81.3Ga18.7, respectively. With the decrease of magneto-

strictive constant, the domain walls become less aligned,

since the contribution of elastic energy becomes increas-

ingly insignificant. We also note that the ½00�1� domains
survive for the case of low magnetostrictive constants,

which confirm the responsibility of the elastic energy

for the disappearance of [001] (or ½00�1�) domains in

materials with high magnetostrictive constants in our

2D simulations as shown in Fig. 1.



Fig. 5. Domain evolution in the presence of both elastic energy and

magnetostatic energy: (a) 4000 steps; (b) 40,000 steps; (c) 200,000 steps;

(d) 500,000 steps. Black = [100] and ½�100� domains, light gray = [010]

and ½0�10� domains, and dark gray = [001] and ½00�1� domains.
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It should be noted that some other material parame-

ters of FeGa alloy beside magnetostriction constants

were also found to depend on composition and temper-

ature, such as saturation magnetization and cubic

anisotropy constant. They should also affect the domain

structure of FeGa alloy, which was not studied in this
work. Thus, complicated behaviors of domain structures

in FeGa are expected depending on composition and

temperature.

Fig. 5 shows the temporal evolution of domain struc-

ture when the magnetostatic energy and elastic energy

are both taken into account. In this case, the domain

wall orientation is constrained by both the elastic com-

patibility and the magnetic compatibility. Two adjacent
domains are magnetically compatible if the normal com-

ponents of the magnetization vectors of both domains

with respect to their common domain wall are equal.

Therefore, only head to tail domain walls survive. Since

the discontinuities in the strain do not occur for 180� do-
main walls, the 180� domain walls are only constrained

by the magnetic compatibility. It is shown that the 180�
domain walls are found to be parallel to the magnetiza-
tion direction of associated domain pair (Fig. 5(d)). Fi-

nally, a twin-like domain structure was obtained as
Fig. 6. Simulated domain structure with different applied pre-stress (along x1 axis): (a) 5 MPa (61% domain with magnetization along x1 axis); (b) 0

MPa (49%); (c) �5 MPa (32%). Dark gray = [100] domains, black = ½�100� domains, light gray = ½0�10� domains, and white = [010] domains.
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shown in Fig. 5(d), which is similar to that described in a

prior theoretical prediction [17]. If the exchange stiffness

constant of Fe81.3Ga18.7 has a similar magnitude as Fe

(A � 10�11 J/m), the system studied here is around

3 · 3 lm.

3.1.2. Magnetization process

The overall strain response of a magnetostrictive

material is directly related to the domain evolution in

the material under applied fields. The field-induced mag-

netostriction under a certain applied field depends on
Fig. 8. The domain structure evolution under applied field along [100] (witho

Dark gray = [100] domains, black = ½�100� domains, light gray = ½0�10� doma
the initial demagnetized domain structure in a crystal.

The largest magnetostriction appears only when an ideal

initial domain structure is formed, i.e., all the domains

align perpendicular to the applied magnetic field direc-

tion. Such an alignment can be obtained by an applied

pre-stress. From Eq. (21), it can easily been seen that
the elastic energy contribution can alter the anisotropy

energy. For the positive k100 we used here, a tensile

stress, that produces an elongation in the x1 axis (and

hence contraction in x2 and x3 axes), energetically favors

the domains with magnetization along the x1 axis while
ut pre-stress): (a) 0 kA/m; (b) 0.80 kA/m; (c) 4.38 kA/m; (d) 7.96 kA/m.

ins, and white = [010] domains.



Fig. 9. Simulated domain structure of Terfenol-D. Black = [111] and

½�1�1�1� domains, dark gray = ½11�1� and ½�1�11� domains, light gray =

½1�11� and ½�11�1� domains, and white = ½1�1�1� and ½�111� domains.
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a compressive stress will favor domains with magnetiza-

tion perpendicular to the x1 axis. Fig. 6 shows the do-

main structures of samples with different applied pre-

stresses. As expected, while a tensile stress increases

the fraction of domains along x1 axis, a compressive

stress applied along x1 axis decreases it.
The magnetostriction and associated domain struc-

ture evolution under an applied magnetic field for the

samples with different applied pre-stress were shown in

Figs. 7 and 8. In prior experiments [3–5], to obtain large

magnetostriction at a relatively low magnetic field, the

samples were usually prepared in the shapes of a thin

disk or a rod to decrease the demagnetization effect.

To approximate this case, in our simulation we use the
demagnetizing factor of infinite thin sheet (Nx =

Ny = 0,Nz = 1). A magnetostriction vs. M/Ms curve for

the magnetization process was given in Fig. 7(c). The

initial flat stage of the curve show that the initial in-

crease of magnetization is accompanied by a small mag-

netostrictive change. As Fig. (8) shows, such an initial

magnetization stage mainly consist of 180� domain wall

movement (such as region A in Fig. 8(a) and (b)), which
does not produce any magnetostrictive change in dimen-

sions. 90� domain wall movement also occurred by

switching from ½�100� to [010] (or ½0�10�) domains or

from [010] (or ½0�10�) to [100] domains (such as region

B in Fig. 8(a) and (b)). As magnetostriction vs. M/Ms

curve measures the average behavior of the system, the

effect of such two distinct 90� domain wall motion is

equal to a 180� domain switching from ½�100� to [100]
domain, which does not produce magnetostrictive

change. With further magnetization, the fraction of the

½�100� domain deceases, and the associated 180� domain

switching decreases too. As shown in the magnetostric-

tion vs. M/Ms curve, the slope increases with magnetiza-

tion. Finally, a single domain with saturated

magnetization and magnetostriction along the applied

field was obtained as shown in Fig. 8(d). It is shown that
a pre-stress can indeed have a significant effect on the

magnetostriction. A larger saturation magnetostriction

was obtained for systems with a compressive pre-stress,

while a smaller magnetostriction was obtained when a

tensile pre-stress was applied.

3.2. 3D Domain structures in Terfenol-D

As Terfenol-D has a negative magnetocrystalline

anisotropy with easy directions along Æ111æ, it is not

possible to approximate the domain structures in 2D.

Therefore, we chose a 3D system with 128 · 128 · 128

cells. The periodic boundary conditions are applied

along all three Cartesian axes. The material parameters

are [26]: Ms = 8.0 · 105 A/m, A = 9 · 10�12 J/m,

K1 = �6 · 104 J/m3, K2 = 0 J/m3 and k100 = 0, k111 =
1.64 · 10�3. The bulk cubic elastic constants are

c11 = 1.41 · 1011 N/m2, c12 = 6.48 · 1010 N/m2, and
c44 = 4.87 · 1010 N/m2. Because of the extensive compu-

tational time required for 3D simulations, in this paper

we only focused on the prediction of 3D domain struc-

tures without an applied field. An example of 3D do-
main structure is shown in Fig. 9. Domains with

magnetization along the 8 possible Æ111æ easy directions

were observed. The obtained domain wall orientations

of non-180� walls, which constrained by the elastic com-

patibility, agree with those predicted by theory of James

and Kinderlehrer [17,18] and with prior experimental

observations [6,11]. It should be emphasized that these

domain wall orientations were predicted without a priori
assumptions. The orientations of 180� domain wall are

not exactly along those planes determined by the mag-

netic compatibility, which comes from the competition

between magnetostatic and exchange energy, since the

exchange energy prefers a flat domain wall with minimi-

zation of wall. Extensive studies on the magnetic behav-

ior of Terfenol-D such as the magnetic process with

applied magnetic field or stress will be carried out using
extensive 3D simulations.
4. Conclusion

A computational model for predicting the stability of

domain structures and their temporal evolution in giant

magnetostrictive materials is developed by combining a
micromagnetic model with the phase-field microelastic-

ity of Khachaturyan for arbitrary domain structures.

It takes into account both the inhomogeneous stress

and magnetic field distributions in a domain structure.

Its applications to FeGa and Terfenol-D demonstrated

that the model correctly predicts the domain wall orien-
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tations as well as the domain structure evolution and the

magnitude of magnetostriction during a magnetization

process. It is shown that the elastic energy minimization

results in an alignment of 90� domain wall orientation

while the magnetostatic energy is responsible for the ori-

entation of 180� domain walls and the head–tail magne-
tization configuration across a domain wall. Subdivision

of 180� domain walls was observed, which was attrib-

uted to the degeneracy of the domains with different

magnetic easy directions rather than the elastic interac-

tions or the magnetostatic interactions that were be-

lieved to be responsible previously. Under an applied

magnetic field, the domain structure evolution starts

with the 180� domain switching, which does not produce
any magnetostriction. It is also demonstrated that pre-

stress can be efficiently used to increase the magneto-

striction changing the initial magnetic domain structure

in the demagnetization state.
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