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Predicting the domain structures and properties in both bulk single crystal and thin film
ferroelectrics using the phase-field approach requires the knowledge of fundamental mechanical,
electrical, and electromechanical coupling properties of a single-domain state. In this work, the
elastic properties and structural parameters of cubic single crystals as well as tetragonal,
orthorhombic, and rhombohedral BaTiO3 single domain states are obtained using first-principles
calculations under the local density approximation. The calculated lattice constants, bulk modulus,
and elastic constants are in good agreement with experiments for both the cubic paraelectric phase
and the low-temperature ferroelectric phases. Spontaneous polarizations for all three ferroelectric
phases and the electrostrictive coefficients of cubic BaTiO3 are also computed using the Berry’s
phase approach, and the results agree well with existing experimentally measured values. © 2010
American Institute of Physics. �doi:10.1063/1.3462441�

I. INTRODUCTION

BaTiO3 is a well known classic ferroelectric that has a
wide range of applications from dielectric capacitors to non-
linear optic devices.1 At high temperatures, BaTiO3 is
paraelectric with a cubic structure. When the temperature
decreases to below 125 °C, paraelectric cubic BaTiO3 trans-
forms to a ferroelectric tetragonal phase. Between 125 and
8 °C, the ferroelectric BaTiO3 in tetragonal structure is
stable. In the range of 8– �−71� °C, its stable structure is
orthorhombic. Finally, below −71 °C, BaTiO3 is a rhombo-
hedral ferroelectric.2 The structures and properties of BaTiO3

have been extensively studied for more than half a century
after the discovery of piezoelectricity and ferroelectricity in
this system.

The strain effect on phase transition and domain struc-
tures in thin films in BaTiO3 is largely determined by the
elastic constants and electrostrictive coefficients.3,4 Despite
the extensive interest in this material, surprisingly, there are
only a scarce of data available for the elastic properties,5,6

and electrostrictive coefficients. As a matter of fact, due to
the difficulty of obtaining the single crystal rhombohedral
BaTiO3, there are no experimental data available on its elas-
tic constants. In this work, we calculated the electrostrictive
coefficients of the cubic phase by using the first-principle
method under the Berry’s phase approach.7 We also calcu-
lated the elastic constants, bulk modulus, and lattice con-
stants of the BaTiO3 in different phases, including the cubic
phase, tetragonal phase, orthorhombic phase, and rhombohe-
dral phase, by using the first-principle method.

II. METHODS

All calculations were performed using the ABINIT pack-
age in GNU General Publication License �GPL�8,9 with the

local density approximation �LDA� and projector-
augmented-wave �PAW� potentials.10,11 The calculations
were carried out using a plane-wave energy cutoff of 50
hartree. A 6�6�6 k-point mesh was used to yield conver-
gence. BaTiO3 has the classical pervoskite structure of ABO3

�Fig. 1�. The unit cell contains five atoms for the cubic, te-
tragonal, and rhombohedral BaTiO3, and ten atoms or two
formula units for orthorhombic one.

Using the method of density-function perturbation
theory,12–15 many response properties of materials in which
electronic correlations are not too strong can be computed
directly without the need for multiple ground-state
calculations.16,17 Three kinds of perturbations, including
strain, electric-field, and atomic-displacement were added to
the ABINIT package recently,18 and hence the elastic con-
stants, piezoelectric coefficients, dielectric constants, Born
effective charges can be obtained by treating different pertur-
bations. In this paper, the elastic constants are computed di-
rectly by treating strain as a perturbation. It is well known
that LDA usually underestimates the equilibrium lattice con-
stants compared with experimental data.19 Therefore, the ini-
tial structural relaxation was carried out by constraining the
cell volume at the experimental lattice parameters.

a�Electronic mail: xqma@sas.ustb.edu.cn.

FIG. 1. �Color online� The crystal structure of cubic BaTiO3. The relative
atom positions of Ba and Ti in the unit cell are �0 0 0� and �0.5 0.5 0.5�,
respectively. And the O atoms take up the relative positions of �0.5 0.5 0�,
�0.5 0 0.5�, and �0 0.5 0.5�.
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To obtain the electrostrictive coefficients of cubic
BaTiO3, we calculated polarizations of one unit cell under
different strains. Given that �i�P� � represents strain functions
related with polarizations, where i=1,2 ,3 ,4 ,5 ,6 label the
six strains in Voigt notation. Expend �i�P� � around zero po-
larization we get the following expression:

�i�P� � = �i�0� +
��i

�Pj
Pj +

1

2!

�2�i

�P� � P�

P�P� + ¯ . �1�

The first item gives strain at zero polarization and it should
be zero for cubic phase. The second item represents converse
piezoelectric effect and it should be zero as well for center-
symmetry cubic phase. And the third item reflects the elec-
trostrictive response. Neglecting the higher order items, for-
mula �2� is obtained.

�i =
�2�i

�P� � P�

P�P� = Qi��P�P�, �2�

where Qi�� represents the electrostrictive coefficients. Simi-
lar to elastic constants tensors, the electrostrictive coefficient
tensor of cubic BaTiO3 has only three independent compo-
nents because of its symmetry, i.e., Q11, Q12, and Q44. There-
fore, the electrostrictive response of cubic BaTiO3 can be
described as follows:

�1 = Q11P1
2 + Q12�P2

2 + P3
2� , �3�

�2 = Q11P2
2 + Q12�P1

2 + P3
2� , �4�

�3 = Q11P3
2 + Q12�P1

2 + P2
2� , �5�

�4 = Q44P2P3, �6�

�5 = Q44P1P3, �7�

�6 = Q44P1P2. �8�

In our calculation, strains and polarizations were con-
trolled by moving Ti atom, and other degrees of freedom
�including both atomic positions and cell shape� are opti-
mized, while keeping the cell volume fixed at the equilib-
rium quantity of cubic phase. The polarizations were com-
puted from the optimized geometric structure using the
Berry’s phase approach.7

III. RESULTS

The lattice constants and bulk modulus of BaTiO3 in
cubic, tetragonal, orthorhombic, and rhombohedral phases
are calculated, and the results are summarized in Table I.
Experimental data and prior theoretical results by others are
included for comparison. All unit cells are relaxed in the
calculation. The approximate bulk moduli are obtained from
the relationship with elastic constants according to formula
�12� cited from Ref. 20. From Table I we can see that our
results are in good agreement with the corresponding experi-
mental data. As mentioned in the introduction, there are no
experimental data on the bulk modulus and elastic constants
for the rhombohedral phase, and hence only previous theo-
retic calculation by Wu et al.21 was given for comparison.

To calculate all the independent elastic constants of dif-
ferent phases, three calculation steps were carried out by
LDA in each phase. First, relaxation at constant-volume

TABLE I. The relaxed structures, bulk modulus, and the spontaneous polarization of BaTiO3 of the cubic, tetragonal, orthorhombic, and rhombohedral phases
in our work, compared with the experimental data and prior theoretical results in the literature.

Phase Source
Lattice constants a

�Å�
Bulk modulus B0

�GPa�

Cubic Our work 4.000 172
Expt. 4.000 �Ref. 22� 162 �Ref. 22�

Theory 4.030, �Ref. 23� 4.006, �Ref. 24�, 3.943 �Ref. 25� 175, �Ref. 23� 168, �Ref. 24�, 189 �Ref. 25�

a
�Å�

c
�Å�

Ps

��C /cm2�
B

�GPa�

Tetragonal Our work 3.966 4.035 29.0 147
Expt. 3.992 �Ref. 26� 4.036 �Ref. 26� 26 �Ref. 27�

Theory 3.943 �Ref. 28� 3.994 �Ref. 28� 22.9 �Ref. 28� 98.6 �Ref. 24�

a
�Å�

b
�Å�

c
�Å�

Ps

��C /cm2�
B

�GPa�

Orthorhombic Our work 5.704 3.963 5.683 33.0 135
Expt. 5.682 �Ref. 29� 3.990 �Ref. 29� 5.669 �Ref. 29� 97.54 �Ref. 24�

a
�Å� �

Ps

��C /cm2�
B

�GPa�

Rhombohedral Our work 4.000 89°56� 35.0 126
Expt. 3.998 �Ref. 30� 89°52.5� �Ref. 30� 34�7 �Ref. 30�
Expt. 4.000 �Ref. 31� 89°54� �Ref. 31� 34�7 �Ref. 31�

Theory 4.000 �Ref. 21� 89°51� �Ref. 21� 103.5 �Ref. 24�
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adopted from the experimental structure was performed to
get the equilibrium states, including the atomic positions and
cell shape. Second, response function calculations were car-
ried out to get the first derivatives of occupied wave func-
tions with respect to perturbations of strain, atomic displace-
ment, and electric field. Then the computed occupied wave
functions were used to calculate the second derivative
response-function tensors.21 And finally, ANADDB utility was
used to analyze the second derivative database from the sec-
ond step to get the elastic constants. Both elastic constants in
clamped-ions and relaxed-ions cases could be obtained from
the final step. And only the relaxed-ions elastic constants,
which are physically meaningful, of different phases are
summarized in Table II. The results are compared with the
experimental values and previous theoretical data from the
corresponding reference. Our calculation results are in good
agreement with the experimental data.

In the calculation of electrostrictive coefficients, we first
calculated the optimized structures and spontaneous polar-
ization Ps by LDA+PAW for the four phases. The calculated
results are listed in Table I. Comparisons with the experi-
mental data and other theoretical calculations are also given
in the same table. And the calculated electrostrictive coeffi-
cients and their comparisons with experimental data are
listed in Table III.

IV. DISCUSSION

We discuss the mechanical stability conditions of the
cubic, tetragonal, orthorhombic, and rhombohedral symme-
tries, so as to further validate our calculated results.

The requirement of the mechanical stability in a cubic
crystal leads to the following restrictions on the elastic
constants:23,37

�C11 − C12� 	 0, C11 	 0, C44 	 0, �C11 + 2C12�

	 0. �9�

These conditions also lead to a restriction on the magnitude
of the bulk modulus B,23,37 i.e.,

C12 
 B 
 C11. �10�

From Table II we can see that the calculated elastic constants
of cubic BaTiO3 in our work obey these mechanical stability
conditions, including the fact that B must be larger than C12

and smaller than C11.
In a tetragonal symmetry, the requirement that the crystal

be stable against any homogenous elastic deformation places
restrictions on the elastic constants, just as in the cubic case.
For tetragonal crystals these mechanical stability restrictions
are as follows:23

�C11 − C12� 	 0, �C11 + C33 − 2C13� 	 0,

C11 	 0, C33 	 0, C44 	 0, C66 	 0,

�2C11 + C33 + 2C12 + 4C13� 	 0. �11�

The elastic constants of our calculation in Table II satisfy all
the conditions in formula �12�. Particularly, C12 is smaller
than C11, and C13 is smaller than the average of C11 and C33.
The stability conditions again lead to restriction on the mag-
nitude of B under zero-strain condition. We use a relationship
between the bulk modulus and the elastic constants in the
tetragonal phase from Ref. 20, that is:

B0 =
1

9
�C11 + C22 + C33 + 2C12 + 2C13 + 2C23� . �12�

As C22 equals C11, C23 equals C13 in the tetragonal phase, so
B0 becomes:

TABLE II. The calculated elastic constants of BaTiO3 of the cubic, tetragonal, orthorhombic, and rhombohedral phases in our work, compared with the
experimental data in the given references.

Phase Source
Elastic constants

�GPa�

Cubic C11 C12 C44

Our work 305 106 128
Expt. �Ref. 30� 255 82 108

Tetragonal C11 C12 C13 C33 C44 C66

Our work 300 109 90 149 124 128
Expt. �Ref. 32� 275 179 152 165 54.4 113
Expt. �Ref. 33� 222 134 111 151 61.1 134

Orthorhombic C11 C22 C33 C44 C55 C66 C12 C13 C23

Our work 150 312 150 135 118 134 100 102 100
Expt. �Ref. 34� 218 270 218 84.0 33.1 73.5 154 109 154

Rhombohedral C11 C12 C13 C14 C33 C44 C65 C66

Our work 276 79 41 45 263 47 45 98
Theory �Ref. 31� 277 79 41 45 264 48 45 99

TABLE III. Our calculated electrostrictive coefficients of cubic BaTiO3,
compared with the experimental data from given references.

Q11

�m4 C−2�
Q12

�m4 C−2�
Q44

�m4 C−2�

Expt. �Ref. 35� 0.1 �0.034 0.029
Expt. �Ref. 36� 0.11 �0.0452 0.0289
Our work 0.115 �0.033 0.041

034107-3 Wang et al. J. Appl. Phys. 108, 034107 �2010�
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B0 =
1

9
�2C11 + 2C12 + 4C13 + C33� . �13�

Combining conditions �11� and formula �13�, �1 /3��C12

+2C13�
B0
 �1 /3��C11+2C33� can be easily obtained.20 It
implies that bulk modulus must be larger than the weighted
average of C12 and C13. In our work, under zero-strain con-
dition, according to formula �13�, B0 equals 147 GPa,
�1 /3��2C11+C33� equals 249 GPa, and �1 /3��C12+2C13�
equals 96 GPa, thus the condition �1 /3��C12+2C13�
B0


 �1 /3��C11+2C33� is satisfied.
Considering the mechanical stability at zero stress in the

orthorhombic phase, the elastic constants must satisfy the
following conditions:38,39

�C11 + C22 − 2C12� 	 0, �C11 + C33 − 2C13� 	 0,

�C22 + C33 − 2C23� 	 0,

C11 	 0, C22 	 0, C33 	 0, C44 	 0,

C55 	 0, C66 	 0,

�C11 + C22+C33 + 2C12 + 2C13 + 2C23� 	 0 �14�

And the restrictions on the magnitude of B0 is given as
follow:38,39

1

3
�C12 + C13 + C23� 
 B0 


1

3
�C11 + C22 + C33� . �15�

From Table II we can see that the elastic constants satisfy all
the stability conditions, and we can get �1 /3��C12+C13

+C23�=101, �1 /3��C11+C22+C33�=204, B0=135. It is easy
to find that the formula �15� is agreed well.

The mechanical stability conditions of rhombohedral
phase require its elastic constant tensors to meet the follow-
ing expressions:

C11 + C12 	 0, C33 	 0, �C11 + C12�C33 	 2C13
2 ,

C11 − C12 	 0, C44 	 0, �C11 − C12�C44 	 2C14
2 .

�16�

We can see that all the elastic constants in Table II satisfy all
the mechanical stability conditions very well. We evaluated
the bulk modulus B0 according to the following derivation.

As �C11+C12�C33	2C13
2 , C11+C12	0 in stability condi-

tions �16�, we can get:

C33 	
2C13

2

C11 + C12
	 0. �17�

Substituting 0
C11+C12
2C11 into �17� we obtain:

C33 	
C13

2

C11
	 0. �18�

As we know, for positive C11 and C33, there must be:

C11 + C33 � 2�C11 · C33. �19�

Substituting formula �18� into formula �19� we can educe:

C11 + C33 � 2�C11C33 	 2�C11
C13

2

C11
= 2�C13

2 = 2�C13�

� 2C13. �20�

Simplifying inequality �20� we obtain:

C11 + C33 	 2C13. �21�

Substituting C22=C11, C23=C13 into Eq. �13�, we obtain the
bulk modulus B0 of the rhombohedral phase:

B0 =
1

9
�2C11 + 2C12 + 4C13 + C33� . �22�

Using the same analysis method in the tetragonal phase, we
can easily evaluate the magnitude of B0, that is:

1

3
�C12 + 2C13� 
 B0 


1

3
�C11 + 2C33� . �23�

This indicates that the bulk modulus must be larger than the
weighted average of c12 and c13, and smaller than the
weighted average of C11 and C33. From our calculated result
of the bulk modulus and elastic constants in Tables I and II
we can obtain �1 /3��C12+2C13�=54, �1 /3��C11+2C33�
=267, B0=126, satisfy formula �23� very well.

Actually, only six independent elastic constant compo-
nents exist in rhombohedral phase, since C56=C14, C66

= �1 /2��C11−C12�. In order to cross-check the calculation re-
sult, C56 and C66 were also obtained and given in Table III,
and they agree with each other very well.

To obtain the electrostrictive coefficients of the cubic
phase, the strain and polarization behaviors may be calcu-
lated by first principles. First principles calculation about the
polarization and strains could be performed by Berry’s phase
approach.40,41 Spontaneous polarization variation with differ-
ent strains were calculated with first principles by Fu and
Cohen and Ederer and Spaldin in Refs. 40 and 6. Fu and
Cohen calculated the strains variation with polarization rota-
tion induced by an external electric field, and they concluded
that the polarization rotation alone can result in the giant
piezoelectric response. Claude et al. calculated the effect of
epitaxial strain on the spontaneous polarization of the ferro-
electrics BaTiO3, PbTiO3, LiNbO3, and the multiferroic ma-
terial BiFeO3. They showed that the epitaxial strain depen-
dence of the polarization varies considerably for the different
systems and consequently some of the piezoelectric coeffi-
cients were obtained. In our calculation of electrostrictive
coefficients, strains, and polarizations were controlled by
moving Ti atom, and other degrees of freedom �including
both atomic positions and cell shape� are optimized, while
keeping the cell volume at the equilibrium value for cubic
phase. Polarization was computed from the optimized geo-
metric structure using the Berry’s phase approach.7 Q11, Q12,
and Q44 are given in Figs. 2–4, respectively. To obtain Q11,
Ti atom was moved along z direction. Then after structure
optimization and Berry’s phase calculation, �3, P1, P2, and
P3 were obtained with P1= P2=0. According to formula �11�,
�3=Q11P3

2 was obtained. Q12 and Q44 were obtained using

034107-4 Wang et al. J. Appl. Phys. 108, 034107 �2010�
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similar method. Table III shows our calculation results, and
results are compared with experimental data. We can see that
our results agree well with the experiment.

V. SUMMARY

In summary, we calculated the elastic properties of
BaTiO3 in the cubic, tetragonal, orthorhombic, and rhombo-
hedral phases. We obtained the lattice constants, bulk modu-
lus, elastic constants of BaTiO3, and they agree well with the
experimental data for four phases, especially for the relaxed
structure parameters. Spontaneous polarizations for three
ferroelectric phases were computed as well and the calcu-
lated data agree well with those of experiments. We calcu-
lated the electrostrictive coefficients of cubic BaTiO3 based
on polarization variations with strains by first principles. The
information obtained from this work is useful for predicting
the strain effect on ferroelectric phase transitions and domain
structures and properties of ferroelectric thin films.

ACKNOWLEDGMENTS

This work was partially supported by the National Sci-
ence Foundation of China �Grant No. 50428101� and par-
tially by NSF �Grant No. DMR-0507146�.

1M. E. Lines and A. M. Glass, Principles and Applications of Ferroelec-
trics and Related Materials �Clarendon, Oxford, 1977�.

2Y. L. Li, L. E. Cross, and L. Q. Chen, J. Appl. Phys. 98, 064101 �2005�.
3Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett. 78, 3878
�2001�.

4G. Liu, X.-H. Wang, Y. Lin, L.-T. Li, and C.-W. Nan, J. Appl. Phys. 98,
044105 �2005�.

5R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, 5828 �1994�.
6C. Ederer and N. A. Spaldin, Phys. Rev. Lett. 95, 257601 �2005�.
7R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 �1993�.
8X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rig-
nanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy,
M. Mikami, P. Ghosez, J. Y. Raty, and D. C. Allan, Comput. Mater. Sci.
25, 478 �2002�.

9X. Gonze, G. M. Rignanese, M. Verstraete, J. M. Beuken, Y. Pouillon, R.
Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Vei-
then, J. Y. Raty, V. Olevanov, F. Bruneval, L. Reining, R. Godby, G.
Onida, D. R. Hamann, and D. C. Allan, Z. Kristallogr. 220, 558 �2005�.

10F. Bruneval and X. Gonze, Phys. Rev. B 78, 085125 �2008�.
11F. Bottin, S. Leroux, A. Knyazev, and G. Zerah, Comput. Mater. Sci. 42,

329 �2008�.
12X. Gonze, Phys. Rev. A 52, 1086 �1995�.
13X. Gonze, Phys. Rev. B 55, 10337 �1997�.
14X. Gonze and C. Lee, Phys. Rev. B 55, 10355 �1997�.
15S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod.

Phys. 73, 515 �2001�.
16P. Giannozzi, S. Degironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43,

7231 �1991�.
17S. de Gironcoli, S. Baroni, and R. Resta, Phys. Rev. Lett. 62, 2853 �1989�.
18D. R. Hamann, X. F. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 71,

035117 �2005�.
19W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev. B 52, 6301 �1995�.
20G. V. Sin’ko, Phys. Rev. B 77, 104118 �2008�.
21X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105

�2005�.
22K. H. Hellwege and A. M. Hellwege, Ferroelectrics and Related Sub-

stances, Landolt-Bornstein, Vol. 3 �Springer-Verlag, Berlin, 1969�.
23S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Comput. Mater. Sci.

29, 165 �2004�.
24M. Uludogan, T. Cagin, and W. A. Goddard, Mater. Res. Soc. Symp. Proc.

718, 341 �2002�.
25P. Ghosez, X. Gonze, and J. P. Michenaud, Ferroelectrics 220, 1 �1999�.

FIG. 2. �Color online� The relationship between strains �3 and polarization
P3. It is computed from the optimized structures when Ti ion of the unit cell

is moved along �001� and �001̄� directions to small distances.

FIG. 3. �Color online� The relationship between strains �3 and polarization
P1. It is computed from the optimized structures when Ti ion of the unit cell

is moved along �110� and �1̄1̄0� directions to small distances.

FIG. 4. �Color online� The relationship between strains �4 and polarization
P2. It is computed from the optimized structures when shear strains �4 are
applied on the unit cell.

034107-5 Wang et al. J. Appl. Phys. 108, 034107 �2010�

Downloaded 23 Dec 2011 to 128.118.88.243. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2042528
http://dx.doi.org/10.1063/1.1377855
http://dx.doi.org/10.1063/1.2030413
http://dx.doi.org/10.1103/PhysRevB.49.5828
http://dx.doi.org/10.1103/PhysRevLett.95.257601
http://dx.doi.org/10.1103/PhysRevB.47.1651
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
http://dx.doi.org/10.1524/zkri.220.5.558.65066
http://dx.doi.org/10.1103/PhysRevB.78.085125
http://dx.doi.org/10.1016/j.commatsci.2007.07.019
http://dx.doi.org/10.1103/PhysRevA.52.1086
http://dx.doi.org/10.1103/PhysRevB.55.10337
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevB.43.7231
http://dx.doi.org/10.1103/PhysRevLett.62.2853
http://dx.doi.org/10.1103/PhysRevB.71.035117
http://dx.doi.org/10.1103/PhysRevB.52.6301
http://dx.doi.org/10.1103/PhysRevB.77.104118
http://dx.doi.org/10.1103/PhysRevB.72.035105
http://dx.doi.org/10.1016/j.commatsci.2003.08.036
http://dx.doi.org/10.1080/00150199908007992


26G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S. W. Cheong, J. Phys.
Chem. 97, 2368 �1993�.

27H. H. Wieder, Phys. Rev. 99, 1161 �1955�.
28M. Fechner, S. Ostanin, and I. Mertig, Phys. Rev. B 77, 094112 �2008�.
29G. Shirane, H. Danner, and R. Pepinsky, Phys. Rev. 105, 856 �1957�.
30D. Berlincourt and H. Jaffe, Phys. Rev. 111, 143 �1958�.
31A. W. Hewat, Ferroelectrics 6, 215 �1974�.
32A. Schaefer, H. Schmitt, and A. Drr, Ferroelectrics 69, 253 �1986�.
33A. Khalal, D. Khatib, and B. Jannot, Physica B 271, 343 �1999�.
34A. V. Turik, Sov. Phys. Solid State 12, 688 �1970�.

35T. Yamada, J. Appl. Phys. 43, 328 �1972�.
36L. Hlinka and P. Márton, Phys. Rev. B 74, 104104 �2006�.
37R. Khenata, M. Sahnoun, H. Baltache, M. Rerat, A. H. Rashek, N. Illes,

and B. Bouhafs, Solid State Commun. 136, 120 �2005�.
38O. Beckstein, J. E. Klepeis, G. L. W. Hart, and O. Pankratov, Phys. Rev. B

63, 134112 �2001�.
39D. C. Wallace, Thermodynamics of Crystals �Wiley, New York, 1972�,

Chap. 1.
40H. X. Fu and R. E. Cohen, Nature �London� 403, 281 �2000�.
41C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 97, 267602 �2006�.

034107-6 Wang et al. J. Appl. Phys. 108, 034107 �2010�

Downloaded 23 Dec 2011 to 128.118.88.243. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1021/j100112a043
http://dx.doi.org/10.1021/j100112a043
http://dx.doi.org/10.1103/PhysRev.99.1161
http://dx.doi.org/10.1103/PhysRevB.77.094112
http://dx.doi.org/10.1103/PhysRev.105.856
http://dx.doi.org/10.1103/PhysRev.111.143
http://dx.doi.org/10.1080/00150198608008198
http://dx.doi.org/10.1016/S0921-4526(99)00202-1
http://dx.doi.org/10.1063/1.1661117
http://dx.doi.org/10.1103/PhysRevB.74.104104
http://dx.doi.org/10.1103/PhysRevB.63.134112
http://dx.doi.org/10.1038/35002022
http://dx.doi.org/10.1103/PhysRevLett.97.267602

