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Abstract

The effects of strain on the phase transitions of BaTiO3 nanowires taking into account three components of polarization are studied
by thermodynamic analysis based on the Landau theory. Similar to the strain effect on phase transitions in thin films, the mismatch strain
between the nanowire and substrate governs the Curie temperature. The complete misfit strain–temperature phase diagram shows six
stable ferroelectric phases for BaTiO3 nanowires under different strain and temperature conditions.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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1. Introduction

Nanoscale ferroelectric structures have been explored to
increase the storage density of non-volatile ferroelectric
random access memories [1,2]. For example, ferroelectric
nanowires (FNWs) are being considered as a new media
for next-generation ultrahigh-density computer memory
[3–5]. Ferroelectric nanostructures with size and shape con-
trol [6–10] have been synthesized [11–15]. For instance,
Mao et al. synthesized single-crystalline BaTiO3 nanowires
using a simple one-step solid-state chemical reaction [8].
Urban et al. showed that crystalline nanorods composed
of BaTiO3 and SrTiO3 with a cubic perovskite structure
could be synthesized via a solution-based decomposition
of bimetallic alkoxide precursors [9].

To characterize FNWs, Wang et al. employed piezore-
sponse force microscopy to study the polarization
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switching by directly applying an electric bias to a BaTiO3

nanowire [11]. Yun et al. demonstrated the writing of
nonvolatile electric polarization domains using scanning
probe microscopy (SPM) on BaTiO3 nanowires [12]. Spa-
nier et al. used SPM to measure the ferroelectric phase
transition temperatures in individual BaTiO3 nanowires,
showing a 1/dNW dependence where dNW is the wire diam-
eter. These experiments established a resolution limit for a
local domain of as little as 3 nm [14].

The size effects and ferroelectric behaviors of nanowires
have also been studied theoretically, including by ab initio
methods [5,16–18], molecular dynamics (MD) simulation
[19,20] and the Landau–Ginzburg–Devonshire (LGD) the-
ory [21–24]. For example, Naumov and Fu performed ab
initio studies of ferroelectric nanoscale disks and rods of
technologically important Pb(Zr, Ti)O3 solid solutions,
and demonstrated a number of novel phase transitions in
zero-dimensional ferroelectric nanoparticles [16]. Pilania
et al. determined the critical diameters for the development
of spontaneous polarization parallel and perpendicular to
the axis direction of BaTiO3 nanowires; these diameters
were 1.2 and 1.6 nm, respectively [17]. Shimada et al.
.
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Fig. 1. Model of BaTiO3 nanowire grown on a conductive substrate used
in this work; d and h denote the diameter and length of the nanowire,
respectively. The electric boundary condition between the two head faces
is assumed to be short-circuited as the head–tail distance is remote. The
misfit strain us induced by the substrate is along the wire direction and can
be described as us = (as � ac)/ac.
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investigated the role of axial tensile strain on the nano-
wires, and the ferroelectricity of PbTiO3 nanowires by
means of ab initio calculations [18]. Using the MD method,
Zhang et al. studied the polarization distribution, hysteresis
behavior and the Curie temperature of BaTiO3 nanowires.
They determined that the two critical diameters for the
existence of polarization parallel and perpendicular to the
axis direction are 0.8 and 1.2 nm, respectively [19]. Zhang
et al. also investigated the strain and size effects on the fer-
roelectric behaviors of BaTiO3 nanowires using MD [20].
Using the direct variational method and assuming the
polarization is along the axial direction of the nanorods
and nanowires, Morozovska et al. solved the Euler–
Lagrange equations derived from the LGD free energy
expression to obtain the approximate analytical expression
for the dependence of the Curie temperature on size, polar-
ization gradient coefficient, extrapolation length, effective
surface, tension and electrostriction coefficient [23]. Using
a similar method and based on the assumption that the
polarization is along the radial direction, Hong et al. inves-
tigated the size-dependent ferroelectric properties of
BaTiO3 nanowires, including the Curie temperature and
the hysteresis loop [21].

In this work, we study the size and strain effects on phase
transitions of BaTiO3 nanowires using a modified Landau
potential which takes into account the low-temperature
quantum effect as well as pressure-dependent Landau
coefficients [25]. Based on the fact reported by Wang et al.
that the one-dimensional and stable ferroelectric monodo-
main might exist in single-crystalline BaTiO3 nanowires
[15], single-domain structures are assumed in our calcula-
tion for simplicity. We consider nanowires epitaxally grown
on conductive substrates,[13,15] and the short-circuit
electric boundary condition is assumed along the axis of
nanowire, as shown in Fig. 1.

2. Thermodynamic model

We use gLGDð P
!
; T Þ to represent the stress-free bulk Gibbs

free energy density function of a ferroelectric crystal at a
given polarization ( P

!
) and temperature (T). The total Gibbs

free energy (G) of a finite ferroelectric crystal containing
inhomogeneous polarization distribution is then written as
[26,27]:
Gðr; T Þ ¼
ZZZ

V
ðgLGD þ gelastic þ ggrad þ gelectricÞdV

þ
ZZ

A
gsurfacedA; ð1Þ

with gLGDð P
!
; T Þ represented by a Landau potential:
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where the coefficients were fitted to bulk properties at zero
stress by considering the low-temperature quantum effects
[25], and Pi is the ith component of polarization. The elas-
tic energy density gelastic is given by:

gelastic ¼ �
1

2
s11ðr2

1 þ r2
2 þ r2

3Þ � s12ðr1r2 þ r1r3

þ r2r3Þ �
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where ri is the ith component of stress in Voigt notation,
s11, s12 and s44 are the elastic compliance constants of a cu-
bic phase, and Q11, Q12 and Q44 are the corresponding elec-
trostrictive coefficients. The compliance and electrostrictive
constants can be obtained by experimental measurements
or first-principles calculations [28,29]. The gradient energy
density ggrad can be written as ggrad ¼ 1

2
DijP i;jP i;j, where Dij

are the gradient energy coefficients [30]. For a ferroelectric
with homogeneous polarization, ggrad is zero. The matrix
Dij of the gradient energy coefficients is positively defined
for most ferroelectrics, except the incommensurate ones.

The electrostatic energy density gelectric includes contri-
butions from both an external applied field and the depo-
larization field that exists in the spatial regions with
divP – 0, including surfaces, interfaces and in the vicinity
of domain walls. For the short-circuit electric boundary
condition, the contribution of applied external field to
total electrostatic energy should also be zero. The depo-
larization field along the wire direction can be estimated
by ED

3 � �kðP 3 � qeÞ=eb, where qe is the compensation
charge density at the left and right electrodes, and
eb ¼ e0eb

33 is the background permittivity [31]. Factor k
can be estimated using the relation k � 1=b1þ ðh=2dÞ2c
where h is the length, and d the diameter of the nanowires
[23,24]. In the case of FNWs, h� d, the corresponding
value of k equals zero [23,32], and thus the depolarization
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ED
3 can be neglected in all subsequent considerations. The

perpendicular-to-axis polarization components P1 and P2

will induce a depolarization field E
!D
?, which can be

obtained by solving the electrostatic equilibrium equation
r � ðeb E

!D
? þ P
!
?Þ ¼ 0 [1,33–37]. Wang et al. obtained that

the radial depolarization field is ED
? � �

2ld

e0ebd P?, where ld
is effective screening length, which characterizes the effec-
tive thickness of the double electric layer formed by the
bound and free charges [37]. A nanowire model with three
layers including the isotropic nanowire core, external
screening layer and the ambient medium layer was
proposed to derive the more rigorous estimation for ED

?
in the Appendix A. We used the results of ED

? ¼ � P?
e0eb

g
with the assumption of homogeneous polarization distri-
bution inside the wire. The form of factor g depends on
the boundary conditions at the nanowire surface as well
as on its ambient (i.e. on the surrounding matrix permit-
tivity and conductivity), as discussed in Appendix A. Here
we show (see Fig. A1) that g can be tuned to be as small
as necessary by high ee, es, etc. It can be seen from
Fig. A1c and d, that the contribution of the depolariza-
tion field to the total energy is negligibly small (i.e.
je0eba1ðT Þ=gðRÞj >> 1) in the actual range of parameters.

Thus, for the sake of clarity of the present calculation,
we neglect the depolarization field energy in the total free
energy in order to establish the net contribution of the
other size effects. Although we will make some speculations
about the depolarization field, more detailed work on the
depolarization field for the inhomogeneous distribution
of polarization will be a future objective.

The last term in Eq. (1) is the surface energy with gsurface

as the surface energy density, and gsurface is assumed to be
proportional to the square of polarization on the surface S,
i.e. gsurface ¼ 1

2d DP 2, where d is the extrapolation length, and
D is the gradient energy coefficient [26,38]. The nanowire
has left- and right-end surfaces z ¼ � h

2
; h

2
, which are

short-circuited or very “remote” in order to be able to
neglect the depolarization field, and a sidewall r = R
(where R is the radius of the nanowire); thus the surface
energy Gs has the form [23]:

GS ¼
ZZ

A
gsurfacedA

¼ D
Z R

0

2pr
dt

dr P 2ðr; z ¼ � h
2
Þ þ P 2 r; z ¼ h

2

� �� ��

þ
Z h=2

�h=2

2pRdz
ds

P 2ðr ¼ R; zÞ
)
; ð4Þ

with dt the extrapolation length of the left- and right-end
surfaces, and ds the extrapolation length of the sidewall
surface. In order to study the net effect of the radial polar-
ization components, here we omit the surface tension effect,
considered in details in Refs. [23,24] for uniaxial polariza-
tion P3.

Hereafter we assume dt = ds = d, and hence the related
boundary condition obtained by the variation of Eq. (4)
is dP
dr þ P

d

	 
��
r¼R
¼ 0. Therefore, there must be some inhomo-

geneous distribution of polarization on the sidewall surface
to satisfy the boundary condition, unless d becomes infi-
nite. However, in this paper, we focus on the strain effects
on the phase transition of the nanowire, and thus we con-
tinue to neglect the effect on the total energy caused by the
inhomogeneity of polarization on the sidewall surface. The
approximation makes Gs become:

GS ¼
2pDR2

d
ðP 2

1 þ P 2
2 þ P 2

3Þ 1þ h
R

� �
: ð5Þ

As h/R� 1 and h = V/pR2 (where V is volume of the
nanowire), Eq. (5) is simplified to:

GS ¼
2DV
dR
ðP 2

1 þ P 2
2 þ P 2

3Þ ¼
4DV
dd
ðP 2

1 þ P 2
2 þ P 2

3Þ: ð6Þ

Therefore, the total free energy G(r, T) is given by:

Gðr; T Þ ¼
ZZZ

v
½gLGD þ gelastic�dV þ 4DV

dd
ðP 2

1 þ P 2
2 þ P 2

3Þ:

ð7Þ
3. Results and discussions

We assume that the mismatch between nanowire and
substrate induces a misfit strain u3 along the axis direction,
and u3 ¼ us ¼ as�ac

ac
, where as is the lattice constant of the

substrate and ac is the lattice constant of cubic BaTiO3.
For simplicity, the sidewall is considered to be free of
surface tension. In the monodomain case, the total strain
can be regarded as quasi-homogeneous, and includes the
only non-zero component strain us [39] Eqs. (8) and (9) give
the mathematical expressions of the mechanical boundary
condition. Therefore, we have:

@Gðr; T Þ
@rs

¼ �
ZZZ

V
usdV ¼ �usV ; ð8Þ

r1 ¼ r2 ¼ r4 ¼ r5 ¼ r6 ¼ 0: ð9Þ

Substituting Eq. (9) into Eq. (7), the total Gibbs free energy
is simplified to:

Gðr; T Þ ¼ gLGD �
1

2
s11r

2
3 � Q11r3P 2

3 � Q12r3ðP 2
1 þ P 2

2Þ
�

þ 4D
dd
ðP 2

1 þ P 2
2 þ P 2

3Þ
�

V ; ð10Þ

Combing Eqs. (8) and (10) we can obtain:

�s11r3 � Q11P 2
3 � Q12ðP 2

1 þ P 2
@Þ ¼ �us: ð11Þ

The solution of Eq. (11) for r3 gives the stress component
r3 due to the mismatch between the nanowire and
substrate, i.e.:

r3 ¼
us � Q11P 2

3 � Q12ðP 2
1 þ P 2

2Þ
s11

: ð12Þ

On the other hand, the Helmholtz free energy can be
deduced from Legendre transformation:



Fig. 2. Curie temperature TC of BaTiO3 nanowire with different diameters
d calculated at zero misfit strain, and compared with existing experimental
data.
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F ðu; T Þ ¼ Gðr; T Þ þ
ZZZ

V
ðr1u1 þ r2u2 þ r3u3 þ r4u4

þ r5u5 þ r6u6ÞdV
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V
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Substituting Eq. (12) into Eq. (13), the Helmholtz free
energy density f ð P!; us; T Þ ¼ Fus; T Þ=V can be expressed as:

f ð~P ;us;T Þ¼aNW
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where aNW

1 , aNW
3 , aNW

11 , aNW
33 , aNW

12 , aNW
13 are functions of ori-

ginal coefficients at constant stress, i.e.:

aNW
1 ¼ a1 þ

4D
dd
� usQ12

s11

; ð15Þ

aNW
3 ¼ a1 þ

4D
dd
� usQ11

s11

; ð16Þ

aNW
11 ¼ a11 þ

Q2
12

2s11

; ð17Þ

aNW
33 ¼ a11 þ

Q2
11

2s11

; ð18Þ

aNW
12 ¼ a12 þ

Q2
12

2s11

; ð19Þ

aNW
13 ¼ a12 þ

Q2
11Q12

2s11

: ð20Þ

Therefore, the Helmholtz free energy density is a function
of the polarization, temperature, misfit strain and diameter
of the nanowires. In the modified Landau potential coeffi-
cients from Eqs. (15)–(20), the values of the gradient energy
coefficient D and the extrapolation length d are typically
not known. D is connected to the correlation length n,
D ¼ n2jAðT � T C1j, where A is determined by a1, and
TC1 is the Curie temperature of the bulk crystal [26].
The extrapolation length d describes the polarization differ-
ence between the surface and bulk. It depends not only on
the different interaction constants at the surface and in the
bulk, but also on the coordination number at the surface.
For pseudospins forming a simple cubic lattice with a
lattice constant a0, if the interaction constant is Js for
pseudospins on the surface and is J elsewhere, then d can
be expressed as d = a0J/(5J � 4Js) [26,40].

The material parameters used for calculation in this
work are presented as follows (from Refs. [25,41,28,42,
21,43]):

a1 ¼ 5:0� 105 � T s Coth T s
T

	 

� Coth T s

390

	 
� �
Vm C�1; T s ¼ 160 K

a11 ¼ �1:154� 108 Vm5 C�3; a12 ¼ 6:530� 108 Vm5 C�3; a111 ¼ �2:103� 109 Vm9 C�5;

a112 ¼ 4:091� 109 Vm9 C�5; a123 ¼ �6:688� 109 Vm9 C�5; a1111 ¼ 7:590� 1010 Vm13 C�7;

a1112 ¼ �2:193� 1010 Vm13 C�7; a1122 ¼ �2:221� 1010 Vm13 C�7

a1123 ¼ �2:416� 1010 Vm13 C�7; s11 ¼ 9:07� 1012 m2=N;S12 ¼ �3:186� 10�12 m2=N;

S44 ¼ 1:22� 10�12 m2=N;Q11 ¼ 0:11 m4=C2;Q12 ¼ 0:045 m4=C2;Q44 ¼ 0:029 m4=C2;

D ¼ 0:9� 10�9 m3=F:

The extrapolation length d can be negative or positive. d
can be fitted to the experimentally measured Curie temper-
ature of a particle with given size [38]. In addition, it can be
obtained by estimating the surface relaxation length [43].
However, d can be very different if fitted to different exper-
imental measurements. For instance, Wang et al. obtained
a value of 43 nm for d by fitting it to earlier experimental
data of BaTiO3 particles [26,38], and Ishikawa et al.
estimated a value of 88 nm for d from their experimental
measurement of BaTiO3 particles [43]. As the coordination
number at the surface will be different for different struc-
tures, d could not be the same for BaTiO3 nanowires and
particles. Therefore, we refitted d to Spanier et al.’s exper-
imental data for BaTiO3 nanowires which have a Curie
temperature of about 300 K at a diameter of 3 nm [14].
The refitted d is 29 nm, i.e. smaller than the previous two
results obtained from nanoparticles.

Based on the above parameters and analysis, curves for
the Curie temperature Tc of BaTiO3 nanowires with differ-
ent diameter d are obtained and are shown in Fig. 2. It is
observed that the size does not have a dramatic effect on
the Curie temperature when the diameter is above 20 nm,
which is similar as Hong et al.’s conclusion [21]. As
expected, with the increase in size, the Curie temperature
becomes closer to the bulk case, following 1/d scaling.
The calculated Curie temperature vs. diameter curve agrees



Fig. 3. Temperature–misfit strain phase diagrams of BaTiO3 nanowires.
(a) Phase diagram for 200 nm diameter nanowires includes six ferroelec-
tric phases having polarization vectors of P

!¼ ð�P 1; 0; 0Þ=ð0;�P 2; 0
inTF

1 , P
!¼ ð0; 0;�P 3Þ in TF

3 , P
!¼ ð�P 1;�P 1; 0Þ=ð�P 1;	P 1; 0Þ in OF

1 ,
P
!¼ ð�P 1; 0;�P 3Þ=ð�P 1; 0;	P 3Þ=ð0;�P 2;�P 3Þ=ð0;�P 2;	P 3Þ in MF

1 ,
P
!¼ ð�P 1;�P 1;�P 3Þ=ð�P 1;	P 1;	P 3Þ=ð�P 1;�P 1;	P 3Þ=ð�P 1;	P 1;	P 3Þ
in MF

2 , P
!¼ ð�P 1;�P 2;�3Þ=ð�P 1;	P 2;�P 3Þ=ð�P 1;�P 2;	P 3Þ= ð�P 1;

	P 2;	P 3Þ in MF
3 . (b) Comparison between two diagrams of nanowires

with diameters of 200 nm (solid line) and 4 nm (short-dashed line).

Fig. 4. Temperature–misfit strain phase diagrams of 200 nm diameter
BaTiO3 nanowires calculated from different Landau potentials. The
definitions of the phases are the same as in Fig. 3.
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well with existing experimental measurement. Based on
Fig. 1, the critical diameter at which the ferroelectricity dis-
appears is around 1.0 nm, compared with 0.8 nm extrapo-
lated from Spanier et al.’s experimental data and 1.2 nm
from Hong et al.’s calculation [21,14].

For a paraelectric BaTiO3 material with symmetry group
m3m, six ferroelectric phases are possible with polarization
(P1, 0, 0), (P1, P1, 0), (P1, P1, P1), (P1, P2, 0), (P1, P1, P2) or
(P1, P2, P3) and their equivalent counterparts. For a bulk
crystal that is stress-free or subjected to hydrostatic
pressure, only three ferroelectric phases are stable from
both experimental observation and theoretical models:
tetragonal with polarization of (P1, 0, 0), orthorhombic
phase (P1, P1, 0) and rhombohedral phase (P1, P1, P1)
[25,41,44,45]. For thin films epitaxially grown on different
substrates with clamped in-plane boundary conditions
and stress-free out-of-plane boundary conditions, four
ferroelectric phases are stable according to previous
phenomenological thermodynamic calculations: tetragonal
phase with polarization of (0, 0, P3), orthorhombic (P1,
P1, 0), monoclinic (P1, 0, P2) and distorted rhombohedral
(P1, P1, P2) [27]. Fig. 3 shows the strain–temperature phase
diagrams, which are constructed by minimizing the Helm-
holtz free energy density f ð P!; us; T Þ for BaTiO3 nanowires
at a given diameter, where the modified Landau potential
was used for the calculation [25]. It can be seen from
Fig. 3a that six possible ferroelectric phases can be stable
at different temperature and misfit strain conditions. There-
fore, the distortion of the lattice structure due to the misfit
between the substrate and the thin film, or nanowire, can
induce extra ferroelectric phases compared with the stress-
free bulk case. Fig. 3b shows that the decrease of the diam-
eter depresses the area of the ferroelectric phases on the
phase diagrams. In other words, all the transition tempera-
tures, including transition temperatures from paraelectric
phase to ferroelectric phase and from one ferroelectric
phase to another ferroelectric phase, decrease as the diame-
ter of the BaTiO3 nanowire decreases. At low temperatures,
the boundary lines in the phase diagrams exhibit an expo-
nential decrease rather than a linear decrease due to the
low-temperature quantum effects expressed by the Landau
potential coefficient a1. The Curie temperature is increased
linearly by the tensile or compressive misfit strain, and is
determined by the electrostrictive coefficients and elastic
compliance tensor. A further consequence is that the polar-
ization will rotate close to the axial direction of the nano-
wire with misfit strain changing from compressive to
tensile. In other words, the polarization component P3 will
be increased by the tensile strain and decreased by the com-
pressive strain, which is very consistent with the MD simu-
lation of Zhang et al. [20].

Fig. 4 compares the misfit strain and temperature
phase diagrams for BaTiO3 nanowires with a diameter
of 200 nm calculated from previously published eighth-
order Landau potentials of Li et al. and Wang et al.
and the modified potential [25,45,46]. It can be seen that
all three Landau potentials give similar misfit strain and
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temperature phase diagrams, including five ferroelectric
areas with polarization, P

!¼ ðP 1; 0; 0Þ in T F
1 , P
!¼ ð0; 0;

P 3Þ in T F
3 , P
!¼ ðP 1; P 1; 0Þ in OF

1 , P
!¼ ðP 1; 0; P 3Þ in MF

1 ,
P
!¼ ðP 1; P 1; P 3Þ in MF

2 , and one paraelectric area with
polarization, P

!¼ ð0; 0; 0Þ in TP. However, there are
indeed some obvious differences between the three phase
diagrams. For example, the slopes for the boundaries of
the paraelectric phases and ferroelectric phases are differ-
ent, indicating that the rates of increase for the Curie tem-
peratures with misfit strains are different. The sharpest is
from Wang et al.’s coefficients, the second is from Li
et al.’s coefficients, and the smoothest is from the newly
modified coefficients. Another obvious difference comes
from the ferroelectric phase boundaries at low tempera-
ture. Only the newly modified Landau potentials exhibit
an exponential trend as the quantum effects are consid-
ered, whereas the other two sets of coefficients show
approximately linear trends. Additionally, the new modi-
fied Landau coefficients also give another ferroelectric
monoclinic phase with polarization P

!¼ ðP 1; P 2; P 3Þ in
MF

3 which is not obtained from the other two sets of
Landau coefficients. This new phase is stable in a very
narrow area at low temperature, and we speculate that
it may be due to the quantum effect term in the first-order
Landau coefficient. However, the rationale for the appear-
ance of the new ferroelectric phase of MF

3 needs experi-
mental confirmation and symmetry analysis, and here
we just report the calculation result.

Although the depolarization field effect on the total free
energy was not considered for simplicity, some speculations
about the depolarization field are still necessary. Eq. (A6)
in Appendix A can be used to estimate the magnitude of
the depolarization field induced by screening the charges
coming from the ambient environment. The introduction
of the depolarization field energy to the total free energy
must change the modified Landau potential coefficient
from aNW

1 to aNW

1 by aNW


1 ¼ aNW
1 þ g

e0eb
. The phase bound-

aries in Fig. 3 will accordingly be altered, but these changes
are slight up to g

e0eb
. Taking the Curie temperature as an

example, if the depolarization field effect leads to an value

of 106 Vm C�1 for g
e0eb

, the Curie temperature will decrease

by 2 K for a 3 nm diameter nanowire, compared with the
calculation without the depolarization field. On the other
hand, the decrease in the Curie temperature caused by
the depolarization field effect weakens with an increase in
diameter.

4. Summary

We used a modified Landau phenomenology to describe
the phase transition behavior due to the effects of strain
and size for BaTiO3 nanowires taking into consideration
three components of polarization. We demonstrated that
the Curie temperature is essentially governed by the
mismatch strain between the nanowire and substrate. The
completely constructed temperature and strain phase
diagram shows six possible ferroelectric phases. For
BaTiO3 nanowires with zero misfit strain the critical
diameter, below which the ferroelectric phases totally
disappear, is around 1.0 nm. The calculated variation in
Curie temperature vs. diameter agrees well with existing
experimental measurements.
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Appendix A

We suppose that the depolarization field is created by
the polarization components perpendicular to the symme-
try axis of the wire and depends only on the distance to this
axis, i.e. Px,y(q). Let us introduce the cylindrical coordinate
system (q, #, z) with polar radius q, angle # and z axis
along the symmetry axis.

A.1. Extrinsic size effect contribution via the depolarization

field due to the incomplete external screening. Polarization is

homogeneous inside the nanoparticle

Let us substitute the real shape of a given nanoparticle
by an equivalent nanowire of radius R. First, we calcu-
late the depolarization field for the simplest case of a
dielectrically isotropic core, shell and ambient materials.
We consider a zero external field, since equations of elec-
trostatics are linear and the corresponding solution for
the cylinder with concentric shell in the homogeneous
external field could be added to the solution found below
[47].

The equations of state relating displacement D, electric
field E and polarization P are:

Di � Pþ e0ebEi; Ds ¼ e0esEs; De ¼ e0eeEe: ðA1Þ
Here we used the so-called linearized model of FNW core
polarization and introduced its isotropic dielectric permit-
tivity e11 ¼ e33 ¼ eb, where eb is called the background or
reference state permittivity [34]. The external screening
layer “s” has permittivity es; the ambient medium “e” has
permittivity ee.

Hereinafter we introduce the potential of electric field
E = �$u(r). In cylindrical coordinates r = {q, #, z} the
potential inside each region i, s, e acquires the form:
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uðq; #Þ ¼
uiðq; #Þ; 0 6 q < R;

usðq; #Þ; R 6 q < Ro;

ueðq; #Þ; q P Ro:

8><
>: ðA2Þ

R is the nanowire radius, and Ro is the shell radius. The
Maxwell equation divD = 0 should be supplied with
boundary conditions:

ðui�usÞjq¼R ¼ 0; ðDs�DiÞeq ¼ ð�e0es

@us

@q
þ e0eb

@ui

@q
� P x cos#Þ

����
q¼R

¼ 0;

ðus�ueÞjq¼Ro
¼ 0; ðDe�DsÞeq ¼ e0ð�ee

@ue

@q
þ es

@us

@q
Þ
����
q¼Ro

¼ 0;

uijq¼0 <1; uejq!1 ¼ 0

ðA3Þ

Here eq is the outer normal to the cylindrical surface.
As the first step we suppose that the polarization inside

the wire is homogeneous. The electrostatic potential inside
the particle and screening layer satisfies the Laplace equa-
tion Du = 0, while the media outside the particle may be
semiconducting, its potential should satisfy the equation
Due � ue=l2

d ¼ 0 according to the Debye approximation
with screening length ld.

The general solution of the Laplace equation Du = 0,
depending only on radius q and polar angle # is:

uðq; #Þ ¼ a0 þ b0 lnðqÞ þ
X1
n¼1

ðanq
n þ bn

qn
Þ cosðn#þ #nÞ

ðA4Þ
where an and bn are constants. One should leave in Eq. (A4)
the terms with n = 1; only. Thus we derived the solution as
[48]:

uiðq; #Þ ¼ aq cos#; 0 6 q < R: ðA5aÞ
Potential (18a) corresponds to a homogeneous field equal
to �a:

usðq; #Þ ¼ ðcqþ
b
q
Þ cos#; R 6 q < Ro; ðA5bÞ

ueðq; #Þ ¼ ðd K1ðq=ldÞ þ fI1ðq=ldÞÞ cos#; q P Ro: ðA5cÞ

Here I1 and K1 are the modified Bessel function of the first
and second kind, respectively.

Boundary conditions (A3) give the system of linear
equations for constants a, b, c, d, f. The electric field inside
the ferroelectric wire (r < R) is expressed via the effective
depolarization factor g as follows:

E1 ¼ �
P 1

e0eb

g; q < R: ðA6Þ

The effective depolarization factor g essentially depends on
the surroundings, namely:

(a) For the ferroelectric wire in a semiconductor matrix
the factor g equals:

g ¼ ldK1ðR=ldÞeb

ðRK0ðR=ldÞ þ ldK1ðR=ldÞÞee þ ldK1ðR=ldÞeb
: ðA7aÞ
It is noteworthy that g � eb

ee

ld

R ; for R >> ld.

(b) For the “ferroelectric wire/dielectric shell /dielectric
matrix” the factor g is:

ðR2ðe þ e Þ � R2ðe � e ÞÞe

g ¼ o s e e s b

R2
oðeb þ esÞðes þ eeÞ þ R2ðes � ebÞðee � esÞ

ðA7bÞ

In the limiting case ee!1 corresponding to the system
“ferroelectric wire/dielectric shell/conducting matrix” one

has the following expression g ¼ ðR2
o�R2Þeb

R2
oðebþesÞþR2ðes�ebÞ

and

g � eb

es

Ro�R
Ro

; for R >> Ro � R.

(c) For the “ferroelectric wire/dielectric shell/dielectric
matrix” the factor g is:
g ¼ ðR2
oðes þ eeÞ � R2ðee � esÞÞeb

R2
oðeb þ esÞðes þ eeÞ þ R2ðes � ebÞðee � esÞ

ðA7cÞ

In the limiting case ee !1, corresponding to the system
“ferroelectric wire/dielectric shell/screening outside”, one

has the following expression: g ¼ ðR2
o�R2Þeb

R2
oðebþesÞþR2ðes�ebÞ

and

g � eb

es

Ro�R
Ro

; for R >> Ro � R.

Depolarization effects can be neglected under the condi-
tion of negligibly small depolarization energy in compari-

son with the LGD energy: jaNW
1 jP 2

1 >>
1

e0eb
P 2

1jgj, i.e. when

the strong inequality jgj << e0ebjaNW
1 j is valid. More

roughly, the inequality e0ebja1j=jgj >> 1 needs to be satis-
fied for the depolarization effect to be negligibly small.

In Fig. A1 we compare the reduced depolarization fac-
tor from Eq. (A7b) in the limit ee!1, i.e.
gðee!1Þ

eb
¼ ðR2

o�R2Þ
R2

oðebþesÞþR2ðes�ebÞ
with e0|a1| at fixed shell permittivity

es, dielectric shell thickness dR = Ro � R, for various tem-
peratures and wire radii. Typically dR 6 1 nm, since there
is a very small distance between bound charges (i.e. polar-
ization charges) and free screening charges [37].

It can be seen from Fig. A1c and d that the contribution
of the depolarization field to the total energy is negligibly
small (i.e. |e0eba1(T)/g(R)| > 10) in the actual range of
parameters, e.g. Ro > 10 nm and T < 300 K (or
T > 500 K) at es �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eBTO

11 eBTO
33

p
� 103 and dR = 0.5 nm.

These results prove that g can be tuned as small as necessary
by high ee, es, etc., and gives us some grounds not to include
the depolarization field energy in the total free energy in
order to establish the net contribution of other size effects.

A.2. Intrinsic size effect contribution via the depolarization

field due to the incomplete external screening and

inhomogeneous polarization inside the nanowire

As the second step let us consider the case of inhomoge-
neous polarization inside the wire, supposing only a radial
dependence, Px(q). Below we show that it is not rigorous,
but in some cases this could be the first approximation.



7196 J.J. Wang et al. / Acta Materialia 59 (2011) 7189–7198
A.2.1. The ideally screening ambient media

First, we consider the wire inside the ideally screening
ambient media (ld! 0) without a dielectric shell. It is obvi-
ous that the solution of more complicated problems could
be constructed by an appropriate combination of simpler
solutions.

The electrostatic potential inside the wire satisfies Pois-
son equation. For the case of P = (P1(q), 0, 0) this reduces
to:

Du ¼ cos#

e0eb

@P xðqÞ
@q

: ðA8Þ

Boundary conditions are:

ujq¼0 <1; ujq¼R ¼ 0: ðA9Þ

It is natural to look for the solution of (A9) in the form of a
Fourier series uðq; #Þ ¼

P1
n¼0ðfnðqÞ cos n#þ gnðqÞ sin n#Þ.

Using the orthogonality of Fourier harmonics, one can
see that only the term with n = 1 will be sufficient. Thus,
introducing the Ansatz uðq; #Þ ¼ wðqÞ cos#, we obtain:

@2wðqÞ
@q2

þ 1

q
@wðqÞ
@q

� 1

q2
wðrÞ ¼ 1

e0eb

@P xðqÞ
@q

: ðA10Þ

The solution of (A10) can be found in the form:

wðqÞ ¼ 1

e0eb

1

q

Z q

0

P xð~rÞ~rd~r � q

R2

Z R

0

P xð~rÞ~rd~r
� �

: ðA11Þ
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Fig. A1. (a) Depolarization factor g(ee!1)/eb vs. nanowire outer radius R

the curves). (b) The temperature dependence of coefficient e0a1. Inset shows th
maps of the ratio e0eba1(T)/g(R) calculated for dielectric shell thickness d
{�100,�50,�10,�1,�0.5,�0.1,0,0.1,0.5,1,10,50,100}. Other parameters:
Coth T s

T

	 

� Coth T s

390

	 
� �
Vm C�1, Ts = 160 K, dielectric constant e0 ¼ 8:85� 10�
Now we can find the electric field E ¼ �rðwðqÞ cos#Þ. The
x-component is:

Exðq; #Þ ¼ � cos#
@ðwðqÞ cos#Þ

@q
þ sin #

q

� @ðwðqÞ cos#Þ
@h

¼ � cos2 #
@ðwðqÞÞ
@q

� sin2 #
wðqÞ

q
ðA12Þ

It can be seen that the x-component could be independent
of # in the very specific case w(q) � q only (which also
means that Ex = const). That is why the supposition
Px(q) is not rigorous. However, the evident expression
for Ex obtained from Eqs. (A11) and (A12) could be
written for a given distribution of Px(q) as:

Exðq; #Þ ¼
1

e0eb

1

R2

Z R

0

P xð~rÞ~rd~r � cos2 #P xðqÞ
�

þ cos2 #� sin2 #

q2

Z q

0

P xð~rÞ~rd~r
�

¼ 1

e0eb

1

R2

Z R

0

P xð~rÞ~rd~r � 1

2
P xðqÞ �

cos 2#

2q2
�
Z q

0

@P xð~rÞ
@~r

~r2d~r
� �

ðA13Þ

It can be seen that the first two terms could be reduced to
the form proposed by us earlier on the basis of the
variation method: E1 � ðhP 1ðqÞi � P 1ðqÞÞ=ð2e0ebÞ [49];
these terms are independent of angle #. The last term in
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e polarization direction in the nanowire cross-section. (c and d) Contour
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eb = 50, nanowire shell permittivity es = 1000, a1ðT Þ ¼ 5:0� 105 � T s
12 F m–1.
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Eq. (A13) is proportional to cos 2# and corresponds to the
inhomogeneous divergent field. However, it has an impact
only on the regions of the particle outside the range where
the polarization changes rapidly. For example, if one has a
particle with almost constant polarization throughout the
wire except near a thin surface layer, o P3(q)/ o q � 0 at
0 < q < R � dR, and surface layer with gradient polariza-
tion, q@P 3ðqÞ=@q � P 3ðqÞ at R � dR < q < R, then the
divergent term in (A13) could be of order of the first two
terms only in the surface layer R � dR < q < R.

A.2.2. The semiconducting ambient media

For the case of a FNW inside a semiconducting ambient
media with a screening length ld, let us look for the solution
in the form (compare with Eq. (A5c)):

wiðqÞ¼
1

e0eb

1

q

Z q

0

P xð~rÞ~rd~r� q

R2

Z R

0

P xð~rÞ~rd~r
� �

�Eiq; q<R;

ðA14aÞ

weðqÞ ¼ �REeK1ð
q
ld

Þ; q P R: ðA14bÞ

Using the conditions:

ðwi � weÞjq¼R ¼ 0; �e0ee

@we

@q
þ e0eb

@wi

@q
� P x

� �����
q¼R

¼ 0;

wijq¼0 <1; wejq!1 ¼ 0

ðA15Þ
it is possible to find the constants Ei and Ee and then to
write the solution for the potential inside the nanoparticle
in the form:

wiðqÞ ¼
1

e0eb

1

q

Z q

0

P xð~rÞ~rd~r � q

R2

Z R

0

P xð~rÞ~rd~r
� �

þ q
e0

2

R2

Z R

0

P xð~rÞ~rd~r
ldK1ðR=ldÞ

ðRK0ðR=ldÞ þ ldK1ðR=ldÞÞee þ ldK1ðR=ldÞeb

; q < R

ðA16Þ

The electric field x-component inside the nanowire is

Ex ¼
1

e0eb

1

R2

Z R

0

P xð~rÞ~rd~r � 1

2
P xðqÞ �

cos 2#

2q2

Z q

0

@P xð~rÞ
@~r

~r2d~r
� �

� 1

e0

2

R2

Z R

0

P xð~rÞ~rd~r
ldK1ðR=ldÞ

ðRK0ðR=ldÞ þ ldK1ðR=ldÞÞee þ ldK1ðR=ldÞeb

ðA17Þ

The last term in Eq. (A17) is related to the non-ideal
screening either due to the dead layer or to the finite screen-
ing length (compare with Eq. (A7a)).

An approximation is valid:

ðRK0ðR=ldÞ þ ldK1ðR=ldÞÞ
ldK1ðR=ldÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l2
d

þ R
ld

þ 1

s
: ðA18Þ

Neglecting any stray field, one can obtain the following
from Eqs. (A17) and (A18):
Ex �
1

e0eb

1

R2

Z R

0

P xð~rÞ~rd~r � 1

2
P xðqÞ

� �
� 2

R2

�
Z R

0

P xð~rÞ~rd~r
ld

e0 ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ldRþ l2

d

q
þ ebld

� � ðA19Þ
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