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a b s t r a c t

Using first-principles total energies and frozen phonon calculations, we predict the thermodynamic
properties (enthalpies of formation and vibrational entropies) for three phases in the Al–Mg–Si system:
the stable phase (β-Mg2Si), and two metastable precipitate phases (β ′-Mg18Si10 and β ′′-Mg5Si6). The
stable fcc/β and the metastable fcc/β ′ and fcc/β ′′ phase boundaries are obtained from a combination
of the Gibbs energy of the compounds determined from first-principles and the free energy of the Al-rich
solid solution (fcc phase) taken from the literature. Predicted phase boundaries show good agreement
with available phase stability measurements. The present work demonstrates the capability of first-
principles calculations in predicting Gibbs energies of stable and metastable phases.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Alloys based on the Al–Mg–Si system are widely used
for engineering applications due to their excellent mechanical
properties. In particular, the strength of Al–Mg–Si alloys can
be significantly increased through age hardening, during which
various metastable phases form. Although there are a wealth of
metastable phases observed in these alloys, the generic precipitate
formation sequence in Al–Mg–Si alloys is the following [1–3]:

Atomic clusters → Guinier–Preston (GP) zones
→ β ′′ → β ′ → β,

where β ′′, β ′ and β represent the metastable Mg5Si6 and Mg18Si10
and the stable Mg2Si compounds, respectively. The GP zones
consist of distinctive clusters with compositions different from the
overall alloy composition [4]. The needle-shaped β ′′ phase is often
considered the most effective hardening precipitate [2,5], while
the formation of the rod-shaped precipitate β ′ phase can indicate
that the alloy is over-aged [6].
Despite nearly one hundred years of study of this important

system, accurate positions of the metastable phase boundaries
which are needed for quantitative simulation of the aging
process are not known. These phase boundaries are very difficult
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to determine reliably from experiments due to the transient
nature of metastable phases. In the present work, first-principles
density-functional theory calculations [7,8] are performed in an
effort to obtain the key thermodynamic properties necessary
to quantitatively predict the thermodynamic limit of these
metastable boundaries. From static total energy calculations, we
obtain the equilibrium structural properties of Mg, Si, β , β ′ and
β ′′ and the enthalpies of formation of β , β ′ and β ′′. Using frozen-
phonon calculations, we also ascertain the vibrational entropies
of formation for each phase. This combination of first-principles
calculated enthalpies and entropies for stable and metastable
phases allows us to compare trends in the enthalpy vs. entropy for
β , β ′ and β ′′, as well as these thermodynamic functions with the
observed precipitation sequence given above. Combining this first-
principles thermodynamic information together with the Gibbs
energy of the Al-rich solid solution containing Si and Mg (fcc
phase) from the CALPHAD approach [9], we predict the stable
and metastable phase boundaries for fcc/β , fcc/β ′ and fcc/β ′′.
Our work is guided by previous studies of the first-principle
prediction of solvus boundaries in Al alloys. In particular, the solvus
boundaries for stable phases in binary systems were investigated,
e.g. Al–Sc [10] and Al–Si [11]. Subsequently, this work was
extended to include both stable and metastable phase boundaries
in Al–Cu [12]. In the present work, we extend these previous
studies by predicting solvus boundaries in the Al–Mg–Si ternary
system, including both stable and metastable precipitate phases.
In addition, our work explores the approach of combining first-
principles calculated thermodynamic functions of the (meta)stable
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Table 1
Calculated and experimental lattice parameters (Å) and Debye temperatureΘD (K).

Phase Space group Lattice parameter (Å) ΘD (K)
This work Exp. This work Exp.
a b c a b c

Mg P63/mmc 3.21 5.11 3.21 [49] 5.21 [49] 316 330 [20]
Si Fd3m 5.45 5.43 [21] 649 645 [22]
β-Mg2Si Fm3m 6.37 6.35 [18] 416 417 [23]
β ′-Mg18Si10 P63 7.15 4.14 7.15 [17,18,24] 4.05 [17,18,24] 399 N/A
β ′′-Mg5Si6 C2/m 14.24 4.07 6.98 15.16 [15,16] 4.05 [15,16] 6.74 [15,16] 398 N/A
intermetallic phases with CALPHAD data for the solid solution, in
order to achieve more quantitatively accurate phase boundaries.

2. Method

In the present work, the first-principles calculations are
performed by employing the Vienna ab initio simulation package
(VASP) [7,8] with Vanderbilt ultrasoft pseudopotentials [13]
and the generalized gradient approximation (GGA) [14]. The
crystal structure data of β-Mg2Si, β ′-Mg18Si10, and β ′′-Mg5Si6 are
summarized in Table 1 [15–18] with β having the cubic CaF2
structure [4], β ′ hexagonal and β ′′ monoclinic structures [2,5],
respectively. We use an energy cutoff of 188.3 eV, i.e., 1.25 times
of the energy cutoff of Si, higher than those of Al and Mg,
suggested by VASP. All calculations are performedwith a complete
relaxation of cell volume, cell vectors and cell-internal atomic
positions. The Monkhorst–Pack scheme is used for the Brillouin-
zone integrations [19]. The settings of k-points correspond roughly
to an 8000 k-point mesh per reciprocal-atom.
In this study, the Helmholtz free energies for Mg, Si, β , β ′

and β ′′, are described by the harmonic approximation at the
equilibrium volume [25–27],

F(T ) = E0 + Fph(T ), (1)

where E0 is the first-principles ground state energy at 0 K, and
Fph(T ) [25–27] the phonon contributions to the free energy. Since
we are focused on the difference of thermodynamic properties
(e.g. enthalpy of formation, entropy of formation) for compounds
compared with the pure elements. It is worth mentioning that
the anharmonic effects can be neglected here. From the phonon
density of states, the lattice vibrational free energy can be
calculated through [25–27]:

Fph(T ) = kBT
∫
ln
{
2 sinh

[
hv
2kBT

]}
g(v)dv, (2)

where T is the temperature, kB the Boltzmann constant, h the
Planck constant, and g(ν) the phonondensity of states as a function
of phonon frequency ν. At zero pressure, the internal energy and
Helmholtz free energy are equal to the enthalpy and Gibbs energy,
respectively.
The vibrational properties of the structures can alternatively

be characterized by their Debye temperatures ΘD, which can be
calculated by [28,29]:

kBΘD = hvD(n) (3)

vD(n) =
[
n+ 3
3

∫
∞

0
vng(v)dv

]1/n
(n 6= 0, n > −3), (4)

where vD(n) is the Debye cutoff frequency. The cutoff frequency
for n = −2 is used in this work, and hence the integrals in Eqs. (3)
and (4) can getΘD(−2).ΘD(−2) has an important physical mean-
ing as it is related to the root-mean-square amplitude of thermal
oscillations according to the Debye–Waller theory [30,31].
The phonon density of states (g(ν) in Eq. (2)) for hcp–Mg,

diamond–Si, β-Mg2Si, β ′-Mg18Si10 and β
′′

-Mg5Si6 are calculated
using the supercell method implemented in the ATAT package [32]
as the interface to the VASP code [7,8]. The supercell method is
based on the frozen phonon approximation through which the
changes in total energy and forces are calculated in the direct
space by displacing the atoms from their equilibrium positions.
The main steps for the first-principles phonon calculation in ATAT
are: (i) Assign the primitive unit cell and fully relax the primitive
unit cell by first-principles code (VASP in this work). (ii) Select the
size of the supercell according to the defined neighbor interaction
distance, making perturbation to the atomic positions, and calling
the first-principles code to calculate the forces imposed on the
atoms. (iii) Fit the force constants from the forces and calculate
the phonon frequencies with the assigned cutoff range for force
constants. The supercell sizes N in the phonon calculations for
Mg, Si, β-Mg2Si, β ′-Mg18Si10 and β ′′-Mg5Si6 contained 52, 96, 96,
84, and 88 atoms, respectively. The number of k points, Nk, is
determined through N × Nk = 4000.
The enthalpy of formation of a compound is defined as the

difference in total energy of the compound and the energies of its
constituent elements in their stable states:

∆fH(MgxSiy) = E(MgxSiy)−
x
x+ y

E(Mg)−
y
x+ y

E(Si) (5)

where E(MgxSiy), E(Mg) and E(Si) are the energies of the
compound MgxSiy and constituents, hcp–Mg and diamond–Si,
respectively.
To calculate the phase boundaries, the Gibbs energy of the fcc

solution phase is taken from the work by Feufel et al. [9] shown
in Table 2. Ideally, one would use the free energy of fcc also from
the first-principles calculations. Indeed, in a recent study [33],
the enthalpy of mixing in the ternary fcc Al–Mg–Si phase was
calculated, showing the discrepancies with the data in the
literature for the binary and the ternary systems. The present work
focuses on developing an approach to insert themetastable phases
into multi-component Al and Mg thermodynamic databases and
demonstrating its feasibility. The enthalpies and entropies of
formation of β , β ′ and β ′′ are obtained from first-principles
calculations in the present work. The Gibbs energy of compounds
can be described as:

GMgaSib = a 0GhcpMg +b
0GdiamondSi +∆fHMgaSib − T∆f SMgaSib (6)

where 0GhcpMg and
0GdiamondSi are the molar Gibbs energies of the

pure element hcp Mg and diamond Si, from the widely accepted
Scientific Group Thermodata Europe (SGTE) data [34], respectively.
The Gibbs energy of formation of the compound can be written
as:∆fHMgaSib − T∆f SMgaSib , where∆fHMgaSib and∆f SMgaSib are the
enthalpy and entropy of formation calculated from first-principles.

3. Results and discussion

3.1. First-principles results

In this section, the calculated equilibrium lattice parameters,
phonon density of states, together with the predicted finite
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Table 2
Thermodynamic parameters of fcc phase in the Al–Mg–Si system, in SI unit. fcc
description: Gfccm =

∑
xi0Gfcci + RT

∑
xi ln xi +

∑
i
∑
j>i xixj

∑n
k=0

kLfcci,j (xi − xj)
k .

Parameters
0LfccAl,Mg = 4971− 3.5T
1LfccAl,Mg = 900+ 0.423T
2LfccAl,Mg = 950
0LfccAl,Si = −3143.78+ 0.29397T
0LfccMg,Si = −7148.79+ 0.89361T

Fig. 1. Phonon density of states for Mg, Si, β-Mg2Si, β ′-Mg18Si10 and β ′′-Mg5Si6
phases in comparison with the available experimental data [35,36] and previous
calculations [37,21].

temperature thermodynamic properties (entropy, enthalpy, and
Gibbs energy) are presented and compared with the available
experimental data.
Table 1 gives the predicted lattice parameters of hcp–Mg, dia-

mond–Si, β-Mg2Si, β ′-Mg18Si10 and β ′′-Mg5Si6 at 0 K, which are in
good agreement with the experimental data at room temperature.
The phonon density of states (DOS) of Mg, Si, β-Mg2Si, β ′-Mg18Si10
and β ′′-Mg5Si6 calculated at the equilibrium volumes are plotted
in Fig. 1. The available Ramanmeasurements [35,36] and the previ-
ous calculations [37,21] of Mg and Si are included for comparison,
showing good agreement. The predicted frequency of Si is slightly
lower than the measured ones due to a weak bonding of Si pre-
dicted by the present calculations. The calculated lattice parame-
ter of 5.45 Å is slightly larger than the measured lattice parameter
5.43 Å [38] (see Table 1). The peak with frequency around 7.8 THz
can not be reproduced in the present work, which has been pre-
viously noted as a disagreement between first-principles calcula-
tions and experimental phonon DOS [21,20].
Comparing thephonondensity of states ofβ-Mg2Si,β ′-Mg18Si10

andβ ′′-Mg5Si6 as shown in Fig. 1(c), the distributions of vibrational
frequencies in the lower frequency region (e.g, less than 5 THz) in-
crease from Si, β , β ′, β ′′, to Mg, indicating the increase of phonon
contributions to Gibbs energies from Si, β , β ′, β ′′, to Mg (cf. Eq. (2)
and Fig. 3). In principle, the higher value of the phonon density
of states in the lower frequency region implies a weak bonding
nature and correspondingly a lower Debye temperature [27]. In
terms of the second-moment Debye cutoff frequencies calculated
from phonon density of states in Fig. 1, Table 1 summarizes the
Fig. 2. Calculated phonon dispersion curves of β-Mg2Si pertaining to the
equilibrium volume at 0 K, and experimental frequencies [40,41] at the point are
compared. Note that the LO/TO splitting is not calculated for the infrared active
mode.

predicted Debye temperatures, which agree well with the avail-
able measurements [22,23,39]. It is shown that the Debye temper-
atures decrease from Si, β , β ′, β ′′, to Mg, which is consistent with
the distributions of phonon density of states in the lower frequency
region. The increase of Debye temperatures from β ′′, β ′, to β con-
firms again the strengthened bonds from β ′′, β ′, to β .
In order to validate the first-principles phonon calculations, one

of the most important steps is to calculate the phonon dispersion.
To our knowledge, there is no experimental phonon data of, β ′
and β ′′, except for the measured Γ point data of β-Mg2Si. Fig. 2
shows the calculated phonon dispersion for β-Mg2Si pertaining to
the equilibrium volume at 0 K, which are in good agreements with
the available Raman [40] and infrared measurements measured
at room temperature [41]. As Mg2Si is known to be a small band
gap semiconductor, we should note that the Coulomb interactions
will cause the frequencies of longitudinal optical (LO)modes above
those of transversal optical (TO) modes [42,24,43]. The LO/TO
splitting occurs at the Γ point of the Brillouin zone, and only for
infrared active modes. However, the supercell method used in the
present work cannot be employed to estimate the LO/TO splitting
directly. It also should be mentioned that the LOmodes contribute
very little to the phonon DOS’s, because they differ from TOmodes
only in a small volume of the reciprocal lattice in the vicinity of
the Γ point [44]. Therefore, the present work does not take into
account the influences of LO/TO splitting.
From the harmonic approximation, Fig. 3 shows the phonon

contribution to enthalpies, entropies and Gibbs energies of Mg,
Si, β-Mg2Si, β ′-Mg18Si10 and β ′′-Mg5Si6, where the total energy
at 0 K is excluded. Note the diverse values of enthalpy at 0 K
indicating the zero-point vibrational energies for each phase are
different, whereas with an increasing temperature, the vibrational
contributions to enthalpy approach to classical limit of 3RT
regardless of differentmaterials. Only small differences of enthalpy
exist among β-Mg2Si, β ′-Mg18Si10 and β ′′-Mg5Si6, while there
are more significant differences among the calculated vibrational
entropies. The entropy of β ′′ increases with temperature more
quickly than those of β and β ′ phases. Consequently, the Gibbs
energy of β ′′-Mg5Si6 decreases faster than those of β-Mg2Si and
β ′-Mg18Si10 at high temperatures.
The predicted room temperature (298 K) entropies and en-

thalpies of formation of β , β ′, and β ′′ phases are listed in Table 3.
These quantities are calculated from a combination of the total
energy at 0 K and thermodynamic phonon contributions. The en-
thalpies of formation calculated at 298 K decrease in the same or-
der as the observed precipitation sequence: ∆H(β ′′-Mg5Si6) >
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Table 3
Enthalpy and entropy of formation,∆f H (kJ/mol-atom) and∆f S (J/K mol-atom), at 298 K, respectively.

Phase ∆f H Method ∆f S Method

β ′′-Mg5Si6 3.5 This work 4.5 This work
3.3 First-principles [45]

β ′-Mg18Si10 −12.6 This work 0.2 This work
−11.7 First-principles [45]

β-Mg2Si −17.7 This work −1.8 This work
−21.74 CALPHAD [9] −2.68 CALPHAD [9]
−18.0 First-principles [45] −9.0 Vapor pressure [53]
−26.3 Calorimetry [54] −9.3 EMF [55]
−14.21 Vapor pressure [53] −2.68 Via heat capacity [47]
−26.37 Calorimetry [56] −5.37 Via heat capacity [57]
−26.67 EMF [55] −6.81 Via heat capacity [58]
−22.99 Vapor pressure [46] −4.72 EMF [48]
−22.16 EMF [48]
−21.10 Calorimetry [9]
Fig. 3. Vibrational contributions to entropy (S), enthalpy (H), and Gibbs energy (G)
for Mg, Si, β-Mg2Si, β ′-Mg18Si10 and β ′′-Mg5Si6 phases, in per mole of atom.

∆H(β ′-Mg18Si10) > ∆H(β-Mg2Si). The first-principles calcula-
tions show a correlation between decreasing energy and increas-
ing Mg:Si ratio as the precipitation process proceeds, consistent
with previous first-principles calculations by Ravi and Wolver-
ton [45]. Table 3 also includes a comparison between the exper-
imental enthalpies of formation of β-Mg2Si, prior first-principles
calculations [45], and the COST507 database [9]. The experimen-
tal values of the enthalpy of formation of Mg2Si scatter over a
large range. In view of the large difference in the melting points
of Mg and Si as well as the large differences of their vapor pres-
sures and densities, preparation of Mg–Si alloys can be extremely
difficult. On the other hand, in the isopiestic technique, the Mg–Si
alloy is obtained directly from a vapor pressure experiment tak-
ing advantage of the large difference in vapor pressures of the el-
ements. Therefore, among all the techniques, we suggest that the
isopiestic technique employed by Eldridge et al. [46] ismore suited
for this system compared with the other vapor pressure measure-
ments as suggested by Geffken and Miller [47]. More recently, the
value of the enthalpy of formation of Mg2Si determined by Feufel
et al. [9] is−21.12±2.54 kJ/mole-atom. Values of the standard en-
thalpy of formation ofMg2Si determined by Eldridge et al. [46], Rao
et al. [48], and Feufel et al. [9] from vapor pressure, EMF, and calori-
metric methods are in accord with each other. The first-principles
calculated enthalpy of formation for β-Mg2Si at 298 K is about 19%
(4 kJ/mole-atom) less negative than these values. We also com-
pare our results with those of Ravi and Wolverton [45] who have
recently reported enthalpies of formation of β ′′-Mg5Si6, β ′-Mg2Si
and β-Mg2Si precipitates from first-principles. We see in Table 3
that the enthalpy of formation of β ′ in [45] is slightly less negative
than the present value. It should be noted that the present work
used the crystal structure of β ′ proposed by Andersen et al. [49]
while the prior work [45] assumed a different crystal structure
with composition Mg1.8Si. The enthalpies of formation are listed
in Table 3.We note that the crystal structure of β ′ proposed by An-
dersen et al. [49] yields a lower total energy in the DFT calculations.
The calculated values of lattice parameters for β ′ phase are also in
good agreement with the measurements, as shown in Table 1. We
assert that the crystal structure and composition of β ′ proposed by
Andersen et al. [49] is supported by our first-principle calculations.
Table 3 also gives the calculated vibrational entropies of formation
for stable and metastable phases. It can be seen that the entropies
of formation calculated at 298 K decrease in the same order as
the enthalpies of formation: S(β ′′-Mg5Si6) > ∆S(β ′-Mg18Si10) >
∆S(β-Mg2Si). The stable phase has the lowest entropy of forma-
tion. This correlation between entropies and enthalpies of for-
mation has also previously been found in DFT studies the Al–Cu
system [12]. Due to the fact that the standard entropy determined
from integration of the low temperature heat capacities can have
significant uncertainty [47], we consider the very small magni-
tude of our calculated entropy of formation of β-Mg2Si −1.8J/K
mol-atom to be in reasonably good agreement with the COST507
database value of−2.68J/K mol-atom, based on the experiment by
Geffken and Miller [47].

3.2. Phase diagram of Al solvus

In this section, we use our DFT calculated thermodynamic
properties to calculate the (meta)stable phase stabilities of β ′′, β ′
and β phases. The Gibbs energy function of the fcc phase is taken
from Feufel et al. [9] and is shown in Table 2. For the stableβ-Mg2Si
and metastable β ′ and β ′′ phases, the enthalpies and entropies of
formation are calculated from first-principles.
The calculated phase boundaries of fcc/β are shown in

the vertical section from Al to Mg2Si in Fig. 4, compared
with experimental data and those calculated from the COST507
database.We note that there is considerable scatter in the reported
experimental data for the ternary solubility of the stable β-Mg2Si
phase in an Al solid solution. Due to the fact that the starting
materials contained relatively high impurities, e.g. 99.98 wt.% Mg
and 98.64wt.% Si [50]; 97.90wt.%Mg and 99.48wt.% Si [51] and the
fact that the investigation was done with a very low concentration
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Fig. 4. Calculated solvus boundaries in the isopleth from Al to Mg2Si in the
present work (solid line) in comparison with COST507 database [9] (dotted line)
and literature data (◦ M � ♦ O) fcc− β solidus [9,50–52].

of Mg, the data are not considered to be accurate. The degree of
agreement between the two phase boundaries is represented by

the relative deviation in calculated temperatures,
√∑

i[(Ci−Bi)/Bi]2

N
where Ci and Bi represent the two sets of data, andN the number of
experimental data points. Given the fact thatwehave no adjustable
or fitting parameters in the present calculations, we find the first-
principles phase boundaries to be in very good agreement with
COST507 databasewith the relative deviation of the solvus of fcc/β
about 6.7%.
Even though the solvus boundary of β from first-principles is

in reasonably good agreement with COST507, in order for us to
make quantitative predictions of the metastable β ′ and β ′′ solvus
boundaries, we wish to adjust our solvus curves slightly such
that the calculated solvus of β agrees precisely with COST507. To
achieve this, we apply correction parameters, kH and kS , which are
the ratios between the enthalpies and entropies of formation for
β-Mg2Si phase from COST507 database and first-principles:

kH =
∆fH

Mg2Si
COST507

∆fH
Mg2Si
first−principles

(7)

kS =
∆f S

Mg2Si
COST507

∆f S
Mg2Si
first−principles

(8)

where ∆fH
Mg2Si
COST507 and ∆fH

Mg2Si
first−principles correspond to enthalpy of

formation of β-Mg2Si phase from COST507 database and first-
principles, respectively. The entropy of formation ofβ-Mg2Si phase
from COST507 database and first-principles are represented by
∆f S

Mg2Si
COST507 and∆f S

Mg2Si
first−principles. The correction parameters are then

applied to scale the values of ∆fH
Mg18Si10
first−principles, ∆fH

Mg5Si6
first−principles,

∆f S
Mg18Si10
first−principles and ∆f S

Mg5Si6
first−principles calculated from first-principles

for β ′ and β ′′ phases. The modified enthalpic and entropic
parameters for metastable phases can in turn be expressed as:

∆fH
MgaSib
modified = kH ×∆fH

MgaSib
first−principles (9)

∆f S
MgaSib
modified = kS ×∆f S

MgaSib
first−principles. (10)

The correction parameters and modified parameters for stable
and metastable phase are shown in Table 4.
Fig. 5 shows the predicted phase boundaries of fcc/β , fcc/β ′

and fcc/β ′′ in the isopleth of 0.76 at.% Si from first-principles
Fig. 5. Calculated solvus boundaries in the isopleth of 0.76 at.% Si with (�) fcc+β ′
phase region [1,3,59,61]; (�) fcc + β ′′ phase region [1,60–62]; and the solvus of
fcc/β from COST507 [9]. The solid lines indicate the solvus using first-principles
enthalpies of formation and entropies for three precipitates. The dashed lines
represent the solvus using modified enthalpic and entropic parameters. The width
of the bands indicates the uncertainty in the solvus.

calculations. In this figure, the Gibbs energy function of the fcc
phase is taken from Feufel et al. [9]. Using the first-principles
enthalpies and entropies of formation of three precipitate phases,
the solvus curves are predicted and shown as solid curves. Dashed
lines indicate the predicted solvus curves by using the modified
parameters as shown in Table 4. The width of the bands indicated
the estimated uncertainty in the solvus curves. Even though the
experimental solubility data is very scattered due to the transitory
feature of the metastable phases, the measured stability ranges for
β ′-Mg18Si10 and β ′′-Mg5Si6 phases [1,3,59–62] are well captured
in our predictions.
It should be pointed out that the above calculated phase bound-

aries represent the thermodynamic limits of phase equilibria,
while the experimentally measured ones are affected by the in-
terfaces between the fcc and precipitates. Typically, an interface
changes from coherent, semi-coherent to incoherent due to the in-
terplay between the interfacial energy and the strain energy asso-
ciated with the size of precipitates. As the first precipitate formed
during low-temperature aging, β ′′ has a coherent interface with
the fcc matrix, while the interfaces of β ′ and β with the fcc matrix
are semi-coherent and incoherent, respectively [63]. In our prior
study, the coherent interfacial energy and strain energy of β ′′ were
predicted to be around 100mJm−2 and 0.45 kJ/mole-atom, respec-
tively [64]. The typical semi-coherent and incoherent interfacial
energies are from 300– 1000 mJ m−2 [64,65], along with smaller
strain energies because of the less deformation. As both interfa-
cial and strain energies increase the Gibbs energy of precipitates,
and hence result in increasing the solubility of (meta)stable phases
in the fcc solution phase. Different experimental measurements of
the metastable solvus reported in the literature might have been
carried out at the different stages of the transitions, contributing
to the significant scattering of phase boundary data.

4. Summary

Using first-principles calculations, we have computed the
thermodynamic properties of (meta)stable precipitates in the
Al–Mg–Si system. Along with the T = 0 K first-principles total
energies, we use the frozen phonon approximation to calculate
the enthalpies and entropies of formation of β-Mg2Si, β ′-Mg18Si10
and β ′′-Mg5Si6 phases. We find that the phonon contributions to
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Table 4
Enthalpy and entropy of formation∆f H (kJ mol−1) and∆f S (J mol−1K−1), respectively, in per mole of atom unit.

First-principles calculations Thermodynamic database [9] Correction Modified parameters
∆f Ha ∆f Sa ∆f Hb ∆f Sb ∆f Hb/∆f Ha ∆f Sb/∆f Sa ∆f H ∆f S

β-Mg2Si −17.7 −1.8 −21.74 −2.68 1.2265 1.490 −21.74 −2.68
β ′-Mg18Si10 −12.6 0.2 N/A N/A N/A N/A −15.5 0.26
β ′′-Mg5Si6 3.5 4.5 N/A N/A N/A N/A 4.3 6.7

∆f Ha enthalpy of formation from first-principles calculations.
∆f Hb enthalpy of formation from COST507 thermodynamic database.
∆f Sa entropy of formation from first-principles calculations.
∆f Sb entropy of formation from COST507 thermodynamic database.
Gibbs energies increase from β , β ′ to β ′′ and thus the bonding
of Mg–Si weakens from β , β ′ to β ′′. The metastable β ′′ phase
has the highest entropy and the weakest bonding among all the
precipitates. The predicted enthalpy and entropy of formation
for β-Mg2Si at room temperature are in good agreement with
the available experimental data. The Gibbs energies of formation
of the precipitates from first-principles calculations are used to
predict the solvus ofmetastable phases, and are in good agreement
with the (admittedly scattered) experimental data from aging
experiments.
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