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Computer simulations based on the Khachaturyan’s Onsager diffusion
equation have been performed to model microstructure evolution during
the cubic-to-tetragonal transformation in Ni-based alloys. A 2D model
was employed. The fcc-DO22 ordering has been studied as a model case
of this type of transformation. Particular emphasis is placed on the
formation mechanism of DO22 monovariant structures. Computer
simulations demonstrate that strain-induced interactions between coherent
DO22 precipitates lead to the formation of intermediate two-variant
chessboard-like structures, which are found to be unstable and coalesce
into subsequent single-variant maze structures. It is shown that the stability
of the chessboard-like structures is very sensitive to lattice misfits. These
simulation results are in good agreement with TEM observations.

Keywords: phase transformation kinetics; microstructure; precipitation;
modelling

1. Introduction

Characteristic microstructures, so-called tweed or twinned structures, have been
observed frequently in various alloys which undergo cubic to tetragonal phase
transformations, such as NiV, NiCoV, NiFeV, FePd and CoPt [1–5]. In these
transformations, the new phase is tetragonal and can be formed in three different
orientations with respect to the cubic mother phase. One might expect that the three
variants would be formed with equal probability. The formation of tetragonal phase
precipitates in cubic matrix, however, inevitably introduces elastic strain, and
random arrangements of variants would result in a large increase in the elastic energy
of the system. Consequently, it is well understood that formation of tweed or
twinned structures is driven by the elastic strain energy reduction.

The precipitation of DO22 tetragonal phase in Ni-based alloys is one of the
examples of a cubic to tetragonal transition. In Ni–V–X systems, a low symmetry
ordered phase (tetragonal Ni3V phase with the DO22 ordered structure) coexists with
the high symmetry fcc parent Ni–V–X solid solution (‘A1’ phase). In such systems,
the formation of the DO22 tetragonal phase produces an anisotropic strain field
due to the contraction and expansion of the tetragonal a- and c-axes against the
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cubic matrix. Lattice misfit strain along a- and c-axes of DO22 phase, �11 and �33,
can be determined using following equations: �11 ¼ ðaDO22

� aA1Þ=aA1 and �33 ¼
ðcDO22

=2� aA1Þ=aA1, respectively. The tetragonal phase has three [100] orientation
variants. The resulting microstructure exhibits a fine brick-like ‘multivariant
structure (MVS)’, and the variants are found to be twin-related to each other
across the {110} planes.

There have been a number of attempts to model microstructure evolution in
systems with coexisting tetragonal and cubic phases. Recently, Ni and co-workers
[6,7], using 3D modelling based on the phase field microelasticity (PFM) approach,
studied the formation of chessboard-like microstructure in cubic matrix with
different initial concentrations. It was remarked that there are two thermodynam-
ically distinct regions within the two-phase field of the phase diagram that described
the equilibrium coexistence of the cubic and tetragonal phases. These regions are
determined by the relative values of the free energies of the cubic and tetragonal
phases as a function of their composition. It was shown that the transformation
pathways to the chessboard-like microstructure are very different in these two
thermodynamically distinct regions. Le Bouar and co-workers [8–10] investigated
the effect of elastic energy on the morphology of chessboard-like microstructures
in Co–Pt and (CuAu)1�x–Ptx alloys. It was shown that the parent cubic phase
(L12 for Co–Pt and disordered fcc for (CuAu)1�x–Ptx) coexist with the three
different orientation variants of the tetragonal L10 ordered phase. In this case, the
final microstructure is multivariant and strongly depends on the misfits between the
two coexisting phases. Wen et al. [11,12] predicted the similar chessboard-like
and other complex mulitivariant precipitate structures during precipitation of an
orthorhombic phase in a hexagonal Ti–Al–Nb alloy [11,12]. All these simulations
show that strain energy is the dominant factor determining the stability of CB
microstructures.

In contrast to Co–Pt and other alloys, experiments revealed that long time ageing
of binary Ni–V alloys leads to monovariant microstructures [13–15]. It was shown
that during coarsening, the major variants in initial MVS grow at the expense of
minor variants and disordered A1 phase. To understand the influence of misfit
on stability of MVS, Suzuki et al. [13] investigated the evolution of microstruc-
ture in ternary Ni–V–X (where X¼Co, Fe and Nb) alloys. It was shown that the
morphology of ordered precipitates as well as the habit plane between A1 and DO22

structure can be changed by alloying the binary Ni–V system with Co, Fe and Nb
atoms. It was concluded that the misfit strain ratio d¼ �11=�33 and the magnitude of
�11 are important in determining the habit plane and the shape of DO22 particles.
As the magnitude of �11j j becomes smaller than 0.002, the shape of the DO22 variant
changes from plate to prism elongated along the a-axis on the habit plane, resulting
in chessboard microstructure. Therefore, the main objective of this work is to
understand the underlying thermodynamic driving forces and kinetic mechanisms
leading to the formation of monovariant microstructures in binary Ni–V systems
as well as the stability of MVS during cubic to tetragonal transformation in ternary
Ni–V–X alloys.

To predict the microstructure evolution and precipitation kinetics of binary Ni–V
and ternary Ni–V–X alloys, 2D computer simulations are performed based on the

338 H. Zapolsky et al.

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 2
2:

07
 2

3 
D

ec
em

be
r 

20
11

 



Khachaturyan’s microscopic diffusion equation. Simulation results were compared

with our TEM observations for Ni–19.5% V binary system and with experimental

data for ternary Ni–V–X (X¼Co, Fe and Nb) extracted from literature [13].

2. Model

To investigate the morphological evolution in the Ni–V system, we employed

a computer simulation model based on the Onsager-type microscopic diffusion

equations first proposed by Khachaturyan [16]. For a binary alloy, this equation can

be written as

dPðr, tÞ

dt
¼
X
~r0

Lðr� r0Þ
�F

�Pðr0, tÞ

� �
, ð1Þ

where P(r, t) is the probability of finding a solute atom (vanadium) at a given lattice

site r and at a given time t, L(r – r0) are the exchange probabilities between the atoms

at lattice sites r and r0 per unit time and F is the free energy of system. In the case of a

cubic-to-tetragonal transformation, the free energy of system contains two terms:

F ¼ Fchem þ Eelas, ð2Þ

where the first term Fchem corresponds to the chemical energy and Eelas is the total

elastic strain energy.
In this paper, the mean-field approach is used to calculate the chemical free

energy of system. For the binary alloys, the chemical energy is given by

Fchem ¼
1

2

X
~r,~r0

PðrÞPðr0ÞVðr�r0Þ þ kBT
X
~r

PðrÞ � lnPðrÞ þ 1�PðrÞð Þ � ln 1�PðrÞð Þ½ �, ð3Þ

where V(r – r0) is exchange energy, T is the temperature and kB the Boltzmann

constant.
A thermodynamic model is developed using the static concentration wave (SCW)

formalism applied to the DO22 structure. This structure is generated by the wave

vectors: k1 ¼ 2�=aA1 (100) and k2¼ 2�=aA1 (½10) where k ¼ ðkxkykzÞ and kx, ky and

kz are components of the vector k along the x-, y- and z-axes parallel to the [100],

[010] and [001] directions in the reciprocal space of fcc lattice, and aA1 is the lattice

parameter of the fcc lattice. Using the SCW formalism, the probability distribution

function P(r, t) for the DO22 structure can be written as

Pðrðx, y, zÞÞ ¼ cþ �1�1e
2i�x þ �2�2cos 2�

x

2
þ y

� �� �
, ð4Þ

where c is the nominal vanadium concentration of the alloy, �1 and �2 are the order
parameters, which vary from 0 (disordered state) to 1 (fully ordered state). In the

case of DO22 structure, the coefficients of symmetry are �1 ¼ 1=4 and �2 ¼ 1=2. For
the DO22 structure, there are three orientation and four translation variants.
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Substituting (4) into (3) gives the expression for the chemical free energy for a DO22

structure:

FDO22
¼

1

2
Nc2Vðk ¼ 0Þ þ

1

2
N
�1
4

� �2
Vðk1Þ þN

�2
4

� �2
Vðk2Þ � TSDO22

, ð5Þ

where entropy S is:

SDO22
¼�N �kB �

1

2
� c�

1

4
��1

� �
� ln c�

1

4
��1

� �
þ 1�cþ

1

4
��1

� �
� ln 1�cþ

1

4
��1

� �� �

þ
1

4
cþ

1

4
��1þ

1

2
��2

� �
� ln cþ

1

4
��1þ

1

2
��2

� ��

þ 1�c�
1

4
��1�

1

2
��2

� �
� ln 1�c�

1

4
��1�

1

2
��2

� �

þ cþ
1

4
��1�

1

2
��2

� �
� ln cþ

1

4
��1�

1

2
��2

� �

þ 1�c�
1

4
��1þ

1

2
��2

� �
� ln 1�c�

1

4
��1þ

1

2
��2

� ��

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

where N is the total number of sites. VðkÞ ¼
P
~r

VðrÞ � expðik � rÞ is the Fourier

transform of exchange energies. For an fcc lattice and for the k vectors which
generate the DO22 ordered structure, we can write:

Vðk ¼ 0Þ ¼ 12!1 þ 6!2 þ 24!3 þ 12!4

Vðk1Þ ¼ �4!1 þ 6!2 � 8!3 þ 12!4

Vðk2Þ ¼ �4!1 þ 2!2 þ 8!3 � 4!4

8<
:

. . .

. . .

. . .
ð6Þ

where !1, !2, !3 and !4 are first-, second-, third- and fourth-nearest neighbour
effective exchange interaction energies.

The elastic energy term was calculated using the elastic theory of multiphase
coherent solids with homogeneous modulus approximation proposed in [16]. If the
strain effect is predominantly caused by the long range order parameter
heterogeneity, then the stress-free strain can be expanded with respect to the long
range order fields. As the �!�� transition does not affect the macroscopic stress-
free strain, the first non-vanishing term of the expansion is of second order in �p(r):

"0ijðrÞ ¼
X
p

�2pðrÞ"
00
ij ð pÞ,

where the tensor "00ij ð pÞ describes the stress-free transformation strain from parent
cubic phase to the pth orientation variant of the tetragonal phase. In this case, and
under stress free boundary conditions, the elastic strain energy is

Eelas ¼
1

2

X
p,q

Z 0

d3k

ð2�Þ3
BpqðnÞ �

2
p

n o
k
�2q

n o�
k
, ð7Þ

where f�2pðrÞgk is the Fourier transform of �2pðrÞ and f�
2
qðrÞgk is the Fourier transform

of �2qðrÞ, BpqðnÞ ¼ cijkl"
00
ij ð pÞ"

00
kl ðqÞ � ni�

0
ijð pÞ�jkðnÞ�

0
klðqÞnl, n ¼ k=k is a unit vector and

340 H. Zapolsky et al.

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 2
2:

07
 2

3 
D

ec
em

be
r 

20
11

 



the function, cijkl is the elastic moduli tensor, �0ijðpÞ ¼ cijkl"
00
kl ð pÞ, and �ijðnÞ is a Green

function tensor which is inverse to the tensor ��1ij ðnÞ ¼ cijklnknl. f�
2
pðrÞgk which is the

Fourier transform of �2pðrÞ. The sign
0 near integral has the meaning that k¼ 0 is to be

excluded from the integration. According to [8], for a cubic-tetragonal transforma-

tion with isotropic elasticity, the function BpqðnÞ can be written in 2D as

Bxxð~nÞ ¼
2��233
1� �

½ð1� d Þn21 � ð1þ �d Þ�
2
þ ð1� �2Þd2

� 	

Byyð~nÞ ¼
2��233
1� �

½ð1� d Þn22 � ð1þ �d Þ�
2
þ ð1� �2Þd2

� 	

Bxyð~nÞ ¼
2��233
1� �

ð1� d Þ2n21n
2
2 þ ð1þ �Þd ð1þ d Þ

� 	
,

8>>>>><
>>>>>:

ð8Þ

where d¼ �11/�33, 	 is the Poisson ratio and � the shear modulus.
The local order parameters �p in Equation (7) can be defined as follows: As we

remarked previously, each orientation variant of the DO22 unit cell is generated by

two vectors. The x-variant is generated by k1x¼ 2�=aA1 (100) and k2x¼ 2�=aA1

(½10) vectors, and the y-variant by k1y¼ 2�=aA1 (010) and k2y¼ 2�=aA1 (1½0)

vectors. In our simulations, we distinguish the DO22 phase using only two order

parameters �1x and �1y. These two local order parameters are calculated using a small

simulation box SB (5� 5 sites) around a given lattice site. In this case, the order

parameters can be defined as

�1xðrÞ ¼ exp �ik1xrð Þ�ðcoeff1xðrÞ � PðrÞÞ
�1yðrÞ ¼ exp �ik1yr

� 	
�ðcoeff1yðrÞ � PðrÞÞ,



ð9Þ

where the symbol � represents the product of convolution and

coeffpðrÞ ¼

1

NB�p
� exp ikpr

� 	
if r 2 SB

0 otherwise

8<
: p ¼ 1x or 1y:

Here, NB is the number of sites in SB, and �p is the symmetry coefficient in

Equation (4). �p¼ 1/4 for �1x and �1y. In the case of the order parameters associated

to wave vectors k1x and k1y, the coefficients coeff1x and coeff1y can be represented in

the matrix form:

coeff1x ¼
1

4

1=4 �1=2 1=2 �1=2 1=4

1=2 �1 1 �1 1=2

1=2 �1 1 �1 1=2

1=2 �1 1 �1 1=2

1=4 �1=2 1=2 �1=2 1=4

0
BBBBBB@

1
CCCCCCA

and

coeff1y ¼
1

4

1=4 1=2 1=2 1=2 1=4

�1=2 �1 �1 �1 �1=2

1=2 1 1 1 1=2

�1=2 �1 �1 �1 �1=2

1=4 1=2 1=2 1=2 1=4

0
BBBBBB@

1
CCCCCCA
,
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where each element is calculated at site r¼ a(m, n), where m and n are integer values
and vary from �2 to 2 and a¼ aA1/2 is the lattice parameter of disordered fcc
phase in 2D.

Due to the periodic boundary conditions applied to the simulations box,
Equation (7) can be rewritten in the discrete form as follows:

Eelas ¼
�0
2N

X
p,q

X0
k2B1

BpqðnÞ �
2
1pðr, tÞ

n o
k
�21qðr, tÞ
n o�

k
, ð10Þ

where 	0 is the fcc unit cell volume, N is the number of sites in the simulation box,
and the summation is carried over the first Brillouin zone B1. With definitions (9),
Equation (10) explicitly gives the elastic energy for a given probability distribution
function P(r, t). In this form, the elastic energy can be directly incorporated in the
Onsager equation.

3. Experimental results

The investigated alloy had a nominal composition of 19.5 at% V (Ni balance).
A h001i-oriented single crystal rod was cast by the withdrawal process at ONERA
(Office National d’Etudes et de Recherches Aérospatiales). This alloy was then
annealed at 1300�C for 3 h and quenched in iced water. Finally, ageing treatments
were performed at 800�C for 15min, 1, 3 and 10 h. Samples were cut with a drilling
machine from the single crystal and mechanically thinned down to 100 mm. The
electron transparency of the specimens was achieved with a twin-jet electropolisher,
using 2% perchloric acid in 2-butoxyethanol solution at 20�C with a voltage of 30V.
Observations were made with a JEOL 2000FX microscope operating at 200 kV.

Selected area electron diffraction (SAED) patterns were recorded along the
[001] fcc axis in samples aged 15min, 1, 3 and 10 h at 800�C. In the early stage of
precipitation and coarsening, the three variants of the DO22 phase are clearly seen
(Figure 1a). At intermediate time, only two variants remain in the alloy (Figures 1b
and c). Finally, for longer ageing treatment, only one variant of the ordered DO22

phase is present (Figure 1d).

Figure 1. SAED patterns performed along [001] fcc axis in the Ni–19.5 at% V alloy aged for
15min (a), 1 h (b), 3 h (c) and 10 h (d) at 800�C. Superlattice reflections corresponding to the
three variants x, y and z of the DO22 phase are labelled I, II and III, respectively.
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In the early stage of ageing (15min) at 800�C, DO22 ordered precipitates
are smaller than 10 nm, which makes them very difficult to image. Figure 2a shows
a dark-field image of the microstructure after 3 h of ageing at 800�C. This image
was obtained from superlattice reflections of the two variants of the DO22 phase
([100] and [010]) and, thus, highlights all DO22 precipitates. These precipitates are
parallelogram-shaped and this image shows a typical ‘chessboard’ microstructure
with a wide range of precipitate sizes. It is interesting to note that the microstructure
is periodically aligned along h201iDO22

//h110iA1. Moreover, if only one superlattice
reflection is selected to image only one variant, laths of precipitates are seen
(Figure 2b), indicating that DO22 variants are not randomly distributed. Precipitates
of one of the variants are clearly aligned along h110i directions and depletion bands
aligned along the same direction are observed.

After 10 h of ageing at 800�C (Figure 2c), the ‘chessboard’ microstructure has
vanished. Only one variant of the DO22 phase remains, and precipitates are
quadrangular-prism shaped. Moreover, at this step of the coarsening process, the
orientation of precipitates is slightly tilted so that the angle between the invariant
plane and h110iA1 is 8

�(	2�).

4. Simulations

4.1. Selective growth of DO22 variants in Ni–V alloys

The kinetic Equation (1) was numerically solved in reciprocal space using the
explicit forward Euler technique. Two-dimensional simulation was performed with a
768� 768 sites box, corresponding to 135� 135 nm. Periodic boundary conditions
were applied. Nominal vanadium composition was fixed at 20 at%. The system was
started from a homogeneous disordered state with 1500 randomly distributed small
DO22 precipitates (x- and y-variants each with four translation variants). According
to the experimental results presented in [17], we have used the following set of elastic
parameters: T¼ 1000�C, �¼ 367meV/Å3, 	¼ 1/3, �11¼�0.0053 and �33¼ 0.0106.

Figure 2. (a) Dark-field image showing the two DO22 variants in the alloy aged for 3 h
at 800�C. (b) Dark-field image showing only one DO22 variant (x) in the same alloy.
(c) Dark-field image showing the only variant remaining after 10 h of ageing at 800�C.
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The exchange energies were fitted to the experimental phase diagram [18]. The free
energies of the DO22 ordered phase as a function of composition at a given
temperature are obtained by minimisation of chemical free energy (5) with respect
to the order parameters. Finally, the equilibrium compositions of ordered and
disordered phases were determined numerically by the common tangent construc-
tion. A reasonably good fit was obtained using the following chemical interaction
parameters with a third-neighbour interaction model: !1¼ 93.33meV; !2¼

�27.92meV; !3¼�25.10meV. The free energy curves for the ordered and
disordered phases as a function of composition at T¼ 800�C are shown in
Figure 3. The simulated Ni–20 at% V alloy are situated in the region of the phase
diagram where the free energy of the tetragonal phase is lower than that of the cubic
disordered phase at the same composition. As was noted in [6], in this region the
transformation can start as a congruent (diffusionless) crystal lattice rearrangement.
However, from our previous 3D atom probe analyses [19] the composition
heterogeneities were observed at the very early stages of precipitation. Therefore,
we will consider only the diffusion path for the cubic to tetragonal transformation
in the Ni–V systems.

We assumed that diffusion jumps take place only between nearest-neighbour
lattice sites, so that L( r� r0 ) is equal to L1 if sites r and r0 are first-neighbour and
0 for further neighbour order. To initiate the simulation, precipitates were artificially
introduced in the simulated box. This implies that information on the early stages
of nucleation, like the incubation time, is not available from such simulations.
The simulation time is measured in reduced time (t*¼L1t), where L1 can be related
to the diffusion coefficient. Our emphasis is on the influence of elastic interactions
on the coarsening kinetics, and in particular on the relative stability of orientation
variants of Ni3V precipitates.

The microstructural evolution in a Ni�20 at% V alloy is presented in
Figure 4. The x- and y-variants are represented in white and grey, respectively.

10 15 20 25 30

V (%at.)

0

0.5

1

1.5

F 
(m

eV
)

Figure 3. Free energy of disordered fcc phase (in grey) and ordered DO22 phase (in black)
versus composition for Ni–V system for T¼ 800�C.
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Disordered fcc matrix is in black. The initial stage microstructure (Figure 4a: t*¼ 4)
consists of rectangular ordered domains with characteristic alignment along the

h110i directions. Both orientational variants are present but bands of monovariants
aligned along the h110i direction start to be formed. At t*¼ 30 (Figure 4b), the

microstructure is composed of alternating monovariant bands aligned along the
h110i direction. At this stage, we also observe the independent coarsening of ordered
domains in each monovariant bands. We would like to remark that some of these

domains are separated by antiphase boundaries. At t*¼ 120 (Figure 4c), local
coarsening is finished and DO22 precipitates form chessboard-like structures. The

next stage of kinetics involves a non-local coarsening phenomenon. At this stage, the
entire rows of y-variant precipitates disappear, and the structure becomes mono-
variant (Figure 4d).

Figure 4. Morphological evolution of DO22 precipitates from 2D simulations in a Ni–20 at%
V at different reduced time: (a) t*¼ 4, (b) t*¼ 30, (c) t*¼ 120, and (d) t*¼ 750. The x- and
y-variants are represented in white and grey, respectively. Disordered fcc matrix is in black.
Computational domain size is 135� 135 nm. Periodic boundary conditions have been applied
to construct these images.

Philosophical Magazine 345

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 2
2:

07
 2

3 
D

ec
em

be
r 

20
11

 



The evolution of volume fraction of each variant is represented in Figure 5. This

figure demonstrates that y-variant starts to disappear from t*4200, when the local

coarsening in each variant road is finished.
These simulation results reproduce quite well the experimentally observed

microstructure evolution in Ni�V alloy ageing from 1 to 10 h at 800�C (see Figure 2).

4.2. Influence of misfit ratio on chessboard-like microstructure

Figure 6 gives a comparison of simulated and experimental chessboard-like

structures. Microstructures including the size of precipitates (
50 nm) from the

experiments and simulations are similar. However, there is a disagreement in

elastically soft directions. In contrast to simulation (Figure 6a), TEM image

(Figure 6b) reveals a slight misorientation of facets of precipitates. The angle of

facets with respect to h110iA1 is 8
�(	2�). As has been shown by Le Bouar et al. [8],

there is a relation between this angle and the misfit ratio d:

sin2 
x ¼ 1þ �ð Þ
�d

1� d
, ð11Þ

where 
x is the soft direction angles of x-variant with respect to the [100] axis and

	 the Poisson coefficient. The Poisson coefficient was taken equal to 1/3.
Figure 7 shows the dependence of x-variant soft direction with respect to the

misfit ratio d (Equation (11)). On this figure we indicated (grey square) the misfit

measured by Suzuki et al. [13]. This misfit corresponds to 
x� 42�. In our TEM

images, we find 
x� 37� (black square in Figure 7). The observed discrepancy

between two measurements can be explained in two ways. Firstly, there is normal

0 200 400 600 800
Reduced time  t*

0

0.2

0.4

0.6

0.8

Φ

DO22x
DO22y

Figure 5. Evolution of volume fraction of x- (in black) and y- (in grey) orientation variants
of DO22 structure.
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experimental incertitude in measurements of misfit and secondly, as was observed
in [13], the angles 
x can vary during coarsening.

To better reproduce elastically soft direction in our simulations, a small
correction of misfit was applied: we chose d¼ �11/�33¼�0.35, and �11��33 was

Figure 6. Comparison of precipitate morphologies obtained by simulations (a) and
experiments (b). (a) Simulation at t*¼ 150. (b) Dark-field image showing the two DO22

variants in Ni�19.5 at% V aged for 3 h at 800�C. The x- and y-variants are represented in
white and grey, respectively. Disordered fcc matrix is in black.

Figure 7. Evolution of elastically soft direction 
x for x-variant with respect to the misfit ratio
d given by Equation (11). Poisson coefficient is fixed at 1/3. The grey square corresponds to
the measured misfits by [13]. The black square corresponds to the measured soft direction
(
x¼ 37�) from our TEM images.
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arbitrarily set to a constant. New misfits used in simulation were �11¼�0.0041
and �33¼ 0.0118 (instead of �11¼�0.0053 and �33¼ 0.0106 previously). Figure 8
shows the new microstructure simulated with d¼�0.35. Orientations of facets of
precipitates are now quite well reproduced and correspond to the chessboard-like
microstructure observed experimentally (see Figure 6b).

Microstructure evolution at early stages was found to be quite similar for
both values of d. After forming monovariant bands, the precipitates coarsen
independently in each band and create the chessboard-like structure. Once
formed, the two-variant chessboard-like structure is again unstable. However, the
disappearance of the last variant is much slower than the previous simulation.
Our simulation has never reached the entire disappearance owing to the longer time
needed. By comparing the disappearance rates of the two simulations at the same
variant volume fraction �x¼ 0.39 (see Figure 4d), we observed that chessboard-like
structure in the second simulation evolves slower than first simulation.

By comparing both simulations (d¼�0.5 with �11¼�0.0053 and �33¼ 0.0106
and d¼�0.35 with �11¼�0.0041 and �33¼ 0.0118), we conclude that the final
microstructure strongly depends on the misfit ration d. The decrease in misfit ratio
significantly reduces the rate of disappearance of one of the DO22 variants. This
strong dependence of the stability of the two-variant chessboard-like structure on

Figure 8. Simulated microstructure at t*¼ 750. In this simulation, the misfit parameters are
�11¼�0.0041 and �33¼ 0.0118 and d¼ �11/�33¼�0.35. The x- and y-variant are represented in
white and grey, respectively. Disordered fcc matrix is in black. The image represents 1.5� the
length of the simulation box. To obtain this image, the periodic boundary conditions have
been applied.
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misfit has been showed experimentally and by phase-field modelling [20]. Suzuki and
co-workers [13,14] have studied the alloying effect on the stability of multivariant
structures in Ni3V at elevated temperatures. They examined microstructures in
several alloys (Ni–V or Ni–V–M, where M is an alloying element such as iron,
niobium and cobalt). It was shown that the stability of the chessboard-like structure
increases with the decrease in the magnitude of misfit �11. The same tendency was
found in our simulations. The chessboard-like structure is more stable for �11 equal
to 0.0041 than 0.0053.

To better understand the influence of the misfit on final microstructure, we
simulated the kinetic evolution in the Ni–V system with the value of misfit obtained
for Ni–V–Nb and Ni–V–Co systems [13]. In these ternary alloys, the Nb and Co
atoms occupy the same site in the crystal lattice as V and participate in the formation
of DO22 structure. It was shown in [13] that Nb atoms drastically decrease the
misfit between DO22 phase and the fcc matrix. The misfit ratio d in this case is
approximately 0.

Figure 9 shows the microstructure at t*¼ 150. This simulation reveals that for
d¼ 0, the volume fraction of each orientation variant remains constant and x- and
y-variants coexist during all simulation time. The topology of microstructure is
chessboard-like, but the ordered precipitates are aligned along the h100i and h010i
directions. This microstructure reproduces quite well the dark-field images for Ni–15
at%V–5 at%Nb obtained in [13].

Figure 9. Simulated microstructure at t*¼ 150. In this simulation, the misfit ratio d¼ 0. The
x- and y-variant are represented in white and grey, respectively. Disordered fcc matrix is in
black. The image represents 1.5� the length of the simulation box. To obtain this image, the
periodic boundary conditions have been applied.

Philosophical Magazine 349

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 2
2:

07
 2

3 
D

ec
em

be
r 

20
11

 



4.3. Elastic terms

The elastic energy of the two-variant system can be written as a sum of three terms:

Eelas ¼ EXX þ EYY þ EXY ð12Þ

where

EXX ¼
1

2

Z 0 d3 ~k
ð2�Þ3

Bxxð~nÞ �xð ~kÞ
��� ���2

EYY ¼
1

2

Z 0 d3 ~k
ð2�Þ3

Byyð~nÞ �yð ~kÞ
��� ���2

EXY ¼
1

2

Z 0 d3 ~k
ð2�Þ3

Bxyð~nÞ �xð ~kÞ�
�
yð
~kÞ þ �yð ~kÞ�

�
xð
~kÞ

h i
:

8>>>>>>>>>><
>>>>>>>>>>:

The first and second terms EXX (EYY) in elastic energy take into account
the elastic interactions between the same variant domains. The third term EXY

reproduces elastic interaction energy between the two different variants. The misfits
used in the simulation are �11¼�0.0041 and �33¼ 0.0118.

To understand the influence of each elastic term on the microstructural evolution
and on the shape of precipitates, two simulations have been realised. The first
simulation takes into account the EXXþEYY terms only, EXY being put to zero.

As shown in Figure 10, if only elastic interactions between the same variants
are taken into account, the chessboard-like structure is not observed, and one of
the variants is observed to vanish rapidly (less than 10 unities of reduced time). This
monovariant structure is similar to the maze structure observed in TEM images
(Figure 2c). Figure 11 shows the evolution of EXX, EYY and EXXþEYY during the
simulation. The minimisation of elastic energy due to the variant disappearance is
clearly visible. The total elastic energy (EXXþEYY) decreases by half after one of the
variants disappears. It clearly shows that EXX and EYY elastic terms are responsible
for the formation of monovariant microstructure.

In the second simulation, only EXY terms were taken into account
(EXX¼EYY¼ 0). Figure 12 shows the microstructural evolution of two-variant
structures at different reduced times. Figures 13a and b represent the evolution of
the volume fractions of each variant and variation with reduced time of EXY,
respectively. In this case, the chessboard-like structure is clearly generated.

Figure 10. Microstructure evolution with EXY¼ 0 (�11¼�0.0041 and �33¼ 0.0118) at different
reduced time (a) t*¼ 2.5, (b) t*¼ 5, (c) t*¼ 10 and (d) t*¼ 20.
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Figure 11. Evolution of the elastic energy EXX, EYY and EXY as a function of reduced time in
Ni–20 at% V aged at 800�C (�11¼�0.0041 and �33¼ 0.0118).

Figure 13. Simulation with EXX¼EYY¼ 0 (�11¼�0.0041 and �33¼ 0.0118). (a) Variation in
volume fractions with time; (b) time evolution of the EXY elastic term.

Figure 12. Microstructure with EXX¼EYY¼ 0 (�11¼�0.0041 and �33¼ 0.0118). (a), (b) and
(c) Correspond to t*¼ 2.5, 10 and 20, respectively.
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Each precipitate of one of the variants tends to be surrounded by four precipitates of
the other variant along h100i directions. The shape of precipitates is nearly spherical.

This indicates that the EXY elastic term is responsible only for alignments of

precipitates. As we can see in Figure 13a, the volume fractions of each variant are
equal and stay constant and there is no competitive growth between two variants. As

we can see on Figure 13b, the EXY elastic contribution is negative due to the opposite

sign between �11 and �33 values. So, if one variant disappears, then the EXY term
tends to zero. We can conclude that the EXY term makes the two-variant structures

stable.
These two simulations in this section demonstrate that the EXY term is mainly

responsible for the creation and the stability of the two variant chessboard-like
structure, while the EXXþEYY elastic terms induce the instability of the two

variant structure and push the system to form a monovariant microstructure.

The real microstructure is formed by minimisation of total elastic energy which is
a result of a competition between EXX (EYY) and EXY terms as well as chemical free

energy.
To better understand the influence of EXX and EYY terms on the shape of

precipitates, we calculated the value of Bxx as function of angle �, which defines
the angle between the unit vector ~n normal to matrix/precipitate interface and

h100i direction of cubic lattice. Figure 14a represents the typical shape of the

x-variant precipitate of the chessboard-like structure. In this figure, we indicated the
vectors normal to the habit planes. Figure 14b shows that the function Bxx reaches

minima at �¼ 35�and in the perpendicular direction. This is a reason why a

precipitate will try to have a maximum interface in this direction. The directions
h100i and h010i correspond to the maximum value of Bxx. Therefore, the interfaces

along these directions are energetically unfavourable. In this case, the minimisation

of elastic energy leads to decreasing of the surface of these interfaces and forms the
corners. This configuration will increase the total interface of ordered particles and,

Figure 14. (a) Shape of x-variant precipitate. The arrows 1, 2 and 3, 4 indicate the directions
where Bxx has minima and maxima, respectively. (b) Function Bxx versus angle �.
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consequently, the chemical interface energy. The minimisation of chemical interface
energy will try to smooth the corners of the precipitate. The competition between
these two phenomena will give the equilibrium shape of the precipitate.

The function Bxx in Figure 14b was evaluated with input parameters of the Ni–V
system and with the misfit ration d¼�0.35. It should be noted that the height of two
maxima is different for two perpendicular directions. To check the influence of the
values of these maxima on the shape of corners of precipitates, we performed the
simulation where from t*¼ 400 the shape of Bxx curve was artificially modified as
shown in Figure 15.

Figure 16a presents the microstructure at t*¼ 400. Note that two adjacent
corners of ordered particles have different curvature. Figure 16b shows the micro-
structure at t*¼ 500, after 100 steps of simulation with modified function Bxx. We
can note that the curvature of all four corners of precipitates is the same.

These results show that we can predict the behaviour of the function B(~n) from
TEM observations. TEM images can give not only the information about elastically
soft directions but also the values of maxima of the B(~n).

5. Summary and conclusions

TEM investigations of the early stages of ageing indicate that the spacing between
precipitates is relatively large so that the multivariant structure is observed. Our
simulations reveal that, at this stage, a two variant structure is formed and these two
DO22 variants align along the h110i directions. During the later stages of coarsening,
experimental data and simulations show that the major variant grows at the expense
of the minor variant and a monovariant structure is eventually observed. The habit

Figure 15. Function Bxx versus angle �. Initial (in black) and modified (in grey).
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plane makes an angle of 37� with respect to the [100]DO22
(a-axis). It has been shown

that the misfit ratio d¼ �11/�33 has a significant effect on the stability of two-variant
chessboard-like microstructures. Simulations results reproduce quite well TEM
observed microstructures.
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