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Three-dimensional (3-D) computer simulations of ferro-
electric domain formation and evolution were performed,
using a computer simulation model based on the time-
dependent Ginsburg—Landau equations. A cubic-to-tetrag-
onal ferroelectric phase transition is considered. It is shown
that the initial stage of the transition during the annealing
of a quenched cubic paraelectric phase involves the nucle-
ation and growth of the ferroelectric domains, followed by
the domain coarsening leading to the formation of 90° and
180° domain structures. Part of the 3-D results reported
here confirm our conclusions made earlier for the two-
dimensional (2-D) case, namely, the nonlocal elastic inter-
actions are critical to the formation of twin structure and
the dipole—dipole interactions are responsible for the head-
to-tail arrangements of dipoles at twin boundaries. In con-
trast to our previous work, and others; the effect of the
depolarization energy was explicitly incorporated into the
simulation model. It is found that when there are no surface
charges to compensate the Lorentz field due to the polar-
ization charges, and if the system is mechanically clamped,
both 90° and 180° domains are thermodynamically stable.

I. Introduction

commoN feature of ferroelectric ceramits is the forma-
tion of domain structures when a paraelectric phase is
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roelectric phase is rhombohedral. In the absence of any exter-
nal field, all of them have the same probability to form in the

parent cubic paraelectric phase below the ferroelectric transi-
tion temperature. The corresponding microstructure of the fer-
roelectric phase will contain all possible domains separated by
the so-called domain walls. Consequently, in the tetragonal
phase it is possible that the polarization vectors in adjacent
domains are perpendicular (as in the case of 90° domains) or
antiparallel (180° domains) to each other across a domain wall.
Depending on the relative orientation of the polarization vec-

tors in the adjacent domains 90° domain walls can be further
classified into head-to-tail and head-to-head (tail-to-tail) walls.

Experimentally, both 90° domains and 180° domains are
found to coexist in many ferroelectric materiats.In the case
of 90° domains, it is found that head-to-tail arrangements are
predominant.

Recently there have been a number of two-dimensional
(2-D) computer simulatiorfs® of domain structure evolution
during ferroelectric transitions using the time-dependent Gins-
burg-Landau equation (TDGL) field model. This model does
not makea priori assumptions on the domain morphologies
and their evolution path. The nonlocal elastic interactions, the
electric dipole—dipole interactions, and the local interactions at
domain walls are taken into account simultaneously. Prelimi-
nary studies of the dynamics of 180° and 90° domain wall
formation were reported in Refs. 7 and 6, respectively. The

cooled through the ferroelectric transition temperature. The main focus of Ref. 6 was to investigate the effect of nonlocal
crystallographic and thermodynamic aspects of domain struc- electric dipole—dipole interactions on the domain structures. A
tures are reasonably understood. However, essentially all thesimilar computer simulation study was done by Nambu and
experimentally observed domain structures are nonequilibrium. Sagalé® However, they did not take into account the long-
They are frozen domain structures formed along the ferroelec-range electric dipole—dipole interaction, which in fact was
tric transformation and subsequent evolution path towards shown in Ref. 6 to be essential in predicting the formation of
equilibrium. The formation and evolution of domain structures head-to-tail arrangement at 90° domain walls.

are much more complex and are difficult to predict analyti-  These previous studies have produced promising results to-
cally. On the other hand, a fundamental understanding of the wards a better understanding of the formation and evolution of
domain dynamics is critical for controlling the properties such ferroelectric domain structures. However, all of these simula-
as permittivity and piezoelectricityFor example, it is critical tions were performed in 2-D. Undoubtedly a more realistic
to understand the evolution of domain structures under externalthree-dimensional (3-D) simulation is desirable. In 3-D, even
fields in order to control them in poled ferroelectric ceramics the point groups are different from those in the 2-D case. Also
for use as piezoelectric transducers. in 3-D there is one more dimension and hence one more degree

In a cubic—tetragonal transformation, there are three possibleof freedom to relax the total free energy of a system. As a
orientation variants with the tetragonal axes along [100], [010], result, although 2-D computer simulation is valuable, we can-
or [001] directions, or six if we count those along opposite not make assertions confidently based on 2-D simulation alone.
directions as separate variants. The number of orientation vari- Furthermore, none of the previous simulations have incorpo-
ants increases to eight if the crystalline symmetry of the fer- rated the effect of depolarization energy on the domain struc-
ture.

In this paper, we will report our results of 3-D simulations.
We will consider a cubic-to-tetragonal ferroelectric phase tran-
sition. Some of the results confirm our conclusions made ear-
lier for the 2-D casé,namely, the nonlocal elastic interactions
are critical to the formation of twin structure, and the dipole—
dipole interactions are responsible for the head-to-tail arrange-
ments of dipoles at twin boundaries. The effect of the depo-
larization energy is considered. It is found that when there are
no surface charges to compensate the Lorentz field due to the
polarization charges, and if a system is mechanically clamped,
both 90° and 180° domains are stable.
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This paper is organized as follows: In Section Il, for self- the local elastic strain generated during the phase transition has
content, the formulatidhfor thermodynamics of domain struc-  a linear-quadratic coupling with the local polarization field.
tures is reviewed; Section IlI discusses the elastic strain energyThis coupling results in the so-called electrostrictive engrgy
calculation; in Section IV, the so-called time—dependent Gins-
burg-Landau equation is introduced; a discussion about thefedPim;) = ~Ga(MP5 + my,PY + 1,.P7)
semiimplicit method used in this simulation is presented in 2 2, p2 2, p2
Sectionpv; the results of computer simulation arg analyzed in = QudMolPy + P2) + (P P2 + P+ PY)]
Section VI; finally, the conclusion is contained in Section VII. = 2044(Myy PxPy + 1 Py P, + 1y P P,) 3)

WhereqI are the electrostrictive constants angd = ¥2(u;; +
Il.  Thermodynamic Description of a Domain Structure ;) is the linear elastic strainy; is elastic disp acement The

. . . correspondlng elastic energy density reads
Landau theory has played an important role in understanding

the thermodynamics of ferroelectric phase transitions. The 1 s o

free-energy density is represented by a polynomial of order fera(m;j) —Ecn(”ﬂxx”lny’ Nz2 + Cra(Momyy + NyyMzz
parameters. For modeling the formation and the evolution of 2 2 2

ferroelectric domains, a natural choice of order parameter is the Mz + 2004y F My + M0 “)
spontaneous polarization. For an inhomogeneous system, '[he/vherecl s are the second-order elastic constants.
spontaneous polarization is spatially dependent and conse- And finally, for an inhomogeneous system, we have to con-

quently is a vector field. In the particular example of cubic— sider the long-range electric dipole—dipole interactions. In SI
tetragonal transition, a domain structure is described by a three-ynits, it takes the familiar form

component polarization vector field = (P, P,, P,). For an

inhomogeneous system, the local free- energy density also be- 3 3
comes a function of position through the dependence on the FaiplPi} = f f d*ryd’r
polarization vector. Since we are interested in first-order cubic-
to-tetragonal proper ferroelectric transitions, following Ref. 9, P(ri) P(ry)  3[P(ri)-(r; —r)JIP(ry)-(ri —r))]
we employ a six-order polynomial for the Landau free energy. Ir; = rj|3 Ir, - rj|5
fL(P) = ay(P? + P2+ P2) + ay (P + Pf + PY) ®)
+ OL12(P2P2 PZP2 P2P2) + 0L111(P6 + p6 +P%) We will see that it is this interaction which is responsible to the

head-to-tail arrangement of dipoles at the twin boundaries.
+ o PP+ PZ) +PY(PI+PI) +P (PZ +P))] We can also write Eq. (5) as
+ a123PXP)2,P§ (1)

1
wherei,j = 1, 2, 3 stand fox, y, z,respectively, and the’s FaiptPi} :EderiEl(ri)-P(ri) (6)
will be chosen to give the desired value of the spontaneous
polarizationP,,. It can be easily shown that; = 1/2¢,x, where where
& IS the vacuum permittivityy is the susceptibility of the
material. Negativen; values correspond to unstable parent _ 1 J‘ 3 P(ry)  3[(r; —r][P(ry)-(ri = 1))]
paraelectric phases. Positiug values correspond to stable or Ea(ri) = o i -r P Ir, -1
metastable parent phases, depending on the relative relation b b 7)
amonga,, ay;, anday,;. Namely, whena11 > 30,0414, the
parent phase is metastable, otherwise it is stable. In this paperjs the electric field caused by the dipole moments of all other
as in Ref. 6, negative, , is employed to describe a first-order dipoles in the specimen. Contributing to this field are the sur-
transition. Since the ferroelectric state is of tetragonal structure, face charges on the boundary. The electric field caused by

the vector field takes one of the six states= P,(1, 0, 0), surface charges is called the depolarization field.
P.(-1, 0, 0),P,(0, 1, 0),P,(0, -1, 0),P,(0, 0, 1),P,(0, 0,-1). Let's write
At the ferroelectric domain boundaries, it is assumed that the _
polarization fields vary continuously across boundaries. In the P(r) =P +3P(r) (8)

Ginzburg-Landau free-energy model, the domain wall energy
is introduced through gradients of the polarization field. For a
cubic systert

whereP is the spatially independent average polarization and
3P is the spatially dependent heterogeneous part of the polar-
ization field. The average fielg is defined in such a way that

1 [ 8P(r)d® = 0. Substituting Eq. (11) into Eqg. (5), we have
fG(Pl ]) Gll(P2 + P2 + Pzz)

+ GyoPyxPyy*+ Py Pyt P, Py FaiptPi} = Faip{Pi} + FGip{Pi.0P} + F i {SP;} 9)
1 where
+5Gad (Pyy+ Py )2 + (P, + P, )2 + (P, .+ Py )] L
3G (Pry = Py + (P = P+ (P Py ] FulPi =gy J S
) { PP 3P(ri = I[P, —rj)]} (10)
whereP, ; = 9P, /ax. For a generic choice @, Gy, Gaa, and Iy =i =

G, the domam waII energy is not isotropic.

Cubic—tetragonal displacive phase transitions are structural
transformations involving a change of crystal structures and
lattice parameters. If we assume that the boundaries betweeer,p{P,,BP} ——ffd3r d?
the parent paraelectric phase and the product ferroelectric
phase as well as the boundaries between the different orienta- {p.ap(rj) 3P(r, - rIBP(r)-(r; = r,-)]}

is the part of the contribution from the average polarization

tion domains of the ferroelectric phase are coherent, elastic 3 -
strain energy will be generated during the phase transition in Iri =1yl Iri =1yl
order to accommodate the structural changes. We assume that (11)
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is the cross term, and

FapfdP} =g— f f d°r,d°r,

{Bp(ri)'SP(fj) _ 3[3P(ry)-(r;

3
Iri =l

(12)

_rj)]}

is the contribution of the spatially dependent part of the polar-
ization field.

We can rewrite Egs. (10)—(12) in Fourier space. For
Fdip{spi}:s

—rI8P(r;)-(r;

Ir; _rj|5

1 pd%k )
J g Pt
(13)

d3k |3P(k)-k[?
Fapfd P}_Zs f @m® K

280)(

where

dP(k) = f d3r3P(r)e "

is the Fourier transform of the spatially dependent part of the
polarization fielddP(r), andn = (n,, n,, ng), n; = k/k|(i =

1, 2, 3) is the unit vector in the reciprocal space. It should be
noted that

(14)

[0, k=0
8P(")‘{P(k), k0

In Fourier space, the contribution from the average polar-
ization and the cross term can be written as follows:

(15)

FuntP) :z—ioﬁ,ﬁj [ drakeoenn, (16)
Fg.'p{ﬁ.,sp}:iﬁ. f d’k 17)
PR e W (2m)3
where
1, k=0
o) = {o, k#0 (18)
It is easy to see that
FapPidP}=0 (19)

For the contribution from average polarlzantb'la,p{P} Eq. (16)

is not well defined ak = 0. However, according to Ref. 11,
the depolarization field caused by a uniform polarization is
given by

1_
Edep: - 8_ P (20)
(0]
the corresponding depolarization energy is
1 3
FaedP) =5 | 0TE guP
1
-~ B 3p
= 20 P,fd rb;
1 PP f d? 21
T2ep 1 r (21)
since[d3P, = VP, = P,[d3, whereV is the volume of the
specimen.
Therefore, we have
FaiptPi} = FaiptOPi} + FaegPi} (22)

It will be shown that wherF,.{ P;} is taken into account,

180° degree domains are favored. As a result, both 180° and
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In summary, the total free energy of a system with a domain
structure is the sum of the Landau bulk free eneFgy the
gradient energy-g, the electrostrictive energy,. the elastic
energyF,,, the energy due to the long-range electric dipole—
dipole interactionF y,{ P}—which can be written as the spa-
tially dependent paer,p{PS} and the depolarization energy

Fdep

F{PiHAPi A = FU{Pi} + Fo{Pi j} + Fed{Pi}{ni})
+ Feidmij} + FaiptPi)
= fd?’l‘[ fL(P) +1g(Pi)) + feépi,nij)
+feidmij)] + FaiptdPi} + Faep (23)

It should be pointed out that although the elastic strain en-
ergy appears in the total free energy (Eq. (23)) as a volume
integral of an elastic strain energy density function, minimiza-
tion of the total free energy with respect to elastic strain im-
mediately results in nonlocal elastic interactions between the
volume elements of a domain structure described by a non-
equilibrium polarization field.

Ill. Elastic Strain Energy of a Domain Structure

In the model given in the previous section, both the polar-
ization field and the linear elastic strain field appear as order
parameters. However, one may assume that the mechanical
relaxation of an elastic field is much faster than the electric
relaxation of a polarization field. Consequently, during the pro-
cess of ferroelectric transition, the system in question reaches
its mechanical equilibrium instantaneously at every stage. This
assumption enables us to eliminate the elastic strain field using
the static condition of mechanical equilibrium. Therefore, the
elastic strain energy of a domain structure becomes a function
of the polarization field.

For a stress-free homogeneous system, minimization of the
total free energy with respect to the elastic strain results in a
simple renormalization of the constantg, and «,, of the
fourth-order terms in the Landau free energy. This renormal-
ization usually produces a stronger first-order phase transition.

For an inhomogeneous system, the elastic strain field can be
written as a sum of a spatially independent homogeneous
strain,m; ;, and a spatially dependent heterogeneous strain field
m . The homogeneous strain determines the macroscopic
shape deformation of the crystal as a whole produced by in-
ternal stress due to the presence of domain structures. The
heterogeneous strain is defined in such a way that

f?m”-d3r =0

If there is no external stress applied and the crystal is un-
constrained with respect to the macroscopic deformation, the
equilibrium deformation due to the formation of a given do-
main structure is obtained by minimizing the total energy of the
system with respect to the homogeneous strain.

(24)

Mo = QuiP% + Qoo P} + P2)
vy = Q11P_32/ + Q12(P_>2< + 2)
Mr= QuiP2 + QuiPf +)
Nyz = (daa’ (2C44)) PP,
x2 = [0aa/(2C,0)IPP,

Ny = [Aas’ (2044)]ﬁ

(25)

90° domains remain stable in a clamped system without free WhereP2 andP.P; P, represent the volume averages over a system

charge carriers.

containing domam structures, and
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_ }( Oh1t 2012 Gaa— q12> IV. Domain Evolution Equation

= +
Qu=3 Ci1t2C, Cp;—Cypp The three components of the polarization vector represent
three nonconserved order parameter fields since the volume
1/ 012t 20;;  Gia—Oho fraction of each orientation domain is not constant during the
evolution of a domain structure. The temporal relaxation of

Qi2= 3 (Cll +2C;, Cyp- C12) . ! h '
. . nonconserved fields is described by the TDGL equatiéns.
The elastic energy and electrostrictive energy due to the

homogeneous deformation can be obtained by substituting the d _ oF

equilibrium homogeneous strain (Eq. (25)) back to the elastic ot P(rn=-L 3P.(r, 1) &Y (34)
strain energy expressidg, and the electrostrictive energy ex- ] n ] o
pressionf,, They depend on the volume fractions of each WhereF’ is the total free-energy functional after eliminating
orientation domain. On the other hand, if the boundary is the elastic field, and;(r, t) is the Gaussian random fluctuation
clamped instead of stress-free, the homogeneous deformatiorpatisfying

(26)

’

is prohibited and the corresponding homogeneous strain is (&1 1) =0
zero. i
The equilibrium heterogeneous strain fiélg, ; satisfies the ) rr N = CS(r = VSt t
mechanical equilibrium condition given by the Euler equation (&, 0§ (11)) = kg TLE;B(r = r)3(t ~ ) (35)
with respect to the elastic displacement wherekg is the Boltzman constant, is temperaturej; is the
o Kronecker symbol, an@(r — r’) is the delta function. The
07, =0,(,j=1,2,3 (27) bracket[J.[0denotes an average over fluctuations of all the
where & 0.
The temporal evolution of the polarization vector fields, and
SF thus the domain structures, is obtained by numerically solving
T =5 (28) the TDGL equations. Since the elastic strain energy and the
Mij electrostrictive energy due to the heterogeneous strain field

is the Cauchy stress tenseris the total free-energy functional.  Nave a single analytical expression as a function of the polar-
For the case of homogeneous modulus approximation, theization fleld in Fourier space, the. computer simulation is most
equilibrium Eg. (27) can be readily solved in Fourier space. conveniently performed directly in the reciprocal space. Fur-
Details of the derivation can be found in Ref. 5. The sum of thermore, in Fourier-transforming the TDGL equation, one
elastic strain energy and the electrostrictive energy due to theMust transformbF/3P; instead off to reciprocal space.
heterogeneous strain relaxation is given by
V. Semi-Implicit Fourier-Spectral Method

1 pd%
Fhet= ——f—3 [l () €2y (M (KN, (29) In the present work, the TDGL equations are numerically
2J (2m) solved in the Fourier space, in which both the elastic and elec-
tric dipole—dipole interactions have analytical forms. We use
the semi-implicit Fourier-spectral methégiwhich enables us
to increase the time step considerably.
We can rewrite Eq. (34) as

wherel; (k) are Fourier transforms df; (r), which in turn are
given by

Iy= Q11P>2< + CI12(P)2/ + Pg)

2 2 4 p2 LAY S L . E 36
1—‘22 = qllpy + qu(Px + Pz) ot i(r' ) - 8Pi(r, t) SPi(r, t) gi(rv ) ( )
[35=014P2 + q1(P2 + P?) whereFg = [d3 fg(P; ;) is the gradient energy term, afd =
Y F’' — Fsis the free energy including elastic energy and exclud-
I'y,=T5 = 20,,PP ing the gradient energy part.
Y In Fourier space, the TDGL equations read
Ip3=T3,=20,,P,P, 9 - -
—Pi(k,t) = -L{f(P)}, — G;Pi(k,t) + &(r, 1) 37)
I3 =T13=20,,P\P, (30) at { : he
Qn is given by whereP; (k,t) and {f(P,)} are the Fourier transforms X(r, t)

andaF"/3P;(r, t), respectivelyG;'s are the gradient operators
Caa* (Cra = Caa)( + 1) + {(Cyy + Crpn{ corresponding to thigh-component of the polarization field, as

Q. (n)= defined as follows:
II( ) C44D(n) , ,
) 2) G, = Gllki +(Gyqt Ga)(Ks + k3)
(Cio+ Cug)(1 + LNy
Q) =- C..D(n) N (31) G, = G4k + (Gya + Goa)(Ki +K3)
where indexes, j, k form a cyclic sequence Gy =G K3+ (Guu+ GL) (KB + K3 (38)
{=(Cy;—Cy5—2C,,)/Cys (32) The explicit Euler Fourier-spectral method is to approximate
the above equations by the explicit Euler scheme
is the elastic anisotropy and - N . 5
Pk, t) = PP(k, t) + At[{f(PP)} = GP(k, 1)] (39)

D(n) = Cy4 + {(Cy4 + Cyo)(NENZ + n2n3 + n2n3 _ o
) Y §Cu* Craln 2 oL e In this work, we employ the semi-implicit scheme proposed
+7(Cyy +2C 5 + Cygninzng (33) in Ref. 13.

It can be easily shown that by converting the expression for the P+l —pn Zpn

elastic strain energy and the electrostrictive energy (Eq. (29)) (1+ AtG)PT(k, ) = Piitk, B + AH{(Pi e (40)
from Fourier space to the real space, the elastic interactions are Since Eq. (40) is only first-order accurate in time, it is not
nonlocal and highly anisotropic. sufficient for time-dependent solutions. In this case, higher-
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order semi-implicit schemes are needed. The second-order 0 23= 0t125P 0/ |0t
scheme is given by

- . - = + -G,/

(3 + 2AtGl)P|n+1(k, t) - 4P|n(k, t) _ P,n_l(k,t) 914 (Gll G44 G44) Gll
+ 20 2{F PP}~ {FPI ] (41) Gaa = (Gaa ¥ Cha)/ Gy

The third-order scheme is 011 = 014/ |04]

(11+ BALG,)PM™(k, t) = 18P"(K, t) - 9P (K, t)
+ 2P 2(k, 1) + BAL[3{F(PD)},

012 = O1o/ |0y

=3P +{FPI YL (42) G = Gas/ et
. First, we yse Eq. (40) to advance the first step,_computing Cy,=Cyo/(log|P2)
Pl(k,5) and {f(P})} . Then we use Eq. (41) to compuRé(k, t)
and {f(sz)}k. With these quantities, we start the iteration using Eq. ;o p2
(42) C12=Cyo/ (|4 |P5)

This semi-implicit scheme enables us to increase the time . >
step considerably without losing stability and accuracy. In the Ci4= Cao/(|a|Po) (44)
particular case at hand, we were able to increase the time SteR/vherePo = |P|. Itis clear thatx} = —1.0, sincey, is negative

by five times compared to the explicit Euler method. in order to make the initial paraelectric phase unstable. In re-
duced variables, the lattice spacing in real space is chosen to be
VI. Computer Simulation Results and Discussion Ax = 1.0, the time step iat = 0.05. The values of other
coefficients used in our simulation are given in Table I.

As mentioned before, the domain structure is represented by
the polarization field, which at each lattice site is a three-
component vector, whose magnitude and direction is repre-
sented by the length and the arrow direction of short lines.
Since a 3-D picture of a 64 64 x 64 grid involving vectors is
difficult to visualize, in this paper we will use 2-D sections of
the 3-D grid instead. Three sectional planes, namglyxz,and
yz planes are necessary to represent a 3-D grid. In this paper,
‘the sections are chosen to be at the middle of the axis perpen-
dicular to the plane. As a result, they share the same center
point. The relative locations of these sectional planes are
shown in Fig. 1(a).

To investigate the effect of the spatially dependent part of
the dipole—dipole interaction energy and the depolarization en-
ergy on domain formation, we performed simulations with dif-
ferent energy terms taken into account. The evolution of mor-
phologies are shown in Figs. 1-3. In each case, the initial
condition is a high-temperature homogeneous paraelectric
phase, created by assigning a zero value at each lattice site for
each component of the polarization field. Since the coefficient
- . b ; a, in the Landau free-energy expression is chosen to be nega-
tance and time, respectively. So a natural choice of the dimen-ye ‘the initial paraelectric phase is unstable with respect to the
sionless reduced variables is transition to the ferroelectric phase, and hence small random

N P perturbations introduced to the initial uniform paraelectric state
F=Vleal/Gur are sufficient to trigger the transition.

Figure 1 shows the temporal evolution of morphologies on
thexy-, xz-andyzplanar sections. Together they give a picture
P P/|P,| (43) of the formation of a 3-D domain structure and its subsequent

0 temporal evolution. Here both spartially dependent dipole—
WhereP, is the spontaneous polarization at a given tempera- dipole interaction and the depolarization energy are absent. As
ture. In the reduced variables, the effective coefficients are a result, in this case, the interaction that governs the domain

In the present work, we employ a 6464 x 64 lattice with
periodic boundary conditions along the three Cartesian axes.
The use of periodic boundary conditions imposes artificial pe-
riodicity of ferroelectric domains. This is particularly true
when the domain size is comparable to the computational cell
size. However, this artifact does not change the main conclu-
sions of the paper. We consider only the clamped boundary
condition in which the homogeneous strain is zero. The back-
Fourier transform at a given step produces the real-space do
main structures represented by the polarization fields.

Since, experimentally, barium titanate (BaT)@ the most
intensively studied ferroelectric material, the parameters of our
model are chosen to correspond to those of BaT&Re, for
example, Ref. 14). In particular, we choagg = 14.2x 10°
N-m2-C=2, q;, = —0.74x 10° N-m?C2, g, = 1.57 x 10°
N-m2-C2, C,, = 275%x 10° N-m2, C;, = 179% 10° N-m™2,
andC,, = 54.3x 10° N-m™2,

We employ the same set of the dimensionless variables as
used in the 2-D cas&Since «,, L, and G;; have units of
C2:m?N, sm=2-C>N7, and C2m*N, respectively, it is
clear thatVG,,/|a;| and 1/{c;|L) have the dimensions of dis-

T = oy Lt

related to the original ones as follows: formation and evolution is just the elastic interaction. It takes
, about 10,000 time steps for stable morphologies to develop.
oy = ay/|oy| Due to the absence of the dipole—dipole interaction, the fraction
) 5 of head-to-head and tail-to-tail domain walls does not decrease
a1 = oy 3Pg/ oy with time. In fact, head-to-head and tail-to-tail domain walls
5 persist even in the final morphologies.
a1, = ayoPo/ oy Figure 2 shows the evolution of the sectional morphologies
when the spatially dependent dipole—dipole interactions and
g1 = otlllF’é/IotlI elastic interactions are both taken into account. However, the
depolarization energy due to the uniform average polarization,
a12= 0q1Pg/ oy | Faed P} is not included in this simulation. This corresponds to

Table I. Values of Effective Coefficients Used in the Simulation

7 ; 7 ; 7y , ; , y y ;
Q1 Q12 Q111 Q11 Q123 G14 Yaa 011 G2 Uaa Cia Ciz Cla

-0.5 9.0 0.8 4.0 1.0 0.0 1.0 0.142 -0.0074 0.0157 2.75 1.79 0.543
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Fig. 1. Temporal evolution of sectional morphologies with elastic interaction, but without dipole—dipole interaction and depolarization energy.
Head-to-head and tail-to-tail domains walls persist even at the final stages. (a) 1000 time steps; (b) 3000 time steps (c) 6000 time steps; (d) 10,000

time steps.
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c). i xy planar section

dy.  i. xy planar section ii. xz planar section iii. yz planar section

Fig. 2. Temporal evolution of sectional morphologies with both elastic interaction and dipole—dipole interaction, but without depolarization
energy. The magnitude and the direction of polarization field are represented by the length and the arrow direction of a short line at each site. A
dot at a site means the polarization is perpendicular to the plane at that site. (a) 500 time steps; (b) 1500 time steps; (c) 3000 time steps; (d) 5000

time steps.
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d). I xy planar section

Fig. 3. Temporal evolution of sectional morphologies with elastic interactions, dipole—dipole interactions, and the depolarization energy term.
When there is no homogeneous strain, which corresponds to a clamped system, both 180° and 90° domain are stable. (a) 1000 time steps; (b) 3000
time steps; (c) 6000 time steps; (d) 10,000 time steps.
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the case when the polarization charges at the surface are totally VII.  Summary
compensated by free surface charges. ) ] _
During the initial stages of domain coarsening after the sys-  In conclusion, a comprehensive 3-D model of ferroelectric
tem is transformed to the ferroelectric state, as can be seen inrdomain formation and evolution is formulated, based on the
Fig. 2(a), all six different kinds of orientation domains allowed TDGL equations, which takes into account long-range electric
by symmetry are present. Furthermore, at the initial stage, bothdipole—dipole interaction energy, long-range elastic interaction
head-to-head and tail-to-tail arrangements of polarization fields energy, domain wall energy, depolarization energy, and short-
across the domains walls are present. As time increases, théange chemical interaction energy simultaneously. The 3-D
fraction of head-to-head and tail-to-tail domain walls de- Simulation results using this model confirm our conclusions
creases. Eventually, as shown in Fig. 2(d), only those domain made in the 2-D case; namely, the nonlocal elastic interactions
walls with the head-to-tail arrangement survive. This result is are critical to the formation of twin structure, and the dipole—
consistent with the experimental observatiérs. dipole interactions arising from the heterogeneous polarization
After about 3000 time steps (Fig. 2(c)), a strong alignment of field are responsible for the head-to-tail arrangements of di-
domain walls along the [011] direction is developed. It should Ppoles at twin boundaries.
be noted that, in our simulation the gradient energy coefficients It is also found that when there are no surface charges to
are chosen in such a way to provide the isotropic domain wall compensate the Lorentz field due to the polarization charges, in
energy. As a result, the domain wall alignment is entirely due addition to 90° domains, 180° domains are also stable features
to the anisotropic and nonlocal elastic and electric dipole— of @ domain structure. This confirms that the depolarization
dipole interactions. The three planar sections at 5000 steps arenergy is responsible for the appearance of stable 180° do-
given in Fig. 2(d). The head-to-tail 90° domain structure is Mains, since it is in favor of a vanishing average polarization
clearly shown in these figures. field.
This pattern of domain wall evolution, both in the presence
of dipole—dipole interaction and in its absence, once again con-Acknowledgment: The authors are grateful for fruitful discussions with
firms our conclusiofthat dipole—dipole interaction is respon- A. G. Khachaturyan and his suggestion for the depolarization energy.
sible for the head-to-tail arrangement of dipoles across domain
walls.
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