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a  b  s  t  r  a  c  t

A  combination  of  microelasticity,  phase-field  description  of  grain  structures,  and  first-principles  calcu-
lations  is proposed  to predict  the  effective  elastic  properties  of  polycrystals.  As an  example,  using  the
single  crystal  elastic  constants  from  first-principles  calculations  and  a polycrystalline  microstructure
from  a  phase-field  simulation  as inputs,  the  effective  elastic  moduli  of  polycrystalline  magnesium  are
obtained  as  a function  of temperature  and  compared  with  available  experimental  measurements.  The
eywords:
hase-field models
agnesium

imulation
lastic behavior

texture effect  on  the  effective  elastic  moduli  is  also  examined.  The  proposed  integrated  model  will make
it possible  to  model  not  only  the  temporal  evolution  of  microstructures  but also  the  temporal  evolution
of  properties  using  the  phase-field  method.

© 2012 Elsevier B.V. All rights reserved.
olycrystal

. Introduction

As lightweight structural materials with a good combination of
astability and mechanical properties, magnesium alloys receive
ubstantial interest for potential transportation applications such
s the automobile body materials for weight reduction and higher
uel efficiency [1,2]. Elastic properties of magnesium and its alloys
ave been extensively studied in the last several decades. For
xample, the elastic stiffness tensor of single crystal Mg  was deter-
ined through both experimental measurements [3–6] as well as

heoretical predictions [7,8]. However, most practical magnesium
lloys are polycrystalline materials, and the overall elastic stiff-
ess tensor depends on the orientation of each grain constituting
he polycrystal. The distribution of crystallographic orientations, or
exture, will significantly affect the effective elastic properties of a
olycrystalline. For magnesium alloys, typical textures include the
ecrystallization texture which forms during the solidification pro-
ess and the deformation texture which forms during the rolling of
agnesium sheets [9].
Modeling the effective elastic modulus was pioneered by Voigt

10], Reuss [11] and Hill [12], who proposed a useful scheme
y which one calculates isotropic polycrystalline elastic moduli
n terms of the anisotropic single crystal elastic constants. Dutta
t al. [13] reported the effective elastic properties of polycrystalline
u, Ni, Al and Ag, using an extended Green function approach.

∗ Corresponding author at: Scientific Forming Technologies Corporation, Colum-
us,  OH 43235, USA. Fax: +1 614 451 8325.

E-mail address: shengguang1982@gmail.com (G. Sheng).

921-5093/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.msea.2012.06.012
This approach was also applied to determine the effective elas-
tic properties of spinel, rutile, Al, AgCl and ZnO [14]. The method
reported by Kiewel et al. [15,16] solved the elastic displacement
equation in a cluster of 100–1000 grains subjected to a homoge-
neous deformation. Satisfactory agreements are achieved between
their calculations and experimental values in a wide range of cubic,
tetragonal and hexagonal materials. In composite materials like
multilayer ceramic capacitor (MLCC), finite element method is also
employed to calculate the effective modulus [17].

During the last two decades, the phase-field method [18] has
emerged as a powerful tool to model complicated microstruc-
ture evolution across many fields. Recently there have been
efforts to predict the effective properties of multiphase materials
by combining phase-field representation of microstructures and
homogenization approach. Ni and Chiang [19] adapted the phase-
field microelasticity method into the homogenization process to
estimate the effective elastic constants of 3D heterogeneous (mul-
tiphase) materials with both intermingled and dispersed phases.
Laschet and Apel [20] developed a similar multi-scale approach
based on the asymptotic homogenization method of periodic mate-
rial structures to calculate the effective cubic Young’s and shear
moduli and Poisson coefficients in a ferrite/austenite dual-phase
steel with different ferrite volume fractions.

Recently, Bhattacharyya et al. [21,22] developed an effective
phase-field approach based on the iterative-perturbation method
[23] to compute the residual stress distributions in polycrys-

talline materials with arbitrary inhomogeneous distributions of
elastic moduli. Using this method, the effective elastic properties
of the polycrystalline material can be efficiently computed from its

dx.doi.org/10.1016/j.msea.2012.06.012
http://www.sciencedirect.com/science/journal/09215093
http://www.elsevier.com/locate/msea
mailto:shengguang1982@gmail.com
dx.doi.org/10.1016/j.msea.2012.06.012
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esponse to an applied strain or stress. In this paper, we  will employ
his approach to compute the effective elastic constants of poly-
rystalline magnesium, using single crystal elastic constants and a
D polycrystalline microstructure from phase-field simulation as

nputs. The derived effective elastic moduli from the calculated
lastic constants will be compared with available experimental
easurements. We  will also investigate the effective elastic prop-

rties as a function of texture, by specifying the orientations of
ertain amount of grains from 0% (fully random distribution) to
00% (fully textured). Typical fiber and basal textures in hexagonal
aterials, especially in polycrystalline magnesium will be selected

s examples.

. Model

In the phase-field model of grain growth [24–27],  a polycrys-
alline microstructure is described using a set of Q continuous,
on-conserved order parameter fields �i(r, t) (i = 1· · ·Q). The order
arameter fields represent grains of a given crystallographic orien-
ation. A monitor function �(r, t) =

∑
i�

2
i
(r, t) is used to distinguish

etween the grain interior and the grain boundaries [24,25]. Since
he grains are rotated with respect to a fixed coordinate system,
he elastic stiffness tensor for each grain is obtained by transform-
ng the tensor with respect to the fixed coordinate system. Let Cijkl
epresents the stiffness tensor for a single grain in a fixed reference
rame. Then, the position-dependent elastic stiffness tensor Cijkl(r)
or the entire polycrystal in terms of the order parameter fields is
iven by

ijkl(r) =
∑
g

�2
g(r)ag

ip
ag
jq
ag
kr
ag
ls
Cpqrs, (1)

here Cpqrs is the stiffness tensor of the fixed reference frame, ag
ij

s the transformation matrix representing the rotation of the coor-
inate system defined on a given grain g with respect to the fixed
eference frame and is expressed in terms of the Euler angles �,  ,
nd � as follows:

g
ij

=

⎛
⎝ cos � cos � − sin � sin � cos  sin � cos � + cos � sin � cos  

−cos � sin � − sin � cos � cos   −sin � sin � + cos � cos � cos

sin � sin   −cos � sin   

here 0 ≤ � ≤ 2�, 0 ≤   ≤ �, 0 ≤ � ≤ 2�.
The elastic stiffness tensor Cijkl(r) varying in space can be consid-

red as made up a homogeneous part C0
ijkl

and an inhomogeneous
erturbation C ′

ijkl
(r)

ijkl(r) = C0
ijkl + C ′

ijkl(r). (3)

hus Cijkl(r) can also be rewritten as

ijkl(r) = C0
ijkl +

(∑
g

�2
g(r)ag

ip
ag
jq
ag
kr
ag
ls
Cpqrs − C0

ijkl

)
. (4)

Let �ij(r) denotes the total strain measured with respect to a
eference undeformed lattice. Then, assuming linear elasticity, the
ocal stress �ij(r) is given by

ij(r) = (C0
ijkl + C ′

ijkl(r))(�kl(r) − �0
kl(r)), (5)

0 0
here �
ij
(r) is the position-dependent eigenstrain given by �

ij
(r) =

g

�2
g(r)ag

ip
ag
jq
�0,g
pq , where �0,g

pq is the eigenstrain associated with

rain ‘g’.
ngineering A 554 (2012) 67– 71

in � sin  

os � sin  

cos  

⎞
⎠ , (2)

To obtain the local elastic field, we solve the mechanical equi-
librium equation

∂�ij
∂rj

= 0, i.e. ∇ jCijkl(r)(�kl(r) − �0
kl(r)) = 0. (6)

The total strain �ij(r) can be expressed as a sum of homogeneous
and heterogeneous strains:

�ij(r) = �̄ij + ı�ij(r), (7)

where the homogeneous strain �̄ij is defined so that∫
ı�ij(r)d3r = 0. (8)

The heterogeneous strain field ı�ij(r) is defined as

ı�ij(r) = 1
2

(
∂ui(r)
∂rj

+ ∂uj(r)
∂ri

)
, (9)

where ui(r) denotes the ith component of displacement field.
Substituting Eqs. (7) and (9) into Eq. (6),  we obtain

∇ jCijkl(r)

[
�̄kl +

1
2

(
∂uk(r)
∂rl

+ ∂ul(r)
∂rk

)
− �0

kl(r)

]
= 0. (10)

Substituting Eq. (4) into Eq. (10) and simplifying, we  obtain

C0
ijkl

∂2uk(r)
∂rj∂rl

= ∇ j
{(∑

g

�2
g(r)ag

ip
ag
jq
ag
kr
ag
ls
Cpqrs

)
(�0
kl(r) − �̄kl)

}

− ∂

∂rj

[(∑
g

�2
g(r)ag

ip
ag
jq
ag
kr
ag
ls
Cpqrs − C0

ijkl

)
∂uk(r)
∂rl

]
. (11)

For a given homogeneous strain and an eigenstrain distribution,
Eq. (11) can be solved by the efficient iterative perturbation scheme
[21,22] to obtain the local stress distribution �ij(r). The average
stress in the polycrystalline material �av

ij
is then calculated as

�avij = 1
V

∫
V

�ij(r)dV.  (12)

When the system is subjected to a constant strain field, the
homogeneous strain �̄ij is equal to the applied strain. The effec-

tive elastic stiffness tensor Ceff
ij

(in Voigt notation) can be obtained
by the following equation

�avi = Ceff
ij
�̄j. (13)

After Ceff
ij

is obtained, the bulk modulus (B), shear mod-
ulus (G) and Young’s modulus (E) can be calculated by B =
(C̄11 + 2C̄12)/3, G = (C̄11 − C̄12 + 3C̄44)/5 and E = (9BG)/(G + 3B),
where C̄11 = (C11 + C22 + C33)/3, C̄12 = (C12 + C13 + C23)/3, and
C̄44 = (C44 + C55 + C66)/3.

In all the following calculations, the effective elastic moduli

are calculated using two different treatments of the grain bound-
aries: sharp interface and diffuse interface. The sharp interface
model assumes the elastic modulus changing sharply across the
grain boundaries, and the excess volume associated with the grain
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F ons. (b) Temperature dependent elastic constants of Mg from first-principle calculations
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Table 1
Calculated effective elastic constants of polycrystalline Mg  compared with literature
data [30].

C11 C12 C13 C33 C44

This work 58.51 24.27 23.60 60.40 16.81

F
(

ig. 1. (a) A 3D polycrystalline microstructure generated from phase-field simulati
29].  (©) [4] and (�) [5] represent the experimental elastic constants of single cryst

oundaries is neglected. Therefore, there is neither volume differ-
nce nor modulus difference between the grain boundaries and
he interior. The sharp interface model is valid when the volume
raction of the grain boundaries in the polycrystalline is small and
he average grain size is large (of the order of microns). On the
ther hand, when the volume fraction of the grain boundaries is
igh, i.e. average grain size of the order of nanometers, the effect
f the grain boundaries on the effective modulus should be taken
nto account. In this case we employ the diffuse interface model by
ssuming the elastic moduli vary smoothly across a grain bound-
ry. Furthermore, the grain boundaries are assumed to be elastically
ofter regions than the grain interior. In our model this assumption
s guaranteed by the monitor function �(r, t) =∑i�

2
i
(r, t) which

as the value 1.0 within grains and significantly smaller values
0.5–0.8) at grain boundaries, which makes much smaller elastic

oduli at grain boundaries. In the diffuse interface model the vol-
me  difference between the grain boundaries and grain interior is
lso neglected due to the lack of experimental data.

. Results and discussion

Fig. 1 shows the inputs for the calculation of effective elastic
onstants of polycrystalline Mg.  Fig. 1(a) is a 3D polycrystalline
icrostructure generated from phase-field grain growth simula-

ion. The simulation uses a 160 × 160 × 160 system size with 10,000

rder parameters [26,27]. The order parameter evolution during
rain growth was computed through the active parameter track-
ng (APT) algorithm [27,28] by only picking up the non-zero order
arameters. Single crystal Mg  elastic constants could be either from

ig. 2. (a) Calculated effective elastic constants of polycrystalline Mg as a function of temp
B,  G, E) of polycrystalline Mg  at room temperature, in comparison with experimental me
Ref.  [30] 58.58 24.22 24.35 59.58 17.27

first-principles calculations or experimental values if available. In
Fig. 1(b) we  plot the elastic constants from first-principles calcu-
lations as a function of temperature [29] (shown as lines), which
has a fairly good agreement with the experimental data between 0
and 300 K [4,5] (shown as points). Using the first-principle data as
input, we are able to calculate the effective elastic properties in a
wide temperature range from 0 to 800 K.

Following the method described above, we calculate the effec-
tive elastic constants of polycrystalline Mg  with fully random grain
orientations and compare them with a previous calculation per-
formed using the average method through Gaussian integration
[30]. To make a fair comparison, we  employ the same single crys-
tal elastic constants as in Ref. [30]: C11 = 59.3, C12 = 25.7, C13 = 21.4,
C33 = 61.5, C44 = 16.4 (all in GPa at 300 K) and assume sharp interface
between grains. The polycrystalline microstructure is subjected to
a constant applied strain and the eigenstrain field is assumed to
be zero. The calculated effective elastic constants listed in Table 1
agree well with the literature data, which are the average value

using Hill approximations [30].

To investigate the temperature effect on the effective elas-
tic properties, we use the single crystal elastic constants from

erature using sharp interface model. (b) Temperature dependent effective modulus
asurements [31].
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Fig. 3. Effect of the basal texture ({0 0 0 1}, 〈1 0 1̄ 0〉) on the computed effectiv

rst-principles calculations shown in Fig. 1(b) as input. The cal-
ulated effective elastic constants are plotted in Fig. 2(a) as a
unction of temperature, still using the sharp interface model. Gen-
rally, these elastic constants slightly decrease as a function of
emperature. Among them, C11 and C33 have larger temperature
ependency than C12, C13 and C44, which are nearly indepen-
ent of temperature. This behavior is similar to the single crystal
lastic constants as shown in Fig. 1(b). The effective elastic con-
tants obtained at 300 K are slightly different from the values
isted in Table 1, due to the different input elastic constants. Com-
aring with the 5 independent elastic constants of single crystal
g in Fig. 1(b), the calculated effective elastic constant C33 is

lose to C11, C13 is close to C12, and C44 is close to (C11 − C12)/2,
hich demonstrates the behavior of isotropic symmetry with

 independent elastic constants. The derived bulk modulus (B),
oung’s modulus (E) and shear modulus (G) are plotted in Fig. 2(b)
nd exhibit the same temperature dependent behavior. Further-
ore, the experimental shear modulus (G) and bulk modulus

B) at 300 K [31] are included for comparison. The shear modu-
us has a good agreement with the calculated value, while the
oung’s modulus is slightly larger than the prediction. This is
ecause the input single crystal elastic constants C11 and C33
rom first-principle calculations are smaller than the experimental
alues.

In the above calculations, all the grains are assumed to be ori-
nted randomly, which means the Euler angles �,  , and � are

andom numbers between 0 and 2� for each grain. In the phase-
eld method, textures can be easily introduced to polycrystalline
icrostructures by assigning specific Euler angles to the grain ori-

ntation, instead of the random values. The texture in rolled sheet

Fig. 4. Effect of the fiber texture ({1 1 2̄ 0}, 〈0 0 0 1〉) on the computed effective elast
tic constants using: (a) sharp interface model and (b) diffuse interface model.

hexagonal metals are commonly represented by {h k i l}〈u v t w〉,
which means that the {h k i l} planes of these grains lie parallel
to the sheet plane, whereas their 〈u v t w〉  direction point paral-
lel to the rolling direction [9].  In this work, two  representative
textures in magnesium alloys will be selected to study the tex-
ture effect on the effective moduli: basal texture {0 0 0 1}〈1 0 1̄  0〉
and fiber texture {1 1 2̄ 0}〈0 0 0 1〉, while the latter is the represen-
tative recrystallization texture during the columnar solidification
process for magnesium alloys. For basal texture {0 0 0 1}〈1 0 1̄  0〉
the corresponding Euler angles are � = 0.6◦,   = 0◦ and � = 60◦,
for fiber texture {1 1 2̄ 0}〈0 0 0 1〉 � = 90◦,   = 90◦ and � = 0◦ (Bunge
system) [9].  By specifying the above Euler angles to a certain num-
ber of grains, we  calculate the effective elastic constants from a
completely random polycrystal (0% texture) to a fully textured
polycrystal (100% textured). The calculations are performed using
both sharp and diffuse interface models to compare the grain
boundary effects.

Fig. 3 shows the variation of effective elastic constants as a func-
tion of basal texture {0 0 0 1}〈1 0 1̄ 0〉, using both sharp interface and
diffuse interface assumptions. Comparing Figs. 3(a) and (b), the cal-
culated elastic moduli are smaller in magnitude when we relax
the sharp interface assumption and take into account the effect of
grain boundaries (Fig. 3(b)). This result stems from our definition of
position dependent elastic stiffness tensor in Eq. (1).  As expected,
there is no significant variation of elastic properties with increasing
basal texture, due to the isotropic elastic properties within the basal

plane of hexagonal structure, i.e., C11 = C22. The small variations of
the calculated values with different amount of texture are likely
due to the grain boundary effect while theoretically they should be
completely uniform.

ic constants using: (a) sharp interface model and (b) diffuse interface model.
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However, when we assign the fiber texture {1 1 2̄ 0}〈0 0 0 1〉, the
ffective elastic constants show a pronounced change with increas-
ng texture amount, as shown in Fig. 4. For both models, the elastic
onstants have a significant change when the polycrystalline has
ore 25% textured grains. A polycrystal with 100% {1 1 2̄ 0}〈0 0 0 1〉

ber texture shows an increased anisotropy and a lower crystallo-
raphic symmetry with eight independent elastic constants.

. Summary

In summary, we employ a phase-field description of grain struc-
ures and microelasticity to calculate the effective elastic properties
f polycrystalline magnesium. The obtained effective elastic mod-
li agree well with available experimental measurements. We  also
xamine the texture effect on the effective elastic properties by
uantitatively assigning certain amount of texture components

nto the polycrystalline grain structure. Simulation results indi-
ate that a fiber texture {1 1 2̄ 0}〈0 0 0 1〉 has a strong impact on the
ffective properties while the effective moduli are nearly inde-
endent of the basal texture {0 0 0 1}〈1 0 1̄  0〉. The diffuse interface
ssumption employed in our model is able to predict the size
ependent elastic properties of nanocrystals where the grain size

s small and grain boundary effect is significant. The presented
pproach, combining phase-field description of microstructures
nd first-principles calculations of single-crystal properties, also
rovides an efficient way to predict many other effective prop-
rties such as piezoelectric constants, magnetic permeability, and
hermal conductivity.
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