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AbstractÐMorphological evolution and splitting of coherent precipitate particles under applied stresses
were investigated using a di�use-interface ®eld kinetic approach. A particular example, g' precipitates in
Ni-based superalloys, was studied. In the absence of externally applied stress, a coherent g' particle exhibits
a cuboidal shape, as a result of the competition between anisotropic coherency strain energy and nearly
isotropic speci®c interfacial energy. It was demonstrated that under a uniaxial applied constraint strain,
growth of the g' particle became tetragonal, resulting in a shape transformation from being cuboidal to
tetragonal. As the magnitude of the applied strain was further increased, it is interesting to observe that
the g' particle became unstable and split into two or more parallel plates. The in¯uences of stress magni-
tude, precipitate volume fraction, and interfacial energy on the splitting process are discussed. # 1998
Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Solid-state phase transformations, very often, pro-

duce second-phase precipitate particles coherently

embedded in the parent phase matrix, followed by

particle coarsening during which large particles

grow at the expense of smaller ones. Morphology

of the precipitate particles, i.e. the sizes, shapes,

volume fraction, crystallographic relations with the

matrix, and the mutual arrangement of the par-

ticles, plays an important role in determining mech-

anical, electric and magnetic properties of the

material.

Thermodynamically, in the absence of applied

stress, the morphology of a single coherent particle

is determined by two factors: (1) the interfacial

energy between the precipitate and the matrix, and

(2) the coherency elastic strain energy arising from

the lattice accommodation across the coherent

interface. The interfacial energy of a coherent par-

ticle is roughly proportional to its interfacial area,

and the interfacial energy a�ects the morphology

through its orientational dependence. On the other

hand, the elastic strain energy of a coherent particle

is roughly proportional to its volume, and the elas-

tic strain energy depends on the morphology

through its dependence on the elastic anisotropy

and the crystallographic relation between the pre-

cipitate and the matrix.

The morphology of a coherent particle can, in

general, be changed by applied stresses. Roughly

speaking, an applied stress has two e�ects. One

e�ect is that the applied stress can cause an ad-

ditional lattice mismatch strain, De, when elastic

constants of the precipitate and the matrix are

di�erent

De0Dl
�l
2
sa �1�

where Dl is the modulus di�erence between the pre-

cipitate and the matrix, �l the average modulus of

the two-phase solid, and sa the magnitude of the

applied stress. The second e�ect is a coupling po-

tential energy caused by the applied stress

Fcoup � ÿ
�
V

�esa d3~r1ÿ V
X
p

o pe� p�sa �2�

where �e is the homogeneous strain, and op the

volume fraction of p-type of precipitates with trans-

formation strain e(p).
If a system is homogeneous in terms of its elastic

modulus, i.e. Dl= 0, the contribution from an

applied stress to the total driving force for morpho-

logical evolution is given only by the coupling term.

In this case, an applied stress a�ects only the

volume fractions of di�erent types of precipitates

but not their shapes. For a particular example, a g'
precipitate in a g matrix, both g and g' phases are

cubic (i.e. the lattice mis®t is dilatational). If ignor-

ing the di�erence in elastic modulus between the g'
and g phases, one may ®nd that the coupling term

only a�ects the volume fraction of the g' phase.

However, when a solid is elastically inhomogeneous,
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i.e. each phase has a di�erent elastic modulus, an

applied stress will produce di�erent elastic defor-
mation within each phase. As a result, this stress
®eld will cause an extra lattice mismatch in addition

to the lattice mismatch that is caused by the stress-
free lattice parameter di�erence, thus resulting in a
variation in morphology. Therefore, in order to

study the e�ect of applied stress on the morphologi-
cal evolution of g' particles, the di�erence in elastic

modulus between g' and g matrix must be taken
into account.
There have been a number of analytical studies

on relative stabilities of di�erent shapes of a coher-
ent particle under the in¯uence of coherency strain
energy but in the absence of applied stress [1±5],

and on the temporal evolution during growth or
coarsening by numerical simulations [6±16]. It is

generally agreed that the interfacial energy aniso-
tropy is small at relatively high temperatures at
which particle growth and coarsening occur.

Therefore, for a cubic precipitate in a cubic matrix,
when the precipitate size is small or if the lattice
mismatch is negligible, the shape of a particle is

spherical or nearly spherical. As the particle size
increases, the elastic energy becomes increasingly

important, and the shape will gradually become
cuboidal. One of the most intriguing phenomena
during shape evolution is the possibility of particle

splitting as observed experimentally in Ni-based
superalloys [17±22]. The theoretical analysis by
Khachaturyan et al. [4] showed that there is a criti-

cal size beyond which an eight-particle split con-
®guration, or octet, has a lower energy than a
single cuboidal particle. Lee [13] developed a dis-

crete atom method and applied it to modeling mor-
phological evolution of coherent precipitates. He

demonstrated that with a decrease in interfacial
energy, the coherency elastic energy becomes predo-
minant and a coherent particle is easier to split or

to be branched. Numerical simulations by
McCormack et al. [7] based on a ®nite-element
Monte-Carlo approach and by Wang et al. [6] using

microscopic di�usion equations also demonstrated
that a single overgrown particle can indeed split

into two particles, or a doublet. Most recently,
employing the continuum di�use-interface ®eld
model, Zhang et al. [23] showed that a single coher-

ent particle may split into four particles in two
dimensions and eight particles in three dimensions.
By including thermal noise in the model, they

demonstrated that other split particle con®gurations
are possible, such as two- and three-particle con-
®gurations in two dimensions.

Since the instability of a g' coherent particle with
respect to splitting is caused by the internal mis®t

strain between the g' phase and the g matrix, similar
instabilities should be expected in the presence of
applied stresses or strains. Since the magnitude of

additional elastic strain produced by an applied
stress is proportional to the magnitude of the

applied stress, one would expect to observe the
splitting instability of an initially stable single

coherent particle during its evolution to equilibrium
state under high applied stresses. Therefore, the
main objective of this research is to investigate the

morphological evolution of a coherent particle
under an externally applied stress using a di�use-
interface ®eld approach. Previously we investigated

the g' precipitate growth and rafting of the g' phase
in Ni-based superalloys under applied constant
strains [24]. In this paper, we focus on exploring the

possibility of particle splitting in the presence of
externally applied stress. In particular, e�ects of the
magnitude of the applied stress, the precipitate
volume fraction and the interfacial energy on the

particle splitting process are discussed.

2. THE DIFFUSE-INTERFACE FIELD MODEL

A di�use-interface phase-®eld model was

employed for the simulation study. This approach
was described in detail in a number of
papers [6, 11, 24±27]. The speci®c application of this
model to microstructural evolution of g' precipitates
in Ni-based superalloys was reported in
Refs [24, 28]. In order to make this paper self-con-
tained, a brief description of the model is presented.

In this di�use-interface model, the microstructure of
a (g'+ g) two-phase mixture is described by both a
composition ®eld variable, C�~r,t�, and structural

order parameter ®eld variables, Zi�~r,t�. The compo-
sition and the structural order parameter variables,
respectively, distinguish compositional and struc-

tural di�erences between the g' phase and the g
matrix. The g' phase has an ordered f.c.c. lattice
structure, transforming from the disordered f.c.c. g
matrix. An ordered f.c.c. crystal has four equivalent

ordered states, obtained by displacements of the
crystal lattice from its origin to [0,0,0], �12 , 12 ,0�,
�12 ,0, 12�, and �0, 12 , 12�, respectively [29]. Four types of

g' domains may therefore exist in the g matrix,
whose ordering states can be described using three
order parameters Zi (i � 1,2,3) with four di�erent

combinations [24, 29]. The four combinations of the
order parameters are �1,1,1�Z, �1,1,1�Z, �1,1,1�Z, and
�1,1,1�Z, respectively, corresponding to the four g'
domains. When the order parameter Z is equal to

its equilibrium value Z0, the g' domains reach their
equilibrium states. Microstructural development is
described by temporal evolution of the C�~r,t� and
Zi�~r,t� ®eld variables; and graphically, a microstruc-
ture may be represented by either the composition
®eld, C�~r,t�, or the order parameter ®elds,P

i Z
2
i �~r,t�.

The growth of g' precipitates proceeds with a
decrease in the system free energy, which includes

the incoherent free energy, the interphase boundary
energy and the coherency elastic energy. The chemi-
cal energy density may be approximated using a
Landau free energy polynomial
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f�C,Zi � �
A1

2
�Cÿ C1�2 � A2

2
�Cÿ C2�

X3
i

Z2i

ÿ A3

3
Z1Z2Z3 �

A4

4

X3
i

Z4i

� A5

4

�X3
i

Z2i

�2

�3�

where A1, A2, A3, A4, and A5 are coe�cients whose

values were chosen, respectively, as 40.0, 17.0, 46.8,

15.0, and 5.0 (with a unit: [u] = 108 erg/cm3).

Values of C1 and C2 are 0.05 and 0.22, respectively.

The choice of these values provides equilibrium

compositions at Cg � 0:054 for the Ni±Al (g) matrix

and Cg 0 � 0:242 for the g' precipitates. By minimiz-

ing f �C,Zi � with respect to the order parameter at a

given C for a single g' variant [e.g. described by

�1,1,1�Z], one may obtain the relationship between

C and the equilibrium order parameter Z � Z0.
Therefore, f �C,Z� can be expressed as a function of

the composition only, i.e. f �C,Z0� � f �C,Z0�C �� as

Fig. 1 illustrates. This function has two branches.

One was obtained at Z � 0, corresponding to the

matrix phase. The other was obtained at Z � Z0 cor-

responding to the g' phase. In order to investigate

the splitting of the g' phase, one only needs to in-

vestigate one single g' particle [e.g. the �111�Z var-

iant]. Therefore, equation (3) can be simpli®ed to

the following form:

f �C,Z� � A1

2
�Cÿ C1�2 � 3A2

2
�C2 ÿ C �Z2

ÿ A3

3
Z3 � 3A4 � 9A5

4
Z4: �4�

The total incoherent free energy in the di�use-inter-

face ®eld model is given by

Finc �
�
V

�
f�C=�~r,t�,Z�~r,t�� � 3a

2
�rZ�~r,t��2

� b
2
�rC�~r,t��2

�
d3~r �5�

where the gradient terms represent the contri-

bution from the interphase boundary energy, and

a and b are gradient coe�cients. In this work,

isotropic interphase boundary energy is assumed.

An important contribution to the system's total

free energy is the coherency elastic energy caused

by the lattice mismatch between the g' precipitates
and the matrix. The coherency strain energy has

been extensively studied [30±42]. In general, for

an elastically inhomogeneous system, the elastic

strain energy has to be computed numerically for

a given microstructure. However, for systems with

small inhomogeneity, as shown by Khachaturyan

et al. [42], the problem can be solved analytically

using the e�ective medium approximation. The

elastic energy in terms of the inhomogeneous

composition ®eld variable with di�usive interphase

boundary is given as (see the Appendix A)

Eel � V

2
�lijkl�eij�ekl ÿ VD=lijkl�eije8kl�DC �2

� V

2
�lijkle8ije

8
kl�DC �2

ÿ 1

2

�
d3 ~q

�2p�3 �nks
*
kiO�~n�ijs*

jl nl �j ~C�~q�j2 �6�

where �lijkl � l*
ijklhC�~r�i � lijkl�1ÿ hC�~r�i� is the

average elastic modulus; l*
ijkl and lijkl are, respect-

ively, the elastic moduli of the g' precipitates and

the matrix. V is the total volume of the system.

s*
ij � �lijkle8kl ÿ Dlijkl�ekl is the e�ective eigenstress,

where Dlijkl � l*
ijkl ÿ lijkl. ~q and ~n � ~q=q are, re-

spectively, a vector and corresponding unit vector

in the reciprocal space. O�~n�ij is a Green function

reciprocal to Oÿ1�~n�ij � nl�llijmnm. ~C�~q� is the

Fourier transform of the variation of the compo-

sition ®eld variable, i.e. DC�~r� � C�~r� ÿ �C. �eij is

the homogeneous strain which determines the

macroscopic shape deformation caused by internal

and external stresses.

When the system is under a constant applied

strain (i.e. under a constraint strain with ®xed

boundary), the homogeneous strain is the applied

strain, i.e. �eij � �eaij. Equation (6) thus becomes

E e
el �

V

2
�lijkl�eaij�e

a
kl ÿ VD=lijkl�eaije

8
kl�DC �2

� V

2
�lijkle8ije

8
kl�DC �2

ÿ 1

2

�
d3 ~q

�2p�3 �nks
*
kiO�~n�ijs*

jl nl �j ~C�~q�j2: �7�

If the system is under a constant applied stress,

the elastic potential should include the external

work, that is
Fig. 1. Speci®c chemical-free energies of g' and g phases vs

composition, calculated using equation (4).
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V

2
�lijkl�eij�eÿ VD=lijkl�eije8kl�DC �2

� V

2
�lijkle8ije

8
kl�DC �2

ÿ 1

2

�
d3 ~q

�2p�3 �nks
*
kiO�~n�ijs*

jl nl �j ~C�~q�j2

ÿ
�
V

saij�eij d
3~r �8�

where

�eop1
�

�SopijDlijsqe8sq�DC �2 ÿ
DloplmAlmsq

V

�
e8sq � �Sopijsaij

and

saij � �lijkl�ekl ÿ �lijkle8kl�DC �2 �
1

V
DlijklAklmn��lmnope8op

ÿ Dlmnop�eop�

with

Aklmn � ÿ
�

d3 ~q

�2p�3 nkO�~n�lmnnj
~C�~q�j2:

For the present study, the simulation of the growth
and splitting of the g' phase under applied stresses

was performed under the strain constraint con-
dition.
The morphological evolution is determined by

solving the non-linear di�erential kinetic equations
for the ®eld variables. The composition ®eld is
determined by solving the Cahn±Hilliard di�usion

equation [43], whereas the order parameter ®eld
variable is determined by solving the Ginzburg±
Landau equation [44]

dC�~r,t�
dt
�Mr2 dF

dC�~r,t� ,
dZ
dt
� ÿL dF

dZ�~r,t� �9�

where M and L are kinetic coe�cients which
characterize the atomic di�usivity and interphase

boundary mobility. Under the strain constraint con-
dition, the system is connected to a thermal reser-
voir but mechanically isolated (i.e. no external
work). In this case, F � Finc � E e

el is the Helmholtz

free energy of the system. If the system is subjected
to a constant applied stress, the system is connected
to a mechanical reservoir as well as to a thermal

reservoir. The free energy of such a system is the
Gibbs free energy, i.e. F � Finc � E s

el. These di�er-
ential kinetic equations were solved numerically in

the reciprocal space.

3. RESULTS AND DISCUSSION

The simulation was conducted in two-simula-

tional space. The kinetic equations were discretized
using a 256�256 square grid with the unit length
of the grid equal to l. The value of l was not arti®-
cially ®xed, but determined by ®tting interfacial

energy in the following way. We chose the gradient

coe�cients, a and b, in equation (5) equal to 0.4

(�108 erg/cm). The corresponding interfacial energy

can be calculated by setting up a ¯at boundary sep-

arating the g' precipitate phase and the g matrix

phase. For the particular parameters used in this

simulation, the calculated speci®c interfacial energy

is equal to 1:25��108 erg=cm3�Dx, where Dx is the

spatial discretization grid length. By ®tting this cal-

culated energy to available data of g'/g interfacial

energy, ss=24.3 erg/cm2, given by Hirata and

Kirkwood [45], we determined the grid length Dx
which is equal to 19.4 AÊ (=l) in real unit. In this

simulation, we used a reduced unit,

Dx* � Dx=l � 1:0, for the grid size.

Reduced time was used in the simulation:

t* � n � t, where n is the iteration time step for the

numerical integration of the kinetic equations, and

t the time step for each iteration which is chosen to

be 0.01. To relate this reduced time to real time

unit, we ®tted the coe�cient M to the chemical dif-

fusion coe�cient in the disordered phase. If we

assume that the composition in the disordered

matrix is uniform, the di�usion equation becomes

@C

@ t
�Mr2 dF

dC
�
�
M

@ 2f

@C 2

�
r2C � Dr2C �10�

where D is the chemical di�usion coe�cient in the

disordered phase and f the local free energy density.

Using equation (4) for the free energy density, in

the disordered state, we may obtain the relationship

between M and D

D �M
@ 2f

@C 2

����
Zi�0
�MA1: �11�

The Cahn±Hilliard equation expressed using the

chemical di�usion coe�cient is thus given by

@C

@ t
� D

A1
r2 dF

dC
: �12�

In reduced units

@C

@ t*
� r*2 dF

dC
�13�

where t* � t�D=A1l
2� and r*2 � l2r2. Both F and

A1 are in reduced units which are related to the real

unit by multiplying by 108 erg/cm3. The kinetic

equation for the order parameters is also in reduced

units and we set LA1l
2=D � 1:0 in the simulation

(please note that A1 here is unitless). According to

Hirata and Kirkwood [45], the di�usion coe�cient

D of Ni±Al alloy at 6958C is 6.51�10ÿ15 cm2/s.

This value of D was used in our simulation to

determine the real evolution time t � t*=�D=A1l
2�.

In order to investigate the growth of a g' particle
under an applied constant strain, a uniaxial stress

was initially applied to the system, followed by ®x-

ing the body boundary to generate a constant con-

straint strain ®eld. Elastic constants of the g' phase
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and the NiAl (g) matrix (in units of 1011 erg/cm3)

are C *
11 � 1:67, C *

12 � 1:07, C *
44 � 0:99, C11=1.12,

C12=0.63, and C44=0.57, respectively [18]. The
eigenstrain of g' is dilatational and expressed as
e8ij � e0dij, where e0=0.563% [18].

3.1. Morphological evolution of a g' particle in the

absence of external constraint strain

The main objective of the research is to investi-
gate the growth behavior of the g' phase under

applied stresses in the constraint strain boundary
condition. For comparison, morphological evol-
ution of a g' particle in the absence of a constraint

strain was ®rst simulated. At the beginning of the
simulation, a circular g' particle with radius equal
to 30Dx* was initially embedded in the matrix.

Figure 2(b) illustrates the morphology of a g' par-
ticle evolved from the initially embedded g' particle
[see Fig. 2(a)] in a supersaturated NiAl matrix with

cm=0.08 and Z = 0. It was demonstrated that the
grown g' particle changed its circular shape to a
square (cuboidal in three dimensions), with its
f100gg 0 plane parallel to the f100gg plane of the

matrix. Since the g 0=g interphase boundary energy
was assumed to be isotropic, the cuboidal shape
and the �100�g 0 k�100�g orientation relationship are

therefore attributable to the anisotropy of the elas-
tic interactions. The simulated morphology of g'
particles is consistent with experimental

observations [18, 20, 46]. The cuboidal shape of the

g' particle has been theoretically analyzed by a num-

ber of researchers [8, 13, 47±52].

3.2. Tetragonal growth under applied constraint

strains

The cuboidal shape transformation was changed

when a constraint strain was applied to the system.
Figure 2(c) illustrates the morphology of a g' par-
ticle developed under a tensile strain �eaij, applied
along the x-axis (i.e. the horizontal direction). The

strain was introduced by a tensile stress equal to
0:004��1011 erg=cm3� � 40 MPa which was applied
before the system's boundary was ®xed. It is

demonstrated that the g' particle was elongated
along the applied tensile strain. This tetragonal
growth may be explained from the e�ective eigen-

strain, e*ij � �Sijpqs*
pq � e8ij ÿ Deaij, where Deaij �

�SijpqDlpqkl�eakl and �Sijpq is the average elastic compli-
ance. The e�ective eigenstrain corresponds to the

e�ective stress s*
pq in equation (6). In the absence of

the applied strain, the eigenstrain is a pure dilata-
tional strain, i.e. e8ij � e0dij, which causes a cuboidal
morphology of the g' phase. When a strain is

applied along the x-axis, it results in Deaxx > Deayy
because of the positive Dlpqkl, thus leading to
e*xx<e

*
yy. As a result, the tetragonal growth of the g'

phase occurs with its elongation along the x-axis. A
compressive strain, however, makes the elongation
along the y-axis perpendicular to the applied strain

[see Fig. 2(d)], since in this case, e*xx > e*yy. It is

Fig. 2. Morphologies of a g' particle grown in a supersaturated g matrix with cm=0.08 (t = 1.62 h): (a)
the initially embedded g' particle; (b) grown without external strain constraint; (c) grown under a tensile
stress (40 MPa) applied horizontally; (d) grown under a compressive strain (40 MPa) applied horizon-

tally.

Fig. 3. Splitting of a g' particle in a g matrix with cm=0.08 under a tensile stress s= 80 MPa applied
along the horizontal direction: (a) t = 0; (b) t = 0.18 h; (c) t = 0.54 h; (d) t = 1.62 h.
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noted that the elongation direction is also in¯u-
enced by the sign of Dlpqkl. Under a tensile stress, a

soft precipitate (Dlpqkl<0) is elongated along the
direction perpendicular to the applied stress, while a
hard precipitate (Dlpqkl > 0) is elongated along the

applied stress. Besides, the sign of the lattice mis-
match e0 also in¯uences the elongation
direction [1, 18, 53±55]. The ®nal elongation direc-

tion can be readily predicted by analyzing the e�ec-
tive eigenstrain. These analyses well explain
experimental observations. The tetragonal growth

of the g' phase under external applied stress was
also computationally demonstrated by a number of
researchers such as Laberge et al. [56], Gayda and
Srolovitz [57], and Valles and Arrell [58] using

Monte Carlo approaches, and Nishimori and
Onuki [59] using a dynamic model.

3.3. Splitting of g' particles under applied constraint
strains

The tetragonal growth of g' was further changed
by increasing the magnitude of the applied strain.
Our simulation demonstrates that a g' particle may

split into a doublet of parallel plates under higher
applied constraint strains. Figure 3 illustrates the
growth of the g' particle under an applied tensile

strain which is two times higher than that causing
tetragonal growth as shown in Fig. 2(c). As
observed, under the higher applied strain the tetra-
gonal growth was speeded up and the particle split

away and eventually changed to a doublet of two
parallel plates. It is believed that this splitting of
the g' particle is caused by the stress relaxation, as-

sociated with a decrease in the total free energy of
the system. Wang and Khachaturyan [52], Lee [13],
and Zhang et al. [23] explained the morphological

instability of g' particles under the in¯uence of
coherency elastic strain and discussed the particle
splitting based on the competition between the
coherency elastic energy and the interfacial energy.

Their explanations are also applicable to the case of
the splitting under an external load which modi®es
the lattice mismatch as equation (1) indicates.

However, as observed, an applied load can a�ect
the splitting direction, e.g. a particle may split into
a doublet of two plates parallel to a tensile strain or

perpendicular to a compressive strain applied in the
[100] direction. In addition, it is interesting to ob-
serve that the splitting process is strongly a�ected

by solute di�usion, or in other words, the splitting

is a�ected by the rate at which Al solute di�uses to

the advancing g'/g interface perpendicular to the

applied strain. When there is not enough Al content

in the front of the g'/g interface, the fast growing g'
particle under applied load may obtain a sup-

plement of Al solute from itself, resulting in a

decrease of Al content in the central region of the

particle. As a result of this redistribution of Al

solute, the g' particle changed to an alternating g'±g
lamina as Figs 3(b) and (c) illustrate, which even-

tually transformed to a doublet of two parallel g'
plates. One may expect that the formation of this

transitive g'±g lamina is dependent on the splitting

rate, in¯uenced by the magnitude of the applied

strain. As a matter of fact, transitive g'±g laminae

containing ®ve parallel g' plates were observed

when the applied strain was increased. However, a

lower applied strain has a weaker e�ect on the split-

ting of g' particles. For instance, when the applied

strain was 25% decreased from that used to induce

particle splitting as shown in Fig. 3, the transitive

three-plate splitting stage [see Figs 3(b) and (c)] was

not observed. Under this lower applied strain, the

splitting process was relatively slow and the solute

may redistribute timely, thus only resulting in a

doublet of two plates. Further decreasing the

applied strain, no splitting was observed.

Since the solute di�usion is dependent on the

composition, if the Al content in the matrix is low,

the tetragonally growing particle could be more dif-

®cult to obtain the Al supplement. As a result, the

splitting of a g' particle may occur under an applied

strain which cannot induce the g' splitting in

matrices with higher Al concentrations. In order to

con®rm this expectation, the growth of a g' particle
in a matrix with a lower Al content (cm=0.06) was

examined. It was observed that the g' splitting

occurred in the matrix of cm=0.06 under the strain

which, however, did not induce the splitting of a g'
particle in the matrix of cm=0.08. In multi-domain

systems, the stress-induced splitting of g' precipitates
is more obvious in a Ni±Al system with low volume

fraction of g' precipitates (i.e. less Al content) than

that with a higher volume fraction. Figures 4 and 5

illustrate the g' splitting in the matrices with volume

fractions, respectively, equal to 30 and 45%,

induced by a tensile stress (53 MPa). One may see

Fig. 4. Splitting of g' precipitates under a tensile stress (53 MPa) applied vertically. The volume fraction
of g' precipitates is 30%.
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that the g' splitting is more obvious when the

volume fraction is lower.

The redistribution of Al solute may also be seen

from the variation in composition pro®le of the g'
precipitate during its growth process. Figures 7(c)

and (d) present the composition pro®les, corre-

sponding to the doublet illustrated in Fig. 6(d),

measured, respectively, along the x- and y-axes

across the center of the system. In order to reach

the equilibrium state, the total ``aging'' time was

increased from 1.62 to 6.6 h and a smaller system

(128�128) was used to save the total computing

time. One may see that between the two plates of

the doublet, the composition is lower than that of

the matrix. It is obvious that the splitting and the

growth of the doublet was realized by the redistri-

bution of Al solute through di�usion. For a com-

parison, the equilibrium composition pro®le in the

stress-free state [Fig. 7(a)] and that under the in¯u-

ence of lattice mis®t [Fig. 7(b)] are also illustrated.

One may see that the lattice mismatch (i.e. the

transformation strain) as well as the external con-

straint strain change the equilibrium composition

pro®le and result in inhomogeneous composition

distributions inside and outside the g' region.
E�ects of compressive applied strains on the

splitting of the g' phase were also investigated. It

was observed that the splitting of a g' particle under

an applied compressive strain is similar to that

under a tensile strain. However, the splitting under

a compressive strain is perpendicular to the applied

strain, while the splitting under a tensile strain is
along the applied strain.
In summary, the stress-induced splitting results

from the stress relaxation and it is also di�usion-

dependent.

3.4. E�ects of the interfacial energy on the splitting
of the g' phase

It is known that the morphology of a coherent
second-phase particle is determined by the compe-
tition between the elastic strain energy and the

interfacial energy. From the point of view of
energy, the splitting of a g' precipitate increases the
interphase boundary area and thus increases the

total interfacial energy. As a result of the increase
in interfacial energy, the splitting of a g' precipitate
is not favorable. The higher the interfacial energy,

the more di�cult the splitting. In order to investi-
gate the interfacial e�ect on the splitting behavior,
di�erent values were assigned to the gradient coe�-

cients, a and b, which vary the interfacial energy
contribution. In fact, the morphology and splitting
are determined by the balance between the inter-
facial energy and the elastic energy. It is more ade-

quate to use the ratio of the interfacial energy to
the elastic energy as a factor to evaluate the e�ect
of interfacial energy. The interfacial energy is the

excess free energy associated with the interface,
which can be calculated using the following
equation:

Fig. 5. The splitting of g' precipitates under the tensile stress (53 MPa) is less obvious when the volume
fraction of g' precipitates is increased to 45%.

Fig. 6. Splitting of a g' particle in a g matrix with cm=0.06 under a tensile stress s= 60 MPa applied
along the horizontal direction: (a) t = 0; (b) t = 0.18 h; (c) t = 0.54 h; (d) t = 1.62 h.
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stot �
�
V

�
f�C,Z� ÿ f0�C � � 3a

2
�rZ�2

� b
2
�rC �2

�
d3~r �14�

where

f0�C � � fg 0 �Cg 0 ,Z0�Cg 0 ��

� fg 0 �Cg 0 ,Z0�Cg 0 �� ÿ fg�Cm,Z � 0�
Cg 0 ÿ Cm

�C0

ÿ Cg 0 �: �15�

In equation (15), Cg' and Cm are compositions of

the g' precipitate and the matrix, respectively, and

C0 is the average composition of the system.

Di�erent values of a and b were chosen to inves-

tigate the interfacial e�ect on g' splitting. Figure 8

illustrates the variation in the splitting behavior of

a g' particle with di�erent ratios of the interfacial

energy to the elastic energy, resulting from the vari-

ation of a and b coe�cients. The corresponding

values of the ratio, x � stot=E e
el, were calculated. It

was demonstrated that the splitting is easier when
the x value was low; whereas the splitting became

di�cult as the x value increased and even did not
occur when the x value was high. The simulation
demonstrates that the interfacial energy apparently
plays an important role in the splitting of the g'
phase. Lee [13] also demonstrated that when the
speci®c interfacial energy is decreased and the
coherency strain becomes predominant, the splitting

or branching of a coherent precipitate is enhanced.

4. CONCLUSIONS

The morphological evolution and the splitting

phenomenon of the g' phase in g (NiAl) matrices
under applied stresses in the strain constraint con-
dition were studied using a di�use-interface phase-

®eld simulation approach. The simulation demon-
strates that a g' precipitate exhibits a cuboidal
shape with f100gg 0 kf100gg, induced mainly by the
coherency strain energy. The cuboidal shape can

Fig. 7. Equilibrium composition pro®les under di�erent constraint conditions, measured along the line
across the center of the system: (a) in stress-free condition; (b) under in¯uence of the coherent strain
from the lattice mismatch; (c) under a tensile stress initially applied in the horizontal direction,
measured along the g' doublet (i.e. parallel to the applied stress); (d) under the same stress, measured

across the g' doublet.
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change to a tetragonal shape under an applied con-

straint strain. Under a high applied strain, a g' pre-
cipitate may split into two or more parallel plates
during its growth or relaxation to equilibrium. This
splitting is favored when the volume fraction of g'
precipitates is low. It was demonstrated that the
splitting is also a�ected by the interfacial energy
and the splitting becomes di�cult when the ratio of

the interfacial energy to the elastic energy is
increased.
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APPENDIX A

The local elastic modulus tensor of an anisotropic solid
containing coherent heterogeneities such as inclusions of a
di�erent phase with di�erent elastic moduli may be rep-
resented as

lijkl�~r� � �lijkl � DlijklDC�~r� �A1�
where �lijkl � l*

ijklC�~r� � lijkl�1ÿ C�~r�� is the average elastic
modulus. Dlijkl � l��ijkl ÿlijkl where l�ijkl and lijkl are, re-
spectively, the elastic moduli of the g' phase and the
matrix. DC�~r� � C�~r� ÿ �C.

The elastic strain is the di�erence between the total
strain and the stress-free strain (the matrix is the reference
lattice), that is

eelij �~r� � eij�~r� ÿ e8ij�~r� � ��eij � deij�~r�� ÿ e8ij�~r� �A2�
where the total strain is expressed as a sum of the homo-
geneous strain, �eij, and the hetreogeneous strain, deij�~r�.
The homogeneous strain is the uniform macroscopic strain
determining the macroscopic shape deformation of the
crystal as a whole produced by both the internal stress
due to the presence of new phase particles and the applied
strain when the system is under external constraint, i.e.
�eij � �e8ij � �eaij, where �e8ij is caused by the internal stress and
�eaij caused by the applied stress. The homogeneous strain is
de®ned such that �

V

deij�~r� d3~r � 0 �A3�

The stress-free strain, e8ij�~r�, may be expressed as a function
of the composition heterogeneity, i.e. e8ij�~r� � e8ijDC�~r�,
where e8ij is the eigenstrain tensor or the transformation
strain tensor. It should be pointed out that usually we

need structural order parameters to distinguish di�erently
oriented variants of a second phase. However, since in the
present case the g' phase has a pure dilatational mismatch
with the matrix, there is no orientational di�erence
between di�erent g' domains in terms of coherency strain.
The stress-free strain can therefore be expressed as a func-
tion of the composition heterogeneity only. The elastic
stress ®eld is thus given as

sij�~r� �lijkl�~r�eelkl�~r� � ��lijkl � DlijklDC�~r����eij � deij�~r�

ÿ e8ijDC�~r�� �A4�
The equilibrium condition

@sij�~r�
@ rj

� 0 �A5�

gives

@

@ rj
��lijkldekl�~r�� � @

@ rj
�DlijklDC�~r�dekl�~r�� � ��lijkle8kl

� 2Dlijkle8klDC�~r� ÿ Dlijkl�ekl � @DC�~r�
@ rj

�A6�

Khachaturyan et al. [42] discussed in detail how to solve
the equation which is similar to equation (A6) using the
perturbation method where the elastic constant di�erence
Dlijkl plays the role of a small parameter. We used the zer-
oth approximation by ignoring the second term on the
left-hand side of equation (A6) and also the second term
in brackets on the right-hand side of equation (A6). It
should be noticed that the third term in brackets on the
right-hand side of equation (A6) may not be small com-
pared to the ®rst term in the brackets, since the homo-
geneous strain could be much larger than the
transformation strain when the applied strain is large.
Therefore, the third term in brackets on the right-hand
side can be ignored. Incorporating

dekl�~r� � 1

2

�
@uk
@ rl
� @ul
@ rk

�
and using the zeroth approximation, we may rewrite
equation (A6) as

�lijkl
@ 2uk
@ rj@ rl

� ��lijkle8kl ÿ Dlijkl�ekl � @DC�~r�
@ rj

� s*
ij

@DC�~r�
@ rj

�A7�

where s*
ij � �lijkle8kl ÿ Dlijkl�ekl is the e�ective eigenstress.

Fourier transforming equation (A7) into reciprocal space,
we may obtain

�lijklqjqlvk�~q� � ÿis*
ij qjDC�~q� �A8�

where

vk�~q� �
�
V

uk�~r� eÿi~q�~r d3~r, ~C�~q� �
�
V

DC�~r� eÿi~q�~r d3~r:

If q 6� 0, we have

vk�~q� � ÿiGik�~q�s*
ij qj

~C�~q�
where the matrix Gik�~q�, the reverse tensor to
�G ÿ1�~q��ik � �lijklqjql, is the Fourier transform of the
Green function of anisotropic elasticity; by de®nition,
�G ÿ1�~q��ik � q2�lijklnjnl, where ~n � ~q=q is a unit reciprocal
lattice vector. The singular branching point k � 0 is
excluded. The Green function Gik�~q� can therefore be
rewritten in the form Gik�~q� � �1=q2�Oik�~n�, where
Oÿ1ik �~q� � �lijklnjnl. The total elastic energy of a coherent
mixture is represented as
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Eel � 1

2

�
V

��lijkl � DlijklDC�~r����ekl � dekl�~r� ÿ e8klDC�~r��

� ��eij � deij�~r� ÿ e8ijDC�~r�� d3~r1
V

2
�lijkl�eij�ekl

ÿ VDlijkl�eije8kl�DC �2 �
V

2
�lijkle8kle

8
ij�DC �2

� 1

2

�
V

�lijkldeij�~r�dekl�~r� d3~rÿ
�
V

s*
ij deijDC�~r� d3~r

�V

2
�lijkl�eij�ekl ÿ VDlijkl�eije8kl�DC �2 �

V

2
�lijkle8kle

8
ij�DC �2

� 1

2

�
V

�
�lijkl

@ui
@ rj

@uk
@ rl
ÿ s*

ij

@ui
@ rj

DC�~r�
�
d3~r: �A9�

In the above derivation, the zeroth approximation was
used. Substituting the back Fourier transforms

~u�~r� �
�

d3 ~q

�2p�3 ~v�~q� e
i~q�~r, DC�~r� �

�
d3 ~q

�2p�3
~C�~q� ei~q�~r

into equation (A9), integrating equation (A9) over ~r and
applying the relation�

V

ei�~q�~q
0 ��~r d3~r � �2p�3d�~q� ~q 0� �A10�

where d( . . .) is the Dirac delta function, we may obtain

Eel �V

2
�lijkl�eij�ekl ÿ VDlijkl�eije8kl�DC �2 �

V

2
�lijkle8ije

8
kl�DC �2

�
�

d3 ~q

�2p�3
�
1

2
�lijklqjqlvi�~q�v*

k �~q� ÿ is*
ij qjvi�~q� ~C

*�~q�
�
:�A11�

Substituting the solution for vi�~q�, we obtain the ®nal ex-
pression of the total elastic energy

Eel �V

2
�lijkl�eij�ekl ÿ VDlijkl�eije8kl�DC �2 �

V

2
�lijkle8ije

8
kl�DC �2

ÿ 1

2

�
d3 ~q

�2p�3 �~ns
*O�~n�s* ~n�j ~C�~q�j2: �A12�

The formula of the elastic energy may change under di�er-
ent boundary conditions.

Fixed boundary

If the boundary of the system is ®xed and hence no
homogeneous strain is allowed, the elastic energy is given
by

Eel � V

2
�lijkle8ije

8
kl�DC �2 ÿ

1

2

�
d3 ~q

�2p�3 �~ns
*O�~n�s* ~n�j ~C�~q�j2

�A13�
where

s*
ij � �lijkle8kl

Constant homogeneous applied strainÐstrain constraint

In this case, the system is initially strained, followed by
®xing the boundary. The elastic energy becomes

E e
el �

V

2
�lijkl�eaij�e

a
kl ÿ VD�lijkl�eaije

8
kl�DC �2 �

V

2
�lijkle8ije

8
kl�DC �2

ÿ 1

2

�
d3 ~q

�2p�3 �~ns
*O�~n�s* ~n�j ~C�~q�j2 �A14�

where the e�ective eigenstress is given by

s*
ij � �lijkle8kl ÿ Dlijkl�eakl:

Stress-free boundary

When the boundary of a system is free to relax, the
homogeneous strain is obtained by minimizing the total
elastic energy given by equation (A12)

@E

@�eij
�0 � V�lijkl�ekl ÿ VDlijkle8kl�DC �2

� DlijklAklmn��lmnope8op ÿ Dlmnop�eop� �A15�
where

Aklmn � ÿ
�

d3 ~q

�2p�3 nkOlmnnj ~C�~q�j2: �A16�

From equation (A15), the homogeneous strain may be
represented as

�V�lijop ÿ DlijklAklmnDlmnop��eop � VDlijope8op�DC �2

ÿ DlijklAklmn
�lmnope8op: �A17�

By multiplying both sides of equation (A17) by �Sijop, the
average elastic compliance tensor, and using the zeroth ap-
proximation with respect to elastic modulus mis®t Dlijkl,
we have

�eop1
�

�SopijDlijsqe8sq�DC �2 ÿ
DloplmAlmsq

V

�
e8sq �A18�

Constant homogeneous applied stressÐstress constraint

When a constant stress is applied, the total potential
energy is the sum of the elastic energy of the system and
the potential energy of the mechanical loading device, that
is

E s
el �

V

2
�lijkl�eij�ekl ÿ VDlijkl�eije8kl�DC �2 �

V

2
�lijkle8ije

8
kl�DC �2

ÿ 1

2

�
d3 ~q

�2p�3 �~ns
*O�~n�s* ~n�j ~C�~q�j2 ÿ

�
V

saij�eij d
3~r: �A19�

Minimizing the total potential energy with respect to the
homogeneous strain

@E

@�eij
�0 � V�lijkl�ekl ÿ VDlijkle8kl�DC �2

� DlijklAklmn��lmnope8op ÿ Dlmnop�eop� ÿ Vsaij �A20�
we may obtain

saij ��lijkl�ekl ÿ Dlijkle8kl�DC �2

� 1

V
DlijklAklmn��lmnope8op ÿ Dlmnop�eop� �A21�

By multiplying both sides of equation (A21) by �Sijop and
using the zeroth approximation with respect to elastic
modulus mis®t Dlijkl, we may approximately express the
homogeneous strain as

�eop1
�

�SopijDlijsqe8sq�DC �2 ÿ
DloplmAlmsq

V

�
e8sq � �Sopijsaij

�A22�
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