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An anisotropic distribution of coherent precipitate variants may result in anisotropic behavior of a
two-phase material. The distribution of the coherent precipitate variants can be controlled using
constrained aging. This article reports our experimental and computational studies of the stress ef-
fect on the spatial arrangement of coherent precipitate variants. The research demonstrates that the
anisotropic elastic coupling between applied stress/strain and the local strain caused by the lattice
mismatch between different phases makes the growth of differently oriented phase variants selec-
tive. Ti11Ni14 precipitation in a Ti-51.5at.%Ni alloy was investigated as a particular example. It was
demonstrated that the constrained aging strongly affected the distribution of Ti11Ni14 precipitate
variants. The resulting selective variant growth of Ti11Ni14 precipitates can be predicted based on the
symmetry analysis and the elastic energy calculation.

Introduction

It is well known that coherent precipitates in a two-phase
material strongly affect mechanical and tribological properties
of the material (Ref 1-5). These properties may be further im-
proved if precipitate variants are spatially arranged in a par-
ticular way. This is best demonstrated by the two-way shape
memory effect of a nickel-rich TiNi alloy that experienced
constrained aging, which produced an anisotropic distribution
of coherent Ti11Ni14 precipitate variants (Ref 6). The two-way
shape memory effect relies on a long-range internal stress
field caused by a parallel alignment of the coherent lenticu-
lar Ti11Ni14 precipitates in this alloy. The long-range inter-
nal stress field controls the “path” of reversible martensitic
transformations, and thus results in a superior two-way
shape memory effect, called all-round shape memory effect
(Ref 6).

A coherent precipitate phase usually has a number of vari-
ants oriented in different directions (Ref 7-9) if the precipitate
phase has a lower symmetry than the matrix. During aging
without any external constraint, all the precipitate variants
may grow with the same probability and arrange themselves in
a self-accommodative way to minimize the strain energy.
However, if an external constraint, for example, an applied
stress, is applied during aging, the variants could be distributed
anisotropically (Ref 6, 8).

In order to improve our understanding of the constraint ef-
fect on the distribution of coherent precipitate variants and to
identify the factors that control the selection of preferred vari-
ants, systematic investigation on the selective variant growth
was carried out. This article reports our research, combining
theoretical, modeling, and experimental studies, on the selec-

tive variant growth of Ti11Ni14 precipitates in a constraint-aged
Ti-51.5at.%Ni shape memory alloy.

Theoretical Analysis

Determination of the Variant Number of a 
Coherent Precipitate Phase

The variant number of a coherent precipitate phase can be
determined by analyzing the symmetry-breaking change dur-
ing precipitation by decomposing the space group of the parent
phase into the coset of the space group of the precipitate (Ref
7). Suppose the space group of the parent phase is G0 and the
space group of precipitate is G1, the coset decomposition is
represented as:

G0 = N01G1 = {N1, N2, ..., Nm}G1 (Eq 1)

where N1, N2, ..., Nm are elements of the space group G0, but they
do not belong to G1. The number of these elements gives the num-
ber of different orientation variants, which is equal to m.

If a stress is applied during the precipitation process, the
number of variants is also influenced by the symmetry of the
stress “environment.” In this case, the coset decomposition is
performed on the intersection of G0 and the space group of the
stress constraint, (g), that is:

H0 = G0 Ç (g) = N 01
S  G1 = ì

í
î
ï
ïN 1

S, N 2
S, ¼, N l

S ”
ý
þ
ï
ïG1 (Eq 2)

where N 1
S, N 2

S, ¼, N lS are the elements belonging to both the
space groups of the parent phase and the stress constraint. H0 is
the space group of isoprobability of nucleation of the product
phase, which usually has fewer elements than G0. As a result,
the number of the variants is reduced because l < m.
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TiNi alloy has a B2 structure (ao = 3.01 Å) (Ref 10), and its
space group is Pm3m (Ref 11). The Ti11Ni14 precipitate has a
rhombohedral structure (ao = 6.72 Å, g = 113.9°), and its space
group is R3 (Ref 12, 13). The corresponding crystallographic
relation between the precipitate and the parent phase is
(111)Ti11Ni14

//{111}B2 (Ref 6). The number of variants can be de-
termined by decomposing the space group of the parent phase
into the coset of the precipitate space group, that is:

G0 = Pm3m = N01G1 = (h1 + h2 + h3 + h4 + h13 + h14

  + h15 + h16)R 3
_
 [111] (Eq 3)

where hi (i = 1, 2, ..., 16) are the following operation elements:

h1, identity transformation

h2, 180° rotation about (100)B2

h3, 180° rotation about (010)B2

h4, 180° rotation about (001)B2

h13, 180° rotation about (110)B2

h14, 90° rotation about (001)B2

h15, 270° rotation about (001)B2

h16, 180° rotation about (110)B2

One may see that the Pm3m group can be decomposed into
eight cosets of the  R3

- group, thus resulting in eight Ti11Ni14 phase
variants. The eight symmetry operations, hi, are equivalent
to rotating the [111] axis of a Ti11Ni14 variant to [111]B2,

[111]B2, [111]B2, [111]B2, [111]B2, [111]B2, [111]B2, and [111]B2,
respectively. The eight Ti11Ni14 variants have already been ob-
served experimentally (Ref 12) and found to be distributed in a
self-accommodative way corresponding to the minimum elas-
tic energy. However, when the aging is under a constraint, the
self-accommodative distribution can be broken, and the vari-
ant growth becomes selective. In principle, those variants,
whose growth minimizes the strain energy of the system, have
a higher probability to grow.

The Elastic Energy of a Coherent Precipitate

The first calculation of the strain energy of a coherent pre-
cipitate was made in 1957 by Eshelby (Ref 14, 15), who de-
rived equations to calculate the elastic strain of an ellipsoidal
inclusion in an isotropic matrix based on the assumption that
both phases have the same elastic moduli. Eshelby’s theory
was modified, extended, and developed later by many re-
searchers (Ref 16-21) to make it suitable for the anisotropic
elasticity case. A general elastic theory of a coherent two-
phase system with arbitrary morphology in the homogeneous
modulus approximation was proposed in 1967 by Khachatu-
ryan (Ref 22). In Khachaturyan’s theory, the exact equation for
strain energy and the Fourier transform of elastic displacement
in an arbitrary two-phase coherent mixture were derived. This
theory was later extended to arbitrary coherent mixtures com-
prising inclusions formed by crystal lattice rearrangements of
different types (Ref 23), using which, one may obtain all the re-

sults of Eshelby’s theory. Khachaturyan’s theory has recently
been extended to the elastically inhomogeneous case (Ref 24).

According to Khachaturyan (Ref 9), in the case of homoge-
neous elastic modulus, the stress-free transformation strain,
eij

o (r
®), is primarily dependent on the shape function, q(r®),

which describes the shape of the precipitate:

eij
o (r®) = eij

oq(r®) (Eq 4)

where eij
o corresponds to stress-free strain for the precipitate

when q(r®) = 1. The final elastic energy expression of a coher-
ent precipitate is expressed as:

Eel = 
V
2

 Cijkl e
_
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_
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o

   - 
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  ò  
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(2p)3 (nisij

o Wjk(n
®)skl

o  nl)|q(k®)|2 (Eq 5)

where Vp and V are the volume of the precipitate and the total
volume of the system, respectively. Cijkl is the elastic constant,

and sij
o = Cijkl ekl

o  . n
®
 = k

®
/k is a unit vector in the reciprocal

space, and ni is the ith component of n®.  Wjk (n
®) is a Green func-

tion matrix reciprocal to Wjk
-1(n®) = niCijklnl. q(k®) is the Fourier

transform of the shape function q(r®) whose value equals the

unity when r®  is within the precipitate and equals zero when
outside the precipitate.

When a precipitate grows under an applied strain or stress,
its coherent strain energy is changed. There are two types of
constraints (Ref 25). One is the strain constraint, in which the
system’s boundary is fixed after applying an external force to
the system, followed by the precipitation process. Under such
a condition, the system is subjected to a constant external
strain. The second type of constraint, called stress constraint,
is to apply a constant stress on the system without fixing the
boundary of the system.

In the strain-constraint case, the total elastic energy is ob-
tained by replacing the homogeneous strain in Eq 5 by the ap-
plied homogeneous strain, that is, e

_
ij = eij

a:

Eel
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   - Vp Cijkl eij
a ekl

o (Eq 6)

The last term in Eq 6 represents the coupling between the ex-
ternal strain and the coherent strain caused by the precipitate.
The strain-constraint condition was used to investigate the ef-
fect of external constraint on the selective variant growth in the
present study. As for the stress-constraint condition, the effect
of constraint stress is similar to that of the strain-constraint
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effect, although the expression of the strain energy is slightly
different from Eq 6 (Ref 25).

Strain Energy Variation of a Ti11Ni14 
Precipitate Caused by External Strain

 The coherent strain of a Ti11Ni14 precipitate comes from the
lattice mismatch between the precipitate and the matrix. Ex-
periments have demonstrated that a Ti11Ni14 precipitate has a
lenticular (Ref 6) shape. This has also been illustrated by re-
cent simulation studies (Ref 25). For a coherent disc-like pre-
cipitate, the strain caused by the lattice mismatch reaches its
maximum in the direction perpendicular to the precipitate disc
(Ref 26). In the case of a Ti11Ni14 precipitate, the maximum
mismatch occurs along the normal to the precipitate disc (i.e.,
á111ñB2). The eigenstrain matrix of the Ti11Ni14 precipitate,
when expressed in a coordinate frame with its three axes re-
spectively parallel to [110]B2, [112]B2, and [111]B2, has the fol-
lowing value:

(eij
o) = 

æ
ç
è

0.014
0
0

  
0

0.014
0

  
0
0

-0.029

“
¸
ø

(Eq 7)

From the eigenstrain matrix, one may see that this eigenstrain
causes a tensile strain perpendicular to the Ti11Ni14 precipitate
disc, and minor compressive strain parallel to the disc, when
the Ti11Ni14 precipitate is formed in a TiNi matrix.

The elastic energy of Ti11Ni14 precipitate was calculated us-
ing Khachaturyan’s elastic theory. The calculation indicates
that a Ti11Ni14 precipitate variant whose diameter equals 0.2
mm has its elastic energy equal to 3.08 ́  10–8 ergs. For this cal-
culation, the x, y, and z axes of the chosen coordinate frame are
respectively parallel to [110]B2, [112]B2, and [111]B2 of TiNi
(B2) lattice, in which the Ti11Ni14 precipitate disc has its nor-
mal parallel to z axis. Elastic constants of the TiNi matrix and
the Ti11Ni14 precipitate phase were assumed to be the same and
had the following values: C11 = 1.62 ́  1011 Pa, C12 = 1.29 ´
1011 Pa, and C44 = 0.34 ́  1011 Pa (Ref 27). Since the given
elastic constants are effective only in the coordinate frame (x¢-
y¢-z¢) whose three axes are parallel to [100]B2, [010]B2, and

[001]B2, the elastic constants were converted into ones which
were effective in the variant coordinate frame (x-y-z), using the
tensor transformation law (Ref 28):

Cijkl = Sii¢ Sjj¢ Skk¢ Sll¢ Ci¢j¢k¢l¢ (Eq 8)

where Sii¢ is the coordinate transformation matrix that relates
the x¢-y¢-z¢ coordinate frame to x-y-z coordinate frame.

When an external stress is applied, the internal strain is
modified with a change in the strain energy barrier to growth of
the precipitate. The following calculation has illustrated re-
spective effects of a tensile strain and a compressive strain on
the elastic energy of a Ti11Ni14 precipitate variant. The external
strain was applied in the x-z plane and was at an angle, b, to the
z axis, where the z axis is parallel to the normal of the Ti11Ni14
disc and the x axis is in the disc plane. Results of the strain en-
ergy calculation are given in Fig. 1, which represents the cou-
pling energy, Eint = -Vp Cijkl eij

a ekl
o , between the applied strain

and the coherent strain with respect to b. From Fig. 1, one may
see that the strain energy of a precipitate variant varies with the
direction of applied strain.

As mentioned earlier, Ti11Ni14 precipitates were assumed to
have the same elastic modulus as that of the TiNi matrix. This
assumption simplifies the strain energy analysis. However, in
the case of an inhomogeneous modulus, the present analysis is
valid, and the strain energy expressions may become similar to
those obtained in the homogeneous modulus case by introduc-
ing some eigenstrains eij

** to model the inhomogeneity by the
equivalent inclusions with the additional eigenstrains eij

** (Ref
29).

Prediction of Variant Selection of Ti11Ni14 
Precipitate under Applied Strains

As demonstrated above, the local strain of each precipitate
variant is changed by an applied strain or stress, depending on
both the variant orientation and the applied load. Some of the
variants are favored to grow, but the others are not. The exter-
nal constraint, therefore, reduces the number of variants, lead-
ing to the selective variant growth.

A pole projection method was proposed to predict the selec-
tive variant growth under external constraint. As discussed, the
growth of a variant is determined by the coupling of the applied
stress/strain and the eigenstrain. If the applying direction of an
external stress and á111ñTi

11
Ni

14
 axes of Ti11Ni14 variants are rep-

resented as poles and marked in a pole projection, one may
draw a critical contour of Eint = 0 around each variant pole as
shown in Fig. 2. In this figure, the solid and dashed lines are
parts of the Eint = 0 contours that are respectively on outward
and inward halves of the reference sphere, which is used for the
pole projection. Each contour separates the pole figure into
two parts. When falling into one part, the applied stress favors
(or opposes) the growth of the variant, while it opposes (or fa-
vors) the growth of other variants.

In order to obtain the critical contour around a Ti11Ni14 vari-
ant, the constraint strain caused by an initially applied stress
was first converted into eij

a , which were represented in the vari-
ant coordinate frame of the variant. Eint was then calculated,
and the critical contour for the precipitate variant was thus ob-

Fig. 1 The variation in the strain energy of Ti11Ni14 precipitate
caused by the applied load (sa = ±10 MPa).
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tained by finding those angles that correspond to

Eint = -Vp Cijkl eij
a ekl

o  = 0. Ti11Ni14 precipitate has eight vari-

ants whose (111)Ti
11Ni14

 are respectively parallel to eight
equivalent {111}B2 planes. We may draw the critical contours
for four variants, and the rest can be determined by a mirror
symmetry operation. For example, if (111)Ti11Ni14

| |(111)B2 vari-
ants are favored to grow, the growth of (111)Ti11Ni14

| |(1
_
1
_

1
_
)B2

variants is also favored.
Figure 2 illustrates such a (001)B2 pole projection for ana-

lyzing the Ti11Ni14 precipitation. If a compressive stress is
within the zone of a specific variant, which is bounded by the
critical contour, the stress will favor the growth of the variant;
if the stress is tensile, however, it will oppose this precipitate
variant. The situation is reversed when the stress pole is out-
side the zone. In general, the closer a compressive stress pole is
to the variant pole, the more favored the variant is; whereas in
the case of a tensile stress, the farther apart the stress pole is
from the variant pole (b £ 90°), the more favored the variant. It
should be noted that the selective variant growth depends on
the magnitude of the applied constraint as well as the chemical
driving force for the reaction. Our limited experiments and
simulation showed that the selective variant growth was in-
duced by a stress in the range from 20 to 80 MPa. Further study
is necessary to find out the entire effective range of the applied
constraint for selective variant growth and its correlation with
the chemical driving force.

One may see that there are some overlapped areas in the
pole figure. In principle, the preferred variant is determined by
the angle between the stress pole and each of the
ì
í
î111”

ý
þTi11Ni14

| |ìíî111 ”
ý
þB2

 poles. In the case of a compressive stress,
the smaller the angle between the compressive stress pole and
a Ti11Ni14 variant pole is, the more easily the variant grows.
Therefore, when the compressive stress pole is in an over-
lapped area, the preferential variant growth may be deter-

mined by comparing the angles between the stress pole and
each relevant variant pole.

To illustrate the selective growth under stress constraint, a
compressive stress is applied along [154]B2 as an example.
One may see from the pole projection that the [154]B2 ([154]B2)
stress pole is the closest to [111]B2 ([111]B2) and within the
zone bounded by Eint = 0 of this variant pole. As a result, the
variants with (111)Ti11Ni14

 parallel to (111)B2 ((111)B2) should

precipitate preferentially.

Experimentally Observed and 
Simulated Morphological Patterns

Experimental Observation

Ti-51.5at.%Ni alloy was prepared in a vacuum consumable
arc furnace, followed by homogenization treatment at 900 °C
for 5 h, then forged. The specimens cut from the alloy were an-
nealed at 820 °C in an argon atmosphere for 10 min, then aged
at 500 °C in an argon atmosphere for 1.5 h. A tensile stress, s =
38.3 MPa, and a compression stress, s = –38.6 MPa, were in-
itially applied on two specimens respectively, and the resultant
strain, ea, was kept unchanged during the aging. A JEM-
2000Fx electron microscope (JEOL USA, Inc., Peabody, MA)
was employed to investigate the Ti11Ni14 precipitation.

Figure 3(a) presents a micrograph of an aged specimen in
which one may see differently oriented lenticular Ti11Ni14 pre-
cipitates with bamboo leaflike cross sections. When the aging
was carried out under an external constraint, however, the se-
lective variant growth of Ti11Ni14 precipitate occurred and
thus resulted in an anisotropic distribution of Ti11Ni14 vari-
ants. Figure 3(c) illustrates a parallel alignment of Ti11Ni14
variants formed under a tensile stress applied horizontally,
which was confirmed along [541]B2 direction (Ref 30). It has
been demonstrated by corresponding TEM diffraction patterns
that the precipitates include only two types of variants, whose
[111]Ti11Ni14

 axes are parallel to [111]B2 and [111]B2 respec-

tively (Ref 30). If marking the tensile stress on the pole projec-
tion (Fig. 2), it can be explained why only these two variants
grew selectively. As Fig. 2 illustrates, the applied tensile stress
pole [541]B2 ([541]B2) is within the zone of the (111)B2
((111)B2) pole, and outside zones of other {111} poles. The
stress, therefore, retarded the growth of the
(111)Ti11Ni14

| |(111)B2 ((1
_

1
_

1
_
)B2) variants. Since the tensile

pole is the farthest from the (1
_

11)B2 ((11
_
1
_
)B2) pole (b £ 90°),

it favored the growth of Ti11Ni14 variants with their
(111)Ti11Ni14

 respectively parallel to the (1
__

11)B2 and (11
_

1
_
)B2

planes. This experimental observation agrees with the theo-
retical prediction. It should be indicated that
[111]Ti11Ni14

| |[1
_
11]B2 and [111]Ti11Ni14

| |[11
_
1
_

]B2 variants are

not necessarily identical, though they are antiparallel, be-
cause they may not have a mirror symmetry. According to
the symmetry analysis, there should be eight Ti11Ni14 vari-
ants, which have been experimentally observed using TEM
technique (Ref 12).

Figure 3(b) illustrates the case of a compressive strain con-
straint applied horizontally, which was along [154]B2

Fig. 2 A (001) pole projection used to analyze the selective
Ti11Ni14 variant growth. Each zone of a Ti11Ni14 variant pole is
surrounded by a contour of Eint = 0. The dashed areas represent the
overlapped region of differently oriented variants. The underlined
poles point inward.
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([154]B2). The stress pole was within the zone of
(111)B2((111)B2) as Fig. 2 illustrates. As predicted, the variants
with their [111]Ti11Ni14

 axes parallel to [111]B2 ([111]B2) pre-

cipitated preferentially. The corresponding diffraction patterns
(Ref 30) have demonstrated that the observed variants are
those predicted by the theory.

Computer Simulation

Computer simulation was also performed to corroborate the
theoretical analysis. A diffuse-interface field model was em-
ployed. In this model, microstructural development in a coher-
ent two-phase material is described by the temporal evolution
of the concentration and structural order parameter field vari-
ables. The concentration field distinguishes the compositional
difference between the precipitate phase and the matrix, while
the structural order parameter field variables distinguish the
deference between differently oriented precipitate variants as
well as the structural difference between the precipitate phase

and the matrix. The driving force for microstructural evolution
results from the reduction of the free energy of the system,
which includes bulk chemical energy, interphase boundary en-
ergy, and the elastic energy. The model has been described in
detail elsewhere (Ref 25, 31, 32).

Using this continuum field model, the microstructural evo-
lution in a Ti11Ni14-TiNi two-phase alloy under strain con-
straints was simulated. Figures 4(b) and (c) illustrate the
morphological patterns developed under tensile and compres-
sive constraints (sa = ±80 MPa) respectively. For a compari-
son, a morphological pattern formed without external
constraint is presented in Fig. 4(a). The microstructures devel-
oped from a supersaturated matrix, in which Ti11Ni14 particles
were randomly embedded at the beginning of the simulation.
Under a tensile constraint, those Ti11Ni14 variants lying close
to the applied tensile stress grew preferentially, while the vari-
ants perpendicular to the applied tensile stress were retarded.
While the compressive stress has an effect on the variant selec-
tion opposite to what the tensile stress has. The results of the

(b ) (c )

(b )(a ) (c )
Fig. 3 (a) A microstructure of aged Ti-51.5at.%Ni alloy. (b) A parallel alignment of Ti11Ni14 variants formed under a compressive stress ap-
plied horizontally. (c) A parallel alignment of Ti11Ni14 variants under a tensile stress applied horizontally.

Fig. 4 Simulated morphological patterns of a Ti11Ni14-TiNi alloy formed respectively under the following conditions: (a) without external
constraint, (b) under a compressive stress applied horizontally, and (c) under a tensile stress applied horizontally.

(a )
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simulation studies are consistent with the experimental obser-
vation and the theoretical prediction.

Conclusions

A coherent precipitate phase usually has a number of vari-
ants oriented in different crystallographic directions. The spa-
tial arrangement of the variants may strongly affect the
performance of a two-phase material. The variant number of a
coherent precipitate phase depends on the symmetries of in-
volved phases, and it can be determined by decomposing the
space group of the parent phase into the coset of the space
group of the precipitate phase. However, not all the variants
can grow if an external constraint is applied during aging. It
was demonstrated that the constrained aging can induce selec-
tive variant growth, which can be predicted by analyzing the
elastic coupling between the applied stress and the local strain.
Coherent Ti11Ni14 precipitation in a Ti-51.5at.%Ni alloy dur-
ing constrained aging was studied, using an approach combin-
ing theoretical analysis, experiments, and computer modeling.
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