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Abstract—Coherent precipitation of multi-variant Ti;;Nij, precipitates in TiNi alloys was investigated by
employing a continuum field kinetic model. The structural difference between the precipitate phase and the
matrix as well as the orientational differences between precipitate variants are distinguished by noncon-
served structural field variables, whereas the compositional difference between the precipitate and matrix is
described by a conserved field variable. The temporal evolution of the spatially dependent field variables is
determined by numerically solving the time-dependent Ginzburg-Landau (TDGL) equations for the struc-
tural variables and the Cahn—Hilliard diffusion equation for the composition. In particular, the interaction
between precipitates, and the growth morphology of Ti;|Niy4 precipitates under strain-constraints were
studied, without ¢ priori assumptions on the precipitate shape and distribution. The predicted morphology
and distribution of Ti;;Ni 4 variants were compared with experimental observations. Excellent agreement
between the simulation and expcrimental observations was found. «(: 1998 Acta Metallurgica Inc.

1. INTRODUCTION

A coherent phase transformation with a point sym-
metry reduction usually produces a number of var-
iants which are oriented in different, but equivalent
crystallographic directions. For example, Ti;;Niy4
precipitate in a Ni-rich TiNi alloy has a rhombohe-
dral structure, and it has eight variants whose
(L11)7i,Niy, planes are, respectively parallel to
{111}g, of the ordered BCC TiNi matrix (B2 struc-
ture) [1.2]. The eight variants fall into four groups
and each group includes a pair of conjugate var-
iants which can be obtained from each other by a
180" rotation operation (e.g. (11D)7ij,Ni|[(111)p2
variant and (111)7i,,ni,|[(TTT)g2 variant). If an in-
itial homogeneous TiNi alloy is aged within the
two-phase region of Ti;;Ni;4 and TiNi without any
external constraint, all the differently oriented var-
iants will grow with the same probability.

Coherent variants usually exhibit non-spherical
shapes due to the anisotropically elastic interactions
arising from the lattice mismatch between the pre-
cipitate phase and the matrix [3,4]. For instance,
the coherent Ti;;Nij4 precipitates have a near lens-
like shape. Furthermore. during precipitation,
different variants arrange in such a way that the
overall strain energy caused by the variants is mini-
mized, leading to a so-called self-accommodative
arrangement of precipitate variants. However, if an
external strain or stress is applied during ageing,

only some of the variants are favored to grow. As a
result, an anistropic distribution of precipitate var-
lants can be attained and this may result in unique
properties of the material. In Ti—Ni binary alloy
with 57.0 wt%-57.5 wt% Ni, it was found that,
under a constant stress or strain constraint, only
one type variant grows selectively, producing a two-
phase microstructure with the coherent Tiy;Nijy
precipitates aligned in parallel. These lenticular pre-
cipitates aligned in parallel result in an excellent
two-way shape memory effect, called all-round
shape memory effect (ARSME) [1, 5, 6].

The main objective of this simulation study is to
investigate coherent Ti; Ni;4 precipitation in a
supersaturated TiNi matrix and effects of applied
strain-constraints on the growth and distribution of
differently oriented Ti;;Niy4 variants. A continuum
diffuse-interface field model based on the time-
dependent Ginzburg-Landau and Cahn-Hilliard
diffusion equations was employed. The morphology
and growth behavior of a single Ti;1Ni4 variant
has been studied previously [7]. The main focus of
this paper is on the interactions between precipitate
variants and the temporal evolution of multi-variant
microstructure under applied strain-constraints. The
simulation of a multi-variant system under strain-
constraint may help us to further understand the
constraint effect on precipitation behavior, which is
helpful for designing adequate thermomechanical
trecatments to obtain optimal microstructure.
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2. DESCRIPTION OF A MULTI-VARIANT TWO-
PHASE MICROSTRUCTURE

In the diffuse-interface field model, a microstruc-
ture js described by a set of spatially dependent
field variables. Since the precipitates (Ti,Ni4) and
matrix (NiTi) differ not only in composition but
also in structure, description of a two-phase mixture
requires fields of both concentration C(r, () and
long-range structural order parameters 5{(r, t) where
subscript, #, corresponds to differently oriented
variant of the precipitate phase. The concentration
field describes the compositional difference between
the precipitate phase and the matrix, while the
structural order parameter fields distinguish the
structural difference between the precipitate and
the matrix and also distingnish differently oriented
variants of the precipitate. These field variables are
continuous across the interphase boundaries.

3. THE DRIVING FORCE FOR
MICROSTRUCTURAL EVOLLTION

The driving force for the temporal evolution
of a coherent microstructure consists of the fol-
lowing: (i) reduction in the bulk chemical free
energy, (ii) decrease of the total interfacial energy
of the boundaries between different phases or
between differently oriented variants, (i) relax-
ation of the elastic strain energy caused by the
lattice mismatch between the matrix and the pre-
cipitate phase and (iv) external loads, i.e. a con-
stant applied strain or stress. We need to express
all the contributions to the driving force in terms
of the field variables.

3.1. The bulk chemical free energy

The growth of Ti;|Nij4 precipitates is driven by
the difference in chemical free energy between the
supersaturated TiNi matrix and the equilibrium
TiNi matrix containing the Ti;Ni,4 precipitates. In
the field model, the local *“‘chemical” free energy
density is approximated using a Landau-type of
free energy polynomial
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where, v is the number of orientation variants. If
values of all the structural order parameter field
variables are zero, it describes the dependence of
the free energy of the matrix phase on composition.
At a given composition, the local free energy func-
tion has v number of degenerate minima corre-
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sponding to the free energy of each orientation
variant. Therefore, the free energy density as a
function of composition for the precipitate phase
can be obtained by minimizing f with respect to the
order field variables at different compositions, i.e.

AC, ni,(C)). For the particular case of Ti;Ni4 pre-

cipitation from a TiNi matrix, the coefficients in
Equation (1) were chosen as follows: 4; = 65.00,
Ay = 7.54, Az = 1.50, Aq = 145, and
As = Ag = A7 = 0.2. (The free energy was
measured in a unit, mkgT ~10° ergsjcm®, where
T=1773"C, m is a normalization coefficient.)
C, = 0.44 and C> = 0.38 are constants which are
close to equilibrium concentrations of the matrix
and the precipitate phase, respectively. Figure 1 il-
lustrates the chemical free energy as a function of
C: one curve corresponds to the TiNi matrix (B2
phase) and the other corresponds to the Ti;;Niy
precipitate phase. It should be noted that the energy
curves used here is only an approximation to actual
chemical free energy of the system. For the present
simulation, the accuracy of the chemical free energy
is not critical as long as it provides correct equili-
brium compositions and the driving force for pre-
cipitation.

3.2. The interfacial energy

In addition to the chemical free energy, the inter-
phase boundary energy also contributes to the sys-
tem’s total free energy. In this work, isotropic
interfacial energy is assumed and introduced
through the gradient terms in C and g,. The total
chemical free energy of an inhomogeneous system
may be expressed as [8, 9]

F. = f; [f(C, 7(0)+ Za—z" (Vap(r))?

p=1

i

+ 5(VC)2]zi3r ()

where o, and f§ are gradient energy coefficients. The
integration is performed over the entire system. The
total interfacial energy of the system is then defined
as the excess free energy associated with the inter-
faces, i.e.

ot = f [./'(C, ni)~/;,(C)+§“5‘ (Vn,->2+§(vcf]d3r
(3)
where
o(C) = friiNivg (Cp 1:0(Cp))
+./cl'i|,Ni14 (Cps Hi(,(CC;p)_) EfiNi (Crav ;= O)(CO ~Cy)
4

where C, and C,, are compositions of the precipi-
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Fig. 1. Specific free energy vs concentration for TiNi (B2)

phase and Ti;Nij, phase, calculated using Equation (1)

with A4, = 65.00, 4, = 7.54, 4, = 1.50, A, = 1.45, and
As = Ag = A7 = 0.2.

tate and the matrix. respectively. C, is the average
composition of the system.

3.3. Elastic strain energy

For coherent precipitates, an important contri-
bution to the total free energy comes from the
strain energy caused by the lattice mismatch
between the Ti; Nij4 precipitate and the TiNi
matrix. Equilibrium TiNi alloy has a B2 structure
(i.e. ordered BCC structure, ap = 3.01 A) [10],
while Ti;;Ni;4 precipitate phase has a rhombohe-
dral structure (ap = 6.72 A, 3 = 113.9°) [11,12].
The morphology (shape and orientation) of a coher-
ent precipitate variant is determined by the balance
between the strain energy and the interphase
boundary energy.

Calculation of the strain energy of a coherent
precipitate was pioneered by Eshelby [13, 14], who
derived equations of the elastic strain of an ellipsoi-
dal inclusion in an isotropic matrix based on the
assumption that both phases have the same elastic
moduli. A general theory of elastic strain energy of
a coherent two-phase system with arbitrary mor-
phology in the homogeneous modulus approxi-
mation was proposed later by Khachaturyan [15].
In Khachaturyan’s theory, the exact equation for
strain energy and the Fourier transform of elastic
displacement in an arbitrary two-phase coherent
mixture were derived. This theory was then
extended to arbitrary coherent mixtures comprising
inclusions formed by crystal lattice rearrangements
of different types [16], using which, one may obtain
all the results of Eshelby theory for ellipsoidal
inclusions in isotropic matrices. In the meantime,
Eshelby theory was also modified, extended, and
developed by many  researchers  [17-22].
Walpole {17], Kinoshita and Mura [18], and Asaro
and Barnett [19] subsequently proved or extended
Eshebly theory to the anisotropic elastic cases. Lee
et al. [21] obtained the solution of the anisotropic
elastic strain energy of coherent ellipsoidal precipi-
tates. Since the assumption of elastic homogeneity
is not suitable for describing some coherent micro-
structures, e.g. (y + ) two-phase microstructure
of a Ni-based superalloy with a pure dilatational

lattice mismatch, efforts are therefore made to
extend the elastic theories for analyzing microstruc-
tural evolution in elastically inhomogeneous solids.
A recent paper [23] reports on the extension of
Khachaturyan theory to elastically inhomogeneous
cases.

In general, the degree of lattice mismatch between
precipitates and the matrix is characterized by the
stress-free transformation strain which is nonzero
only within the precipitates and may be represented
as

o __
& =

ap — dm

Am

where a, and a,, are the lattice parameters of a
precipitate variant p and the matrix phase, respect-
ively. In the sharp-interface description of a two-
phase microstructure, the spatial dependence of the
stress-free strain can be characterized by a so-called
shape-function which is 1 within a precipitate and 0
in the matrix.

In the diffuse-interface description, however. we
have to express the stress-free strain in terms of
field variables. Let's assume that the local stress-
frec transformation strain, €j(r), is primarily depen-
dent on the structural order parameter through

ep(r) =Y e (pirn) (5)
P

where #,(r) is the normalized structural order par-
ameter describing the pth variant, and &{p) is the
corresponding stress-free strain for the pth variant
when #,(r) = 1. The elastic energy in absence
of applied stress or strain was previously
obtained [9, 24, 25]. The Appendix presents a deri-
vation of the elastic energy equation to make the
paper self-contained.

When a precipitation process (i.e. ageing) is con-
strained by applying constant strain or stress, the
coherent strain field caused by a precipitate is
changed by the constraint strain or stress, and this
results in a variation of the strain energy barrier
to the growth of the precipitate. There are two
types of constraints [7]. One is the strain-con-
straint, in which the system’s boundary is fixed
after applying an external force to the system. fol-
lowed by the precipitation process. Under such a
condition, the system is subjected to a constant
external strain. The governing potential of the sys-
tem is the Helmholtz free energy. The second type
of constraint, called stress-constraint, is to apply a
constant stress on the system without fixing the
system’s boundary. Under this condition, the sys-
tem is subjected to a constant external force. In
this case, the governing potential is the Gibbs free
energy.

In the first case, since the boundary of the system
is fixed, the total elastic energy is obtained by re-
placing the homogeneous strain in the elastic energy
equation (Appendix (Al13)) by the applied homo-
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geneous strain, i.e. &; = &,
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where the second term represents the coupling
between the transformation strain, ¢ji(p), and the
constant applied strain, &.

For the second type of constraint, a constant
homogeneous stress, ai, or surface force, is applied
to the system during precipitation process. The
total energy (elastic energy + potential of the load-
ing device) due to the transformation strain and the
applied stress is given by

E= E(»/ - VO'?/“,T(/ (7)
where E. is given by equation (A13) in the
Appendix. By mimizing £ with respect to &;

AE :
% = = VCipstn — VC,,A/]Z(k,(p)r]p(r) Vol =0.
(8)

We obtain the homogeneous strain under the influ-
ence of an applied stress,

& = Syl + ) e (pIni(r) ©)

14

where S, is the compliance tensor. Substituting
equation (9) back into the expression of £, we get
the total elastic energy contribution (including the
potential of external loading device) under the con-
stant stress condition,

£y =2 Cu Y Yo

P4

! d’g R

2O —n3(r) n_,,m]

v a i a o 2
— —2”5[,’/\-/0',/-0',\,[ — Ve 6[/‘([7)1’][’,(]‘).
r

(10)

The last term in equation (10) is the coupling
between the applied stress and the coherent strain
of the system. Comparing with the strain constraint,
one may notice that the coupling terms in both
cases have similar expressions because Cipgis = 03
However, in the strain-constraint case, the system is
subjected to a constant applied strain and
oy = Cygeiy is only the initially applied stress
which causes the strain, &, While in the stress-
constraint case, the system is subjected to a
constant stress, ;.
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4. THE KINETIC EQUATIONS FOR
MICROSTRUCTURAL EVOLUTION

In the field model, the temporal evolution of a
microstructure is determined by solving the time-
dependent partial differential kinetic equations for the
field variables. For the nonconserved structural par-
ameters, they are described by the time-dependent
Ginzburg-Landau equations [25, 26], whereas for the
conserved composition field, it is governed by the
Cahn-Hilliard nonlinear diffusion equation [27]:

any(r, 1) OF
o o, (r, 1)
BC(r, f) ) oF
=MV- 1
ot dC(r, 1) (1)

where the subscript p represents different type of
variants, M and L are kinetic coefficients which
characterize the atomic diffusivity and interface
boundary mobility, F is the total free energy of the
system which includes the bulk chemical free energy,
the interfacial energy, and the elastic strain energy.
The expression of F is dependent on the constraint
condition. In the strain-constraint condition, ¥ is the
Helmholtz free energy whereas in the stress-constraint
condition, F is the Gibbs free energy. Since the TiNi
shape memory alloys are often aged under strain
constraints for the two-way shape memory effect, the
strain-constraint condition was considered in the
present simulation study, i.e.

F:F4'+Ez’/ (12)

where F, and E,; are calculated using equations (2)
and (6). respectively.

The variational derivatives of the total free
energy with respect to the compositional and struc-
tural field variables are

oF _ (SF( (SE(,/ . B
5Cr) ~ oC(n) rSC(r)_A'[C(') i
As R R
+7.§:’1;(l')—'ﬂV‘C(r) (13)
I)
oF (SF(‘ (sEe[
TRCH 5 14
()Wp(r) 57),,(!‘) ()71[,(1') ( )
where
oF, .
Sy~ {AQ(C — C2) = A1) + Aap(r)

+245 ) ) + 2A6[2nﬁ(r)( >, rzf’,(r))

q#Ep 4#p
+ (Z:ﬁ(r)ﬂ +24, rzf,(r)n?.(r)}
q#p GEIFD
— o, V2,(r) (15)
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where {B,,q(n){nz(r)}g}, represents the inverse
Fourier transform of B, (n){n(r)}.

5. RESULTS AND DISCUSSION

A global coordinate frame was chosen whose x,
¥, £ axes are, respectively parallel to [1T0]g,, [112]5-.
and [111]g, of the TiNi (B2) matrix. It is also the
variant coordinate for the Ti; Ni,4 variant with its
(D) Nig, [|(111)pa, in which the eigen-strain matrix
of the variant is given by

0.014 0 0
0 0.014 0 (17)
0 0 -0.029

The elastic constants of TiNi matrix and the

Ti;;Ni 4 precipitate phase were assumed to be the
same, and have the following  values:
Ciy = 1.62x 10" ergs/em®, €, = 1.29 x 10'? ergs/
em®, and Cyy = 0.34 x 10'? ergsjem’ [28]. Since the
given elastic constants are valid only in the coordi-
nate frame (x')’z") whose three axes are parallel to
[100]g,. [010]g,, and [001]g,, the elastic constants
were converted to the coordinate frame (xyz)
through the tensor transformation law [29]:

Cirr = SiirSjjSin Sir Ciojoie (18)
where, S;; is the coordinate transformation matrix
which relates the x'y'z" cooridinate to the xyz coor-
dinate frame.

The eigen-strain matrix of a variant oriented in
another <111>g, direction has the same ex-
pression in its own coordinate frame (say, frame s),
and its form in the coordinate frame of a different
variant (e.g. frame ¢) can be obtained through the
tensor transformation law [29]

(€)= Sii.Sjyi (&), (19)
where, §;; is the transformation matrix which
relates the (xyz), frame to the (xyz), frame.

The simulation was conducted in a two-dimen-
sional space and four TiNi, variants were con-
sidered, which were distinguished by using two
structural field variables (n, = + 7, and > = =+ 1.,
respectively). A 200 x 200 uniform square grid was
used to spatially discretize the field equations. The
gradient coefficients «, and f were assumed to be
2.0. L and M were chosen to be 0.2. In order to
investigate the strain effect on the growth of
Ti; Nij4 particles, compressive and tensile stresses,
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o = T 8(xI0® ergs/cm®) = F 80 MPa, were initially
applied to the system to introduce compressive and
tensile strain constraints (i.e. resulted in constraint
strain "), respectively. Since both types of the evol-
ution equations (see equation (11)) are nonlinear
with respect to the field variables, they can only be
solved numerically. A recently developed semi-
implicit Fourier Spectral method [30] was used in
the present simulation to solve these equations.
Reduced time r* = ¢/1, was used to represent the
“ageing time”, where f, = (LmkgT)™". For each
iteration, the time step is Ar* = 0.02.

5.1. Two-particle interactions

It has been demonstrated in a previous paper [7]
that a Ti;;Ni,4 precipitate has a lens-like shape with
its normal parallel to <111> g, directions of the
matrix. The morphology of a coherent precipitate is
determined by the balance between the strain
energy and the interphase boundary energy. When
an external strain is applied, the coupling between
the applied strain and the local strain may favor or
unfavor the growth of the precipitate, depending on
both the strain type (i.e. tension or compression)
and its applying direction. When there is more than
one particle present in a system, they will interact
on each other through their long-range elastic fields.
To study the inter-particle interactions, we first
examine the interaction between two particles which
belong to the same orientation variant described by
the same structural order parameter #, = n,. Figure
2 illustrates the growth of a pair of Ti; Ni;4 var-
iants whose [ 11]ri,,ni,, parallel to [111]g, direction.
During growth, both of them changed their initially
circular shape to a lens-like shape with bamboo
leaf-like cross-section. This shape change is appar-
ently induced by the coherent elastic strain since the
interfacial energy is assumed to be isotropic. As the
two particles impinged each other, they coalesced
and formed a single domain.

The situation changes when the two particles
belong to different orientation variant groups.
Figure 3 illustrates the growth of a pair of conju-
gate particles whose [111]ri,,ni,, axes are respectively
parallel to [lI11]ga and [11T]g, (distinguished by
using #, =y, and y; = —n,). During growth and
impingement, the two particles did not coalesce, but
formed a precipitate consisting of two antiphase
domains separated by an antiphase boundary. The
simulated coalescence and the formation of anti-
phase domains are consistent with TEM obser-
vation [2] which demonstrates that a Ti;;Ni; pre-
cipitate may consists of antiphase domains whose
[111]7i, ni,, are oriented in opposite <111 > g, direc-
tions. Although morphologies of conjugate Ti;;Ni,
variants are the same (both of them have the same
eigen-strain matrix), their arrangement of atoms in
a unit cell may be different in the global frame
coordinate (needs a 180" rotation operation to
change from one to the other [2]).
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(a)

(b)
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(€)

Fig. 2. The growth of a pair of [111]ri, ni,||[!11]p> oriented Ti;;Ni, variant particles. The particles

changed their shapes from spheres (circles in 2D) to lens-like plates with a bamboo leaf-like cross-

section during growth, and they coalesced when contacting each other. {a) ¥ = 0, (b) r* = 1.9 x 103,
() t* =47x10".

Figure 4 (a)-(c) illustrates the case of two var-
iants whose [111]ri,,ni,, Tespectively parallel to
[111]g> and [11T]g, (distinguished by using #, = #,
and 4> = o). In this case, their eigen-strain
matrices are different in the frame coordinate. As a
result, they grew preferentially in different direc-
tions. They did not coalesce either because they
belong to different orientation variant groups.

The main concern of this work is to examine the
effect of strain-constraint on Ti;Ni,4 precipitation.
Simulation was conducted on the growth behavior
of the two particles shown in Fig. 4(a) under
applied tensile and compressive strains, respectively.
The strains were applied along the x-axis (horizon-
tally). Figure 4(e) demonstrates that under a com-
pressive strain-constraint, the variant which is
nearly perpendicular to the x-axis grew preferen-
tially, while the other variant was retarded. The
effect of the tensile strain-constraint is opposite to
that of the compressive constraint. Under the tensile
constraint, the variant which grew horizontally was
favored, while the other was retarded (see Fig. 4(d)).
This effect of strain-constraint comes from the
coupling term. —VFCyyel 3 el (pyy(r), in  the

P

(a) (

b)

equation (6). Since differently oriented variants
have different eigen-strain (in the global frame coor-
dinate), this coupling term has different values for
different variants and thus modifies the energy-bar-
rier, caused by the coherent strain, to the growth of
differently oriented variants. As a result, the growth
of the precipitate variants becomes selective.

5.2. Microstructural evolution in multi-variant sys-
tems and the selective variant growth

Microstructural evolution in multi-variant sys-
tems was investigated. To begin with, the multi-var-
iant Tiy; Nij4 precipitation without applying strain
constraints was simulated. Figure 5 illustrates the
microstructural development of a multi-variant
Ti;;Ni 4~ TiNi system with an increase in the “age-
ing” time. The initial microstructure of the system
was formed by randomly generating Ti;;Ni;4 par-
ticles with a radius r, = 5Ar (Ar is the unit length
of the grid) in a TiNi matrix (see Fig. 5(a)). The
matrix had a concentration C,, = 0.43 and the
value of the matrix’s structural order parameters
were zero. The concentration of the Ti;;Nij
particles was C, = 0.38 and their structural order

(c)

Fig. 3. The growth of a pair of conjugate Ti;;Ni4 variant particles whose [I11]r;,,ni, axes are parallel
to [111]g2 and [TT1]g, directions, respectively. The particles did not coalesce and are separated by an
antiphase boundary. (a) r* = 0, (b) * = 1.9 x 10%, () r* = 4.7 x 10°.
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(d)

(b) (c)

(e)

Fig. 4. The growth of two Ti;Ni4 variant particles whose [111]7j ni, axes are Qarallel to [111]g, and

[11T]g, directions, respectively. (a) * = 0, (b) * = 1.9x 10%, (c) r* = 4.7x 10°. The growth of the

particles became selective under applied strain constraints. (d) under a tensile strain applied along the
x-axis, (e) under a compressive strain applied along the x-axis.

parameters had the equilibrium value of +1.0
whose sign distinguish a variant and its conjugate
variant (e.g. the variant with its [111]r, ~ni,, parallel
to [111]g, and the other with its [111]y,, i, parallel
to [T11]g,). The system was initially in a non-equili-
brium state and its microstructure varied with the
“ageing” time to approach its equilibrium state.
During the process, Ti;;Nij, particles grew and
their shape changed from sphere (circle in 2D) to
the lens-like disc with bamboo leaf-like cross-sec-
tion. This simulated microstructural pattern is con-
sistent with TEM observation as shown by Fig. 5(e).
Comparing with the TEM micrograph, one may see
that the present simulation characterizes the major
feature of a multi-variant Ti;;Ni4—TiNi system free
from external constraints.

In a multi-variant system, the growth of different
precipitate variants and their mutual positions are
strongly affected by long-range elastic interactions
between the variants. As a result, the precipitate
variants should distribute in such a way that the
elastic energy is reduced to minimum. The system
under study has an initial microstructural pattern as
Fig. 6(a) illustrates. Such a microstructure was un-

stable and it evolved to reduce the total free energy.
The entire “‘ageing” process is illustrated in Fig. 6,
which demonstrates that as the “ageing™ time
increased, some of the particles grew and the rest
shrank or disappeared. The particles underwent sig-
nificant shape changes and a rearrangement to
minimize the total free energy of the system, result-
ing in a so called self-accommodative mutual
arrangement of Ti;;Ni; precipitate variants. The
bulk chemical energy, the elastic energy, the inter-
phase boundary energy, and the total free energy of
the system with respect to the “ageing’ time are il-
lustrated in Fig. 7. Curve 3 represents the total elas-
tic energy of the system. As we can see in Fig. 7,
the total elastic energy of the initial microstructure
is very high, and it decreases as time increases.
Curves 2 and 4 represent the total chemical free
energy F. and the interphase boundary energy o,
respectively given by equations (2) and (3).
Although they decrease over a long-period of time,
one may notice small increases in the total chemical
free energy and the interphase boundary energy
during the intermediate stage of ageing. However,
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Fig. 7. Various energy components vs the “ageing” time.

I-the total free energy: 2-the chemical free energy F.; 3—

the total elastic energy: 4-the interphase boundary energy.

The energies correspond to the morphological evolution il-

lustrated in Fig. 6. V' is the total volume of the system
under study.

the total free energy of the system (curve 1) always
decreases as a function of time.

The equilibrium concentrations of the Ti;Niy
precipitate and the TiNi matrix in stress-free con-
dition were determined as C, = 0.443 and
C, = 0.384: while these concentrations changed to
C; = 0.431 and C, = 0.376 when the elastic energy
contribution is included. The elastic energy pro-
duces changes in the equilibrium compositions.

As demonstrated in the case of a single variant [7]
or a two-particle system illustrated earlier, the
growth of a variant is affected by applied strain or
stress. This effect is attributed to the coupling
between the applied strain/stress and the local
strain. The elastic coupling changes the strain
energy-barrier to the growth of coherent precipitate
variants, and thus results in the selective variant
growth. Previous calculation by Li and Chen [2] has
demonstrated that even when the applying direction
of a compressive strain deviates from the normal of

(a)
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the variant, the growth of the variant is still favored
if the angle between the compressive strain and the
normal to the variant is less than about fifty
degrees. A tensile strain has an opposite effect on
the variant growth. The calculation results were
confirmed by the simulation of a single variant
growth [7]. In the case of multi-variant system, an
applied strain may promote the growth of some
variants and retard the others, depending on their
orientations. This strain-orienting effect results in
selective Ti|;Nij4 variant growth. Figure 8(a) illus-
trates a microstructure resulted from the selective
variant growth under a compressive strain which
was applied in the x direction (i.e. horizontally).
The initial microstructure is similar to that shown
by Fig. 5(a). Under the compressive strain, not all
variants grew, and the grown variants were only
those which had their normals parallel to the com-
pressive strain. When a tensile strain was applied.,
however, the growth of these variants was un-
favored, but other variants having their normals
nearly perpendicular to the tensile strain were
favored to grow. The resultant microstructure
under the tensile strain is illustrated in Fig. 9(a).
The strain-oriented precipitation of Ti;Nij4 var-
iants demonstrated by the present simulation agrees
very well with both experimental observation (see
Fig. 8(b) and Fig. 9(b)) and the theoretical calcu-
lation presented in a previous paper [2]. Similar
phenomena of the selective precipitation was also
observed in other systems. e.g. the precipitation of
disk-like " (Fe;cN>) from a supersaturated Fe-N
alloy. The «” disk causes a compressive strain paral-
lel to its normal, which is significantly larger than
other strain components. When a tensile stress
(similar to the effect of applied strain) is applied
parallel to the normal to this variant, nucleation
and growth of the variant is greatly promoted,
against others which oriented in different crystallo-
graphic directions [31, 32].

(b)

Fig. 8. (a) the selective variant growth under a compressive strain, applied in the x-direction (i.e. the

horizontal direction). Only those variants whose normals were parallel to the strain were favored to

grow; (b) TEM observation of the strain-oriented Tij;Nij4 precipitation in Ti=51.5 at.% Ni alloy under
a compressive strain constraint applied along the x-axis.
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(2)
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Fig. 9. (a) the selective variant growth under a tensile strain, applied in the x-direction. Only one type

of variant grew whose normals are near perpendicular to the tensile stress; (b) TEM observation of the

strain-oriented Ti) Niyy precipitation in Ti-51.5 at.% Ni alloy under a tensile strain constraint applied
closely along the x-axis.

6. CONCLUSION

A computer simulation study was conducted to
investigate coherent TijNiyy precipitation in TiNi
shape memory alloys and the selective variant
growth of Ti;Nij4 precipitates under applied
strain-constraints. A time-dependent Ginzburg-
Landau kinetic model was employed, taking into
account the effect of applied strain on the elastic
strain energy of the system. [t was demonstrated
that the growth of lens-like Tij;Ni4 precipitates in
a supersaturated TiNi matrix is strongly affected by
internal and external strains. The morphology of
the precipitate and the mutual arrangement of
different Ti;;Nij4 variants are determined by the
coherent elastic energy. Under the influence of
external strain constraint, the distribution of
Ti; Nij, variants becomes anisotropic, resulting in
parallel alignment of Ti;|Ni;4 precipitate variants.
Excellent agreement between the simulation and ex-
perimental observations was found.
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APPENDIX A—ELASTIC ENERGY CALCULATION

The local elastic strain in a two-phase mixture is the differ-
ence between the total strain and the stress-free strain,
that is

) = () — (1) = g5(0) = Y_ (0. (AD
P

In the homogeneous modulus approximation (i.e. the elas-
tic modulus of the precipitate phase is the same as that of
the matrix), the elastic stress field is given by

a5 = Ciuefy(r) = G,A/[aum - Zc:,(rmi(r)} (A2)
P

where Cju, is the elastic constant. The equilibrium con-
dition gives

doy(r)y _ .| 3e(r)
= G [ S;} Z £)y, (np(r))]:(). (A3)

Following Khachaturyan, the total strain &,(r) may be rep-
resented as the sum of homogeneous and heterogeneous
strains:

i,‘[,(l') = 5,-/- + (56,/(1') (A4)
where the homogeneous strain, &, is defined so that
f 5:;,-/-(r)d3r =0. (AS)
v

The homogeneous strain is the uniform macroscopic
strain, while the heterogeneous strain is chosen such that
it has no macroscopic effects. The heterogeneous strain
can be expressed in terms of heterogeneous displacement,

Sesr(r) = F‘;‘(” "‘,"(')]A (A6)
ry ory
Substitute (A4) and (A6) into (A3). we have
Puy(r)
— A7
Conr s Z w) npm) (AT)
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where, ai(p) = Cyeidp). Equation (A7) can be readily
solved in the Fourier space,

v(g) = —iGa(g) Y ay(plg (), (A8)
I3

where g is a reciprocal lattice vector, g; is the jth com-
ponent of g,

"k(g)=[ up(rye”® d’r (A9)
v
2 2 —igr 33
{r/p(r)]g :f 1, (ne”"® d’r (A10)
”

andI Gi(g) is . the invgrse tensor to
(GT(@i = Cinagigr= & Cimp= g~ Q'(n), where n= g/
g.

The total elastic energy of a coherent multi-variant mix-
ture is given by

1
Ey=7 / Cipursy (DG () .
v

5 (A1)

Using the definitions (A1), (A4), (A6), and (A7), the elas-
tic energy can be written as

V _ _ ——
E(’/ :E'Ci/'klguﬁkl -V § EI/GI?/(P)'I;(T)
4

+5 C,,k,ZZr,,(ma AAOmr)

" du; oy
|2 Cmi g, 3, o

where (77) represents the volume average of (...) and V' is
the total volume of the system. Substitution of the back
Fourier transforms of u(r) and r],z, (r) into (A12), we obtain
the final form of the total elastic strain energy of the
multi—variant mixture

Ey=+ Cf/k/i?i, & — VCirity Z & (Ph(r)
7

+5 c,,uZZr (D) ()

Z 2 %n},(r)}ﬂr (Al12)
or;

Zm By m{nml{nm),  (A13)

where

By () = n,075(p) Qi (Mo (g (Al4)



