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Abstract-A coherent precipitate phase usually has a number of variants that are oriented in different but 
equivalent crystallographic directions. The distribution of the variants can be changed by applying stress 
during ageing. Under the stress constraint, the growth of differently oriented variants becomes selective, 
and this, in turn, varies the material’s microstructure. The number of precipitate variants may be 
determined by decomposing the space group of the parent phase into the coset of the space group of the 
coherent precipitate phase; and which variants grow selectively is, however, dependent upon the coupling 
between the applied stress and the local strain of the variants. Selective variant growth of TillNil 
precipitates in Ti-51.5 at% Ni alloy was investigated. A pole projection method was proposed and used 
to predict the selective variant growth of TillNild precipitates under the stress constraint. TEM observation 
was conducted to corroborate the prediction. A positive correlation between the theoretical analysis and 
the experiment was established. Copyright cm 1997 Acta Metallurgicn Inc. 

1. INTRODUCTION 

It is well known that the second phase precipitation 
in supersaturated solutions plays a particularly 
important role in improving material’s properties. 
Precipitates can be introduced by ageing to modify 
the microstructure of materials, and to enhance the 
materials strength [l-4], high-temperature perform- 
ance [2,4], and wear behaviour [.5], etc. 

A precipitate phase usually has a number of 
differently oriented variants [6-81. Under stress-free 
conditions, the precipitate variants grow in such a 
way that a self-accommodative distribution of the 
variants is achieved to minimize the strain energy 
introduced by the variants. If a stress is applied 
during ageing, however, the self-accommodative 
distribution of variants cannot be achieved and, 
instead, selective variant growth occurs, forming an 
anisotropic distribution of variants [8, 91. 

Great effort has been made to understand the 
precipitation thermodynamics, kinetics, and mor- 
phology [6, 10, 111; and the established metallurgical 
laws of precipitation have been widely applied in 
materials engineering. However, most of the previous 
work has been concerned with the precipitate size and 
size distribution and their effects on mechanical 
properties. The anisotropy of the precipitate variant 
distribution and its control has received little 
attention, and thus, is much less well understood. 

An anisotropic distribution of variants may result 
in anisotropic properties of materials, especially for 

t To whom all correspondence should be addressed. 

functional materials. This is best demonstrated by the 
two-way shape memory effect of TiNi alloys caused 
by anisotropically distributed TillNil precipitate 
variants [9]. It was observed that aged TiNi alloys, 
whose Ni content is in the range from 51.0 at% to 
51.5 at%, exhibit an excellent two-way shape 
memory effect (SME) [9, 121. The two-way shape 
memory effect relies on a long-range internal stress 
field in the alloy, which controls the “path” of 
reversible martensitic transformations. This long- 
range internal stress field is caused by a parallel 
arrangement of coherent TillNil precipitates (i.e. one 
type of variants grow selectively) obtained by 
constrained ageing. The existence of the long-range 
internal stress field is attributed to the fact that the 
local stress caused by each of the variants aligned in 
parallel does not reduce but enhances each other. If 
the ageing is performed in an unconstrained 
condition, however, all differently oriented variants 
may grow with the same probability, and the local 
stresses introduced by the variants will reduce each 
other in order to minimize the strain energy. As a 
result, no long-range stress field will be created. It has 
been demonstrated that the parallel arrangement of 
TillNilj variants, caused by constrained ageing, 
results in a superior two-way SME, called the 
all-round shape memory effect [9]. 

In order to improve our understanding of the 
effects of anisotropically distributed precipitate 
variants on materials’ properties, especially on 
properties of functional materials, and to identify the 
factors that control the variant distribution. system- 
atic investigation on the selective variant growth is 
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necessary. This paper reports our combined theoreti- 
cal and experimental studies on the selective coherent 
variant growth in constrainedly aged Ti-5 1.5 at% Ni 
shape memory alloy. Based on this study, we propose 
a pole projection method that may be employed to 
predict the selective variant growth under stress 
constraint. 

2. THEORETICAL ANALYSIS AND PREDICTION 

To clarify the selective variant growth, two factors 
should be determined: (1) the number of precipitate 
variants; and (2) the influence of applied stress on 
strain energies of different variants. Once these two 
factors are determined, the selective precipitation 
under stress constraint may be predicted, and 
controlled in practice. 

The number of coherent variants may be 
determined by decomposing the space group of the 
parent phase into the coset of the space group of the 
precipitate [7]. Suppose the space group of the parent 
phase is Go, and the space group of precipitate is G,, 
the coset decomposition is then represented as 

Go = No,G, = {N,,Nz,...,Nm}G, (1) 

where N,, N2, . . . , N,,, are elements within the space 
group Go, but they do not belong to G,. The number 
of the elements, N,, NZ, . . . , N,, gives the number of 
differently oriented precipitate variants, which is 
equal to m. 

If a stress is applied during the precipitation 
process, the number of variants is no longer 
dependent only on the symmetries of the parent phase 
and the precipitate phase, but is also dependent on 
the symmetry of the stress “environment”. In this 
case, the coset decomposition is performed on the 
intersection of Go and the space group of the stress 
constraint, (g), that is 

H0 = Go n (g) = N”,GI = {N, A%. . . , N}G (2) 

where N, N& . . , N; are the elements belonging to 
both the space groups of the parent phase and the 
stress constraint. Ho is called the space group of 
isoprobability of nucleation of the product phase. HO 
usually has less elements than Go, and therefore, the 
number of precipitate variants is reduced (i.e. 1< m). 
If the stress is hydraulic, however, it gives a spherical 
symmetry (SOj), and this symmetry does not reduce 
the number of variants because the space group of 
the isoprobability of precipitate nucleation, 
Ho = GO n (8) = GO, has the same number of 
elements as Go. 

The symmetry analysis, however, does not 
determine which variant may grow selectively and 
which one may be constrained under the applied 
stress; this selection should depend on the local strain 
around each differently oriented variant. In principle, 
those variants, whose growth minimizes the system’s 
strain energy, have a higher probability to grow. 
Therefore, by incorporating the strain energy analysis 

with the symmetry analysis, one may be able to 
predict the selective growth of precipitate variants. 

The strain introduced by coherent precipitates 
comes from the lattice mismatch between the 
precipitate phase and the matrix phase. When 
precipitates form, the resultant strain raises the free 
energy of the two-phase mixture system and thus 
brings a strain-energy barrier to the growth of the 
precipitate. This energy barrier may, however, be 
changed by applying stress constraint during the 
precipitation process. Under the stress constraint, the 
local strain is varied by the external stress, and the 
resultant change in local strain is different for 
differently oriented precipitate variants. As a result, 
the strain energy barrier to differently oriented 
variants is changed differently, and this may result in 
selective variant growth. 

The study on strain energy of coherent precipitates 
was conducted by Eshelby [13, 141, who derived 
equations of elastic strain and strain energy of an 
ellipsoidal inclusion in an isotropic matrix based on 
the assumption that both phases have the same elastic 
moduli. Since then, Eshelby’s theory has been 
modified, extended, and developed by many re- 
searchers [15-201. Walpole [15], Kinoshita and Mura 
[ 161, and Asaro and Barnett [ 171 subsequently proved 
or extended Eshelby’s theory to the anisotropic 
elasticity case. Lee et al. [19] numerically calculated 
the anisotropic elastic strain energy of coherent 
ellipsoidal precipitates and compared the results with 
those obtained using the isotropic elasticity theory. A 
general theory of strain energy of coherent second 
phase was proposed by Khachaturyan [6]. This 
theory presents exact equations of strain energy of an 
arbitrary two-phase coherent mixture with homo- 
geneous modulus, and furthermore, this theory 
makes it possible to determine the morphology 
(shape, habit, and orientation) of a precipitate. 
Khachaturyan’s theory has been recently extended to 
inhomogeneous modulus cases [21]. 

According to Khachaturyan [6], in the case of 
homogeneous modulus, the strain field, Ed), may be 
represented as the sum of homogeneous and 
heterogeneous strains: 

Q(i) = Co + 6$(F) (3) 

where the homogeneous strain, E,,, is defined so that 

s 
6q(F) dsr = 0. (4) 

Y 

The homogeneous strain is the uniform macroscopic 
strain and the heterogeneous strain is so chosen that 
it has no macroscopic effects. 

When a two-phase mixture system is in equi- 
librium, the homogeneous strain can be obtained by 
minimizing the strain energy of the system [6]. The 
minimization of the strain energy leads to 

- 0 t&l = E&op (5) 
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where 6: is the eigenstrain of the precipitate phase, hlJ-90 rotation about (OOl)BZ 
which is the transformation strain under stress-free 
condition. w,, = VP/V is the volume fraction of the h15-270 rotation about (001),2 

precipitate. The final expression of the strain energy h,,-I 80 rotation about (1 lo),, 
of an arbitrary coherent two-phase mixture system is 
given by: It is seen that the Pmzm group can be decomposed 

into eight cosets of the R,- group, and therefore, the 
1 

E= 2 s 
d’k B(A)IO(f;-)IZ 
(2743 (6) 

and 

B(A) = C,,,&:‘, - n,crp,Q,, (fi)o:(,n, (7) 

where C,,at is the elastic constant, and 0: = CO&‘,. 
A = z/k is a unit vector in the reciprocal space and II, 
is the ith component of il. Q(A) is a Green function 
matrix reciprocal to Q,;‘(iz) = n,C,,k,n,. %(z) is the 
Fourier transform of the so-called shape function 
O(F): 

%(L) = JO(?) e-lB,i d3r (8) 

The shape function, %(?). describes the shape of the 
precipitate; its value equals unity when F is within the 
precipitate and equals zero when outside the 
precipitate. 

As mentioned earlier, the strain energy caused by 
the formation of a precipitate brings a barrier to its 
growth. When an external stress is applied during the 
precipitation process, however, the strain energy is 
changed due to the coupling between the applied 
stress and the local strain. Since this coupling is 
different for differently oriented precipitate variants, 
the analysis on the coupling between the applied 
stress and the local strain may allow us to predict the 
selective variant growth. 

2.1. Determination of the number qf TillNil trariants 

TiNi alloy has a B2 structure (a0 = 3.01 A) [22], 
and its space group is P,,,?, [23]. The TillNil 
precipitate has a rhombohedral structure 
(a0 = 6.72 A, 7 = 113.9’). and its space group is R, 
[24, 251. The corresponding crystallographic relation 
between the precipitate and the parent phase is 
(11 lh,,Yl,, 11 [I 11 jBz [9]. The number of precipitate 
variants can be determined by decomposing the space 
group of the parent phase into the coset of the 
precipitate space group, that is 

Go = Pm3,1, = Nn, G, = (17, + hz + 113 + h, + 

hl, + k,, + hr + h16v&,,,j (9) 

where h, (i = 1. 2, , 16) are following operation 
elements: 

h,-identity transformation 

h-l 80’ rotation about ( 100)sz 

hz-1 80’ rotation about (0 IO),? 

TillNilJ precipitate should have eight variants. The 
eight symmetry operations h, are equivalent to 
rotating the [1 111 axis of the TillNil variant to 
[l i l]Blr [Tii],,, [ii IIB1, [lii],Z, [Iil],l, [iIi],I, [I ii],?, 
[ii llBZ, respectively, and this results in eight variants. 

The eight Ti,,Ni,, variants were indeed observed 
experimentally [24]. The symmetry analysis is, 
therefore, consistent with the experimental obser- 
vation. The eight variants usually grow in the same 
probability during stress-free ageing, and form a 
self-accommodative distribution to minimize the 
strain energy. If a stress is applied during ageing, 
however, the variants may grow selectively. The 
following sections will deal with the selective variant 
growth of Ti,, Nil4 precipitates. 

2.2. .EfJect of appliedstress 017 selectil:e variant growth 
qf Ti,, Nif4 precipitate 

As demonstrated later by TEM, TillNil precipitate 
has an irregular lens-like shape with a bamboo 
leaf-like cross-section, and its (lll)n,,N1,, plane is 
parallel to (11 l}B2 planes of the matrix. Using the 
two-beam technique, strain contrast around the 
precipitate was observed when the diffraction g, used 
for the dark-field imaging, was close to 
(lll)BZ//[llllT,,,Nl,r. i.e. close to the normal to the 
TillNil disc (see Section 3). This implies that the 
predominant strain, introduced by the TillNil 
precipitate, is parallel to the normal to the precipitate 
disc. 

I - aa>O 

2 - aa=0 

z 
Fig. 1. A schematic illustration of the strain energy of a 

h-180- rotation about (OOl)BZ 

hIi- 80” rotation about (ilO),? 

TillNil precipitate. The external stress is applied in&e X--Z 
plane and at an angle. B. to the = axis. The solid contours 
represent the strainer&y under the influence of applied 
stress. The dashed contour represents the strain energy 

generated by only the precipitate itself. 
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Fig. 2. The variation in the strain energy of TillNil precipitate, caused by the applied stress 

(I? = T 10 MPa). 

The strain caused by a TillNil precipitate comes 
from the lattice mismatch between the precipitate and 
the B2 matrix. It is known that for a coherent 
disc-like precipitate, the strain caused by the lattice 
mismatch reaches its maximum in the direction 
perpendicular to the precipitate disc [lo]. For a 
TillNil precipitate, the maximum mismatch is 
attained along the normal to the precipitate disc (i.e. 
(lll)BZ), and it has a value: 6, = ~~~~~~~~~~~~~~~ - d{lll& 
d{lll)B1 = - 2.9% [9]. This minus mismatch contrib- 
utes a tensile strain perpendicular to the precipitate 
disc. The strain caused by the TillNil precipitate may 

;10 

110 

Fig. 3. A (001) pole projection used to analyse the selective 
TillNil variant growth. Each zone of a TillNild variant pole 
is surrounded by a contour of I?“’ = 0. The dashed areas are 
the overlapped areas of differently oriented variants. The 

underlined poles are pointed inwards. 

be seen more clearly from its eigenstrain matrix. The 
eigenstrain of TillNil precipitate, when expressed in 
a coordinate frame with its three axes respectively 
parallel to [lie],,, [11&r, and [l ll]sZ, has the 
following value 

0 
0.014 0 

- 0.029 

1 

J . (10) 

From the eigenstrain matrix, one may readily see that 
this eigenstrain could cause a tensile strain perpen- 
dicular to a TillNilrl precipitate disc and minor 
compressive strain parallel to the disc, when the 
TillNil precipitate is formed in a TiNi matrix. In 
fact, because of the lens-like disc shape, the 
perpendicular strain component may be more 
predominant [lo], and this was also demonstrated by 
TEM observation. 

When an external stress is applied during the 
precipitation process, the strain caused by the lattice 
mismatch is modified, and this changes the strain 
energy barrier to the growth of a precipitate variant. 
In order to evaluate the strain-energy barrier and 
understand the selective variant growth, the stress 
effect on the growth of a single variant was first 
investigated. A matrix body was initially applied a 
stress, ai, which caused a strain, tt, = &&, in the 
system. Sklij is the elastic compliance. The body 
boundary was then fixed. The matrix body was now 
under the external stress, oi, or more precisely 
speaking, under a fixed external strain, &, because 
the applied stress would change when a precipitate 
grew in the matrix. When a TillNil variant was 
formed, the strain field was changed due to the 



lattice mismatch. The total strain energy is rep- 
resented as 

E= s fct,& - E;,(G, - @J d’r 
I’ 

= s tC,,k,@&d3r + fCq&~, d3r 
c s P 

- s C tatP d’r = Ep + E” + PL yki y k, (11) 

c 

where, C,# is the elastic constant, which was assumed 
to be homogeneous throughout the whole system 
(homogeneous modulus case). The first term in 
equation (11) is the strain energy introduced by the 
precipitate in a stress-free condition, and it may be 
evaluated using equation (6). The second term gives 
the strain energy caused by the applied stress without 
the precipitate. The third term represents the 
coupling between the applied strain and the strain 
caused by the precipitate. Since the strain, t!,, caused 
by the precipitate may be expressed as the sum of the 
homogeneous strain, &, and the heterogeneous 
strain, &&), the third term in equation (11) may 
thus be turned into 

E”’ = _ C t”t~ d$ = _ 
rikl 4 k, 

I 

C,,klt;(& + 6tai) d’r 
I’ 

= - c,,k,t:,tj,v, = - ff;,&Vp (121 

where VP is the volume of the precipitate. During the 
above derivation, the condition given by equation (4) 
was used. It is seen that this coupling term can 
eventually be represented by the coupling of the 
applied strain or the initially applied stress with the 
eigenstrain. From equations (11) and (12) one may 
see that the selective variant growth is determined by 

E”‘, because E” and Ep are the same for all variants 
in a multi-variant system, bearing in mind that these 
variants are oriented in crystallographically equival- 
ent directions. Under the applied stress, a variant 
whose growth decreases the strain energy (i.e. results 
in a minus k?“‘) is favoured to grow. while the variant 
whose growth results in a positive El”’ is unfavoured. 

The following calculation illustrates the effects of 
tensile and compressive stresses on C”’ of a TillNil 
precipitate disc. The stress was applied in the x-z 
plane and was at an angle, fi, to the z axis (see Fig. 1). 
X, ~1, z axes of the coordinate frame are respectively 
parallel to [ 1 fOIBz, [ 1 lz],, and [ 11 llsz of the TiNi (B2) 
lattice. In this coordinate frame, the TillNil 
precipitate disc has its normal parallel to the z axis 
and its eigenstrain is given by equation (10). We may 
call this coordinate frame the variant coordinate 
frame. Elastic constants of the TiNi matrix and the 
TillNild precipitate phase were assumed to be the 
same, and they had the following values: 
C,, = 1.62 x 10” Pa Cu = 1.29 x 10” Pa, and 
CM = 0.34 x 10” Pa’ [26]. Since the given elastic 
constants are effective only in the coordinate frame 
(x-+z’) whose three axes are parallel to [lOO]sz, 
[OlOlLQ and [O01]s2, the elastic constants were 
converted into ones which were effective in the 
variant coordinate frame (.u-y-z). This conversion 
was made through the tensor transformation law [27]: 

Cllk, = s,,.s,‘skk’s,~c,j’k’, (13) 

where S,,, is the coordinate transformation matrix 
which relates the X-~‘-2’ coordinate frame to the 
s-y-z coordinate frame. Results of the strain energy 
calculation are given in Figs 1 and 2, which represent 
I?“’ with respect to 8, the angle between the direction 
of applied stress (a tensile or compressive stress) and 
the z axis. From the figures, one may see that the 
strain energy of a precipitate variant varies with the 
applied stress. Figure 1 schematically illustrates 
contours of strain energy with respect to p. In this 
figure, the homogeneous strain energy caused by the 
applied stress has been subtracted, so that the 
contours actually represent the variation of the 
precipitate strain energy under the influence of the 
applied stress. The radius from the origin to a 
particular point (r, b) on a strain energy contour 
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represents the value of the strain energy, which is the 
sum of @ and ,??“I. In the same figure, Ep has also 
been illustrated as a reference (the dashed curve) so 
that one may see the strain energy variation under the 
applied stress. EQ was evaluated using equation (6), 
and the result shows that @ = 3.08 x 10e8 ergs for a 
TillNil precipitate variant whose diameter equals 
0.2 pm. One may see that, at low angles (p), the 
compressive stress reduces the strain energy, and 
therefore favours the growth of the precipitate 
variant; while at high angles, it increases the strain 
energy, making the variant growth difficult. The 
critical angle at which the stress changes from 
favouring to unfavouring the variant growth is 51”, 

when the stress is applied in the x-z plane. In the case 
of a tensile stress, it was demonstrated that the stress, 
however, had a reversed effect. The calculated values 
of E”‘, corresponding to the strain energy contours 
illustrated in Fig. 1 are given in Fig. 2. In this figure, 
the applied stresses are equal to T 10 MPa, and the 
zero-line is equivalent to the dashed curve in Fig. 1, 
so that the given curves only represent the variation 
in strain energy of the precipitate under the influence 
of the applied stresses. 

In this study, TillNil precipitates are assumed to 
have the same elastic modulus as that of the TiNi 
matrix (i.e. the homogeneous modulus case). This 
assumption much simplifies the strain energy 

Fig. 5. (a) Aged under an initially applied tensile stress (along [541]~2), only parallel variants precipitated; 
(b) the corresponding diffraction pattern shows that there exist two types of variants; (c) [l 1 l]n,,~,J [I1 1 ]B, 
variants, dark-field image taken using diffraction A; (d) diffraction pattern of the [ll l]ri,,~i,~ 11 [Tll]r,~ variant 
with B2 matrix. (e) [I 1 I]T,,,N,,, 11 [IiT],> variant, dark-field image taken using diffraction B; (f) diffraction 

pattern of the [l 1 l]r,,,~,,, II[lTi],, variant with B2 matrix. 
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Fig, 6. (a) Aged under an initially applied compressive stress (along [154]~2), only parallel variants 
precipitated, including two types of variants: [I 1 l]r,,,~,,J [I ll]~: and [I 1 l]n,,~,,, 11 [iiilB2; (b) diffraction --- 
pattern of the [I I I]T,,,N,,, 11 [I 1 llsl variant with B2 matrix; (c) diffraction pattern of the [l 1 l]r,,,\,,, 11 [I 111~~ 

variant with B2 matrix. 

analysis. However, even when the precipitates are 
inhomogeneous, the present analysis is valid and the 
strain energy expressions may become similar to 
those obtained in the homogeneous modulus case by 
introducing some eigenstrains tt’ to model the 
inhomogeneity by the equivalent inclusions with the 
additional eigenstrains t:l’ [28]. 

2.3. Prediction of the selective variant growth under 
applied stresses 

During the stress-constrained ageing, the local 
strain of each precipitate variant is changed, 
depending on both the variant orientation and the 
applied stress. Some of the variants are favoured to 
grow, but the others are not. The stress constraint 
therefore, reduces the number of variants, leading to 
the selective variant growth. 

A pole projection method was proposed to predict 
the selective coherent variant growth under the stress 
constraint. As discussed earlier, the growth of a 
variant is determined by the coupling of the applied 
stress and the eigenstrain (i.e. ,!?). If the applying 
direction of an external stress and (11 l)TI1,Nl,r axes of 
TillNil variants are represented as poles and marked 
in a pole projection, one may draw a critical contour 
of I?“’ = 0 around each variant pole (see Fig. 3). Each 
contour separates the pole figure into two parts. 

When falling into one part, the applied stress favours 
(or unfavours) the growth of the variant, while it 
unfavours (or favours) the variant growth when 
falling into the other part. 

In order to obtain the critical contour around a 
TillNil variant. an applied stress was first converted 
into a;. which was represented in the variant 
coordinate frame of the variant. E?“’ was then 
calculated using equation (12), and the critical 
contour for the precipitate variant was thus obtained 
by finding those angles that correspond to I?“’ = 0. 
The TillNiij precipitate has eight variants whose 
(11 1)7,,,Nl,i are respectively parallel to eight equivalent 
[ 111) BZ planes. In fact. four of them can be obtained 
by a mirror symmetry operation, we therefore only 
need to draw the critical contour for four variants, 
and the rest can be determined consequently. For 
example, if (11 ~)T,,,N,,~ /I (11 l)Bz variants are favoured 
to grow, the growth of (11 l)T,,,N,,a// (iii),, variants is 
also favoured. 

Figure 3 illustrates such a (001),2 pole projection 
for analysing the TillNil precipitation. On the pole 
projection orientations of four Ti,,Ni,, variants and 
the orientation of the applied stress are represented 
as poles, respectively. A contour of E’“’ = 
- ~;tt I’, = 0 was drawn around each pole of the 
precipitate variants. If the pole of a compressive 
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stress is within the zone of a specific variant pole, 
which is bounded by the critical contour, the stress 
will favour the growth of the variant; if the stress is 
tensile, however, it will retard the growth of the 
precipitate. The situation is reversed when the stress 
pole is outside of the zone. In general, the closer a 
compressive stress pole to the variant pole, the more 
favoured the variant; whereas in the case of tensile 
stress, the farther the stress pole from the variant pole 
(fi < 90’7, the more favoured the variant. 

One may see that there are some overlapped areas 
in the pole figure. In principle, the preferred variant 
is determined by the angle between the stress pole and 
each of the { 11 l}Tl,,Ni,, II{ 11 l},, poles. In the case of 
compressive stress, the smaller the angle between the 
compressive stress pole and a TillNilll variant pole, 
the easier the variant grows. Therefore, when the 
compressive stress pole is in an overlapped area, the 
preferential variant growth may be determined by 
comparing the angles between the stress pole and 
each relevant variant pole. 

To illustrate the selective growth under stress 
constraint, a compressive stress is applied along 
[1541s2 as an example. One may see, from the pole 
projection, that the stress pole [1541s2 ([i%&) is the 
closest to [l lllBz ([iii],,) and within the zone 
bounded by E”’ = 0 of this pole. As a result, the 
variants with (11 I)TI,,Ni,4 parallel to (11 1)B2 ((iii),,) 
should precipitate preferentially. 

3. EXPERIMENTAL OBSERVATION 

Ti-51.5 at% Ni alloy was prepared in a vacuum 
consumable arc furnace, followed by homogenization 
treatment of 900°C for 5 h, and it was then forged. 
The specimens cut from the alloy were annealed at 
820°C in argon atmosphere for 10 min, and then 
aged at 500°C in argon atmosphere for 1.5 h. A 
tensile stress c = 38.3 MPa, and a compression stress 
c = - 38.6 MPa were initially applied on two 
specimens, respectively, and the resultant strain, ca 
was kept unchanged during the ageing. A JEOL- 
1OOCX electron microscope was employed to 
investigate the TillNil precipitation. 

Figure 4 gives a micrograph of a specimen aged in 
stress-free condition. It illustrates that TillNill( 
precipitates have an irregular disc-like shape with 
bamboo leaf-like cross-section. Strain contrast at the 
interface between the matrix and TillNil precipitates 
is visible around the precipitates. The strain contrast 
implies that the precipitate disc has a coherent 
interface with the matrix. Carefully comparing Fig. 4 
(a) and (b), one may see that when the diffraction g, 
used for dark-field imaging, is close to the normal of 
the precipitate discs, the strain contrast becomes 
stronger; while those precipitates, whose normals are 
near perpendicular to the g, do not show the strain 
contrast. This means that a normal strain exists 
perpendicular to the precipitate disc. 

When the ageing was carried out under the stress 
constraint, the number of precipitate variants was 
reduced. Figure 5 illustrates that, under a tensile 
stress in the [541]82 direction, only parallel variants 
precipitated. The corresponding diffraction pattern 
demonstrates that the precipitates include only two 
types of variants, whose [l 1 l]TiillN114 axes are parallel to 
[il llsz and [Iii],,, respectively. If marking the stress 
pole on the pole projection (Fig. 3), one may 
understand the reason why only these two variants 
grew selectively. From Fig. 3, it is seen that the 
applied tensile stress pole [5411B2 ([5ii],,) is within the 
zone of (11 l)Bz ((Tii),,), and outside zones of other 
(lll)Bz poles. SO the growth of (111)~~,,~~~4~~(111)~~ 
((i&) variants is retarded. For other variants, the 
tensile pole is the furthest from the (il 1)B2((1ii)BZ) 
pole (/? < 907. Therefore, the variants with 
(11 1)TillN14 respectively parallel to (il l)Bz and (ITT),, 
grew preferentially. This experimental observation 
agrees with the theoretical prediction. 

Figure 6 illustrates the case of compressive stress 
constraint. The stress was applied along [154]r,2 
([154],,), which is within the zone of (11 l)ez ((TTY),,) 
(see Fig. 3). As predicted, the variants with their 
[l 1 l]rl,,Nild axes parallel to [ll l]BZ ([Tii],,) precipitated 
preferentially. This experimental observation sup- 
ports the theoretical prediction. A positive corre- 
lation between the experiments and the theoretical 
prediction was found. 

4. CONCLUSIONS 

A coherent precipitate phase usually has a number 
of variants which are oriented in different but 
equivalent crystallographic directions. The number of 
the variants depends on the symmetries of involved 
phases, and it may be determined by decomposing the 
space group of the parent phase into the coset of the 
space group of the coherent precipitate phase. Not all 
the variants, however, can grow during ageing if the 
“environmental” symmetry (e.g. the symmetry of an 
applied stress field) is lower than that of the parent 
phase. It was demonstrated that the stress- 
constrained ageing can induce selective variant 
growth. The selective variant growth is caused by the 
coupling between the applied stress and the local 
strain, which makes the variants so distributed that 
the strain energy is minimized. A pole projection 
method, based on the strain energy analysis and the 
symmetry analysis, was proposed and used to 
determine the selective variant growth of TillNild 
precipitates in stress-constrainedly aged Ti- 
51.5 at% Ni alloy. TEM experiments were conducted 
to corroborate the theoretical prediction. A positive 
correlation between the theoretical analysis and the 
experiments was found. 
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