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Abstract-The shape of a coherent rhombohedral precipitate in a cubic matrix and its growth and 
dissolution during strain-constrained aging were investigated using a time-dependent Ginzburg-Landau 
kinetic model by taking into account the coupling between the constraint (applied) strain and the local 
strain. The effect of boundary conditions. constraint strain or constraint stress, has been discussed. A 
particular example of TillNil? precipitate growth in a TiNi shape memory alloy was considered without 
any a priori assumption about the particle shape. It was demonstrated that a Til,Nil, precipitate grown 
from a supersaturated cubic TiNi matrix has a lens-like shape. with its normal parallel to the [I I I],%J 
orientation of the matrix, in agreement with experimental observations. Precipitate growth and dissolution 
under various strain-constraint conditions have been discussed. ‘r_’ 1997 Ac,tcr ,Metcdhqim Inc. 

INTRODUCTION 

A coherent precipitate or a product phase has a 
number of variants which are oriented in different but 
equivalent crystallographic directions, if the precipi- 
tate or the product phase has a lower symmetry than 
the parent phase [ 11. For example, the rhombohedral 
Ti,,Ni,? precipitate in a cubic TiNi matrix has eight 
variants. whose (I I l)T,,,u,,, planes are, respectively, 
parallel to (111) BI of the matrix [2]. The eight variants 
fall into four groups and each group includes two 
variants which can be obtained mutually by a 180“ 
rotation operation [e.g. (I 1 l)T,,,N,,I li( I1 l)R: variant 
and (11 l)rY,,y,,, ll(ll 1)82 variant]. The variants usually 
have a non-spherical shape, since the lattice mismatch 
between the precipitate phase and the matrix is 
crystallographically anisotropic [3, 41. During the pre- 
cipitation process, different variants arrange in such 
a way that the strain energy caused by the variants 
is minimized. However, if an external strain or stress 
is applied during aging, an anisotropic distribution of 
precipitate variants could be attained and this may 
result in anisotropic properties of the material. 

Equiatomic TiNi alloy is a well-known shape 
memory alloy [5%9]. It has a B2 structure (p phase) 
at ambient temperature and the fi phase transforms 
to a monoclinic martensitic phase (M) at lower 
temperatures [IO]. A workpiece made of martensitic 
TiNi alloy can be easily deformed through rearrange- 
ment of martensitic variants. The deformed TiNi 
piece can, however, restore its original shape by the 
reversible transformation M - fi. It was found that 
a TiNi alloy with 57.0-57.5 wt% Ni, aged under a 
constraint condition. exhibits an excellent two-way 

shape memory eff’ect, called the all-round shape 
memory effect (ARSME) [I I, 121. Metallographic 
studies demonstrate that this ARSME is attributed to 
coherent TillNild precipitates aligned in parallel, 
formed during the constrained aging. The reason is 
that a coherent TillNil precipitate, having a near 
lens-like shape, brings an anisotropic strain field 
around it. If Till Nil, precipitate variants are aligned 
in parallel, they could introduce a long-range internal 
stress field. which may control the “route” of the 
martensitic transformation, thus leading to the 
ARSME [I I, 91. If TillNil precipitate variants are 
not in parallel. however, the local strain caused by 
differently oriented Till Nil, variants may cancel each 
other out and no long-range internal stress field is 
attained. 

The main objective of this research is to investigate 
the shape of rhombohedral precipitates coherently 
embedded in a cubic matrix and the effect of strain 
constraint on their growth and dissolution using 
numerical computer simulations. The shape of 
coherent precipitates has been studied by a number 
of researchers [13%21]. It is known that the shape of 
a coherent precipitate is determined by the balance 
between the interphase interfacial energy and the 
elastic strain energy. The strain energy. however, 
becomes more important with an increase in the 
precipitate size. Johnson and Cahn [ 131 demonstrated 
a change in morphology of a particle from a sphere 
to an ellipsoid with increasing particle size. Voorhees 
et nl. [I41 illustrated the temporal evolution of a 
circular particle and demonstrated the important role 
of the elastic strain energy in morphological 
evolution. Khachal.uryan et 01. [I51 calculated the 
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elastic energy of a cubic precipitate as a function of 
its morphology and demonstrated the possibility of 
shape changes from sphere to doublet or octet of 
cubes. The transition of sphere to doublet or octet 
was also studied by McCormack et al. [16] and Doi 
[17]. Thompson et al. showed the morphological 
evolution of a precipitate with either a tetragonal or 
dilatational misfit in an elastically anisotropic 
medium with cubic symmetry [ 181. Simulation studies 
were conducted by Wang, Chen and Khachaturyan 
[20,21] to investigate the strain energy influence on 
the morphological evolution of cubic and tetragonal 
phases in a cubic matrix. Lee proposed a different 
approach, called the Discrete Atom Method, to 
analyse the effect of coherent strain energy on the 
morphological evolution of precipitate [19]. As 
mentioned earlier, the distribution of coherent 
precipitate variants is also important to materials’ 
properties. An anisotropic variant distribution may 
lead to anisotropic behavior of the materials. The 
growth of a coherent precipitate could be strongly 
affected by external strains or stresses, and it may 
grow or shrink, depending on the interference of 
the applied strain or stress with the local strain. 
A particular case of the coarsening of precipitates 
in a cubic matrix, with dilatational mismatch 
strains, has been studied recently [22]. We employed 
spatially inhomogeneous continuous fields of concen- 
tration and structural order parameters to describe 
the rhombohedral precipitate morphology. The 
relaxation of these continuous fields is then 
determined by time-dependent Ginzburg-Landau 
(Allen-Cahn) [23, 241 and Cahn-Hilliard [25] 
equations taking into account the coupling between 
the constraint strain and the local strain. The 
emphasis will be on the shape of a single TillNil 
precipitate and its growth or dissolution during 
constrained precipitation processes. The general case 
of microstructural evolution during precipitation of 
multi-particles under constraint conditions and their 
coarsening kinetics will be presented in another 
paper. 

MODEL DESCRIPTION AND SIMULATION 
PROCEDURE 

The growth of a TillNild precipitate is driven by the 
difference in chemical free energies between the 
supersaturated TiNi matrix and the equilibrium TiNi 
matrix containing the TillNil precipitate. In this 
work, we consider a single precipitate variant, and the 
“chemical” free energy is approximated using the 
Landau free energy polynomial 

f(C, q) = q (C - C,)’ + F (C - Cz)rf 

where, C = C(F, t) is the concentration field which 
describes the compositional difference between the 
precipitate and matrix, and q(;, t) the structural order 
parameter field which distinguishes the structural 
difference between the precipitate and matrix. If all 
variants of TillNil precipitate are considered, four 
structural order parameters are required in the free 
energy model. The coefficients in equation (1) are 
chosen as follows: A 1 = 65.0, A2 = 7.54, A3 = 1.5, 
A4 = 1.45 (the energies were measured in a unit, 
mkB T = 7 x 10’ ergs/cm’, where T = 773°C and m is 
a normalization coefficient). This choice provides the 
equilibrium compositions, C, (matrix) = 0.44 and C, 
(precipitate) = 0.38. By minimizing the chemical free 
energy with respect to ;rl at a given C, one may obtain 
the relationship between C and the equilibrium 
structural order parameter, qO. Consequently, the 
chemical free energy can be expressed as a function 
of the concentration only, i.e. f(C, q) =f[C, Q,(C)]. 
This function includes two branches: one correspond- 
ing to the TiNi matrix (1 phase) and the other 
corresponding to the TillNil precipitate phase. 
Figure 1 illustrates the chemical free energies as a 
function of C. It should be noted that the energy 
curves used here are only an approximation to the 
actual chemical free energies of the system. For the 
present simulation, the accuracy of the chemical free 
energy is not critical as long as it provides correct 
equilibrium compositions and the driving force for 
precipitation. 

In addition to the chemical free energy, the 
interphase boundary energy also contributes to the 
system’s total free energy. In this work, isotropic 
interfacial energy is assumed. The total free energy of 
an inhomogeneous system, in a stress-free state, may 
therefore be expressed as [21] 

F, = s d3r&,lVC12 + fazlVqIZ +h(C, ?)I (2) 

where CI~ and a2 are gradient energy coefficients. 
Another important contribution to the total free 

energy comes from the strain energy caused by the 
lattice mismatch between the TillNil precipitate and 
the TiNi matrix. Equilibrium TiNi alloy has a Bz 
structure (b phase: ordered b.c.c. structure, 
a,, = 3.01 A) [lo], while TillNil precipitate phase has 
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Fig. 1. Specific free energy vs concentration curves for b and 
TillNil phases, calculated using equation (1) with 

Al = 65.0, A2 = 7.54, A3 = 1.5, A4 = 1.45. 
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a rhombohedral structure (a0 = 6.72 A, 7 = 113.9”) 
[2]. The lattice mismatch between these two phases 
influences the morphology of the TillNil precipitate. 
The morphology (shape and orientation) of a 
coherent precipitate variant is then determined by 
competition between the strain energy and interphase 
boundary energy. 

Calculation of the strain energy of a coherent 
precipitate was pioneered by Eshelby [27, 281, who 
derived equations of elastic strain of an ellipsoidal 
inclusion in an isotropic matrix based on the 
assumption that both phases have the same elastic 
moduli. Since then, Eshelby’s theory has been 
modified, extended, and developed by many re- 
searchers [29-341. An extension of Eshelby’s theory 
was made by Lee et al. [33], who calculated the 
anisotropic elastic strain energy of coherent ellip- 
soidal precipitates in anisotropic solids. A general 
theory of strain energy of a coherent two-phase 
system with arbitrary morphology was proposed by 
Khachaturyan [3]. The crystal lattice mismatch 
between two phases, which is the source of the 
intrinsic elastic strain, is described by a stress-free 
strain or transformation strain, 6:. According to 
Khachaturyan [3], the strain field, E,,(T), of a 
two-phase system may be represented as the sum of 
the homogeneous and heterogeneous strains: 

c,,(P) = t;, + k,,(i) (3) 

where the homogeneous strain, c,,, is defined so 
that 

at,,(;) d’u = 0. (4) 

The homogeneous strain is the uniform macroscopic 
strain, and the heterogeneous strain is chosen such 
that it has no macroscopic effects. In the case of 
homogeneous modulus (i.e. the elastic modulus of the 
second phase is the same as that of the matrix), the 
total elastic strain energy of a coherent mixture is 
expressed as [3, 261 

where V, and V are the volume of the precipitate 
and total volume of the system, respectively. C,,,, 
is the elastic constant, and o[: = C,,,,t,“,. fi = i/k is a 
unit vector in the reciprocal space and n, is the 
ith component of A. !&(fi) is a Green function 
matrix reciprocal to Q,;‘(A) = n,C,k,n,. S(z) is the 
Fourier transform of the so-called shape function 
Q(F): 

B(k) = 
- s O(?)d’d3r. (6) 

(b) 

Fig. 2. Schematic illustration of two types of constraint: (a) 
strain-constraint: a body is elastically deformed by an 
applied force F, and the body boundary is then fixed so that 
a constant strain (applied), c;;, is established in the body; (b) 
stress-constraint: a constant force F is applied to a body 
without fixing the body boundary, thus resulting in a 

constraint stress (applied). u;, in the body. 

In the above integration, the singular branching 
point k = 0 is excluded. The shape function, 
0(F), describes the shape of a precipitate; its 
value equal to unity within the precipitate and 
zero outside the precipitate. O(p) may be 
represented by the structural order parameter: 
O(i) = r/2(?)/?/;. 

When the precipitation process (i.e. aging) is 
constrained, the strain field caused by a precipitate is. 
however, changed by the constraint strain or stress, 
and this results in a variation of the strain energy 
barrier to the growth of a precipitate. There are two 
types of constraint (Fig. 2). One is called strairz- 

constraint, in which the system’s boundary is fixed 
after applying an external force to the system. 
followed by the precipitation process. Under such a 
condition, the system is subjected to a constant 
external strain. The second type of constraint. called 
stress-constraint, is to apply a constant force on the 
system without fixing the system’s boundary. Under 
this condition, the system is subjected to a constant 
external force. In the first case, the system is a 
mechanically isolated system but connected to a 
thermal reservoir which controls the system’s 
temperature. This system is under an external 
strain, 6;. Since the boundary of the system is fixed, 
the homogeneous strain is the applied strain, i.e. 
r,, = 6:;. The total elastic strain energy is therefore 
given as 
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The last term in equation (7) represents the coupling 
between the external strain and the strain caused by 
the precipitate. The governing potential of this system 
is the Helmholtz free energy, which includes the strain 
energy and the free energy F, in the stress-free 
conditions given by equation (2), that is 

F = F, + E,. (8) 

For the second type of constraint, a constant 
surface force is applied to the system during the 
precipitation process. This force makes the system 
become one which is connected with a mechanical 
reservoir that controls the external force, and also 
connected with a thermal reservoir which controls the 
system’s temperature. In this case, the governing 
potential is the Gibbs free energy. The potential 
energy of such a system subjected to surface force ?’ 
is expressed as 

G = F, + E,, - T, ii< ds (9) 

where iic is the homogeneous strain. T, = oi;m, and 
mj is the exterior unit vector normal to S, the surface 
of the system. & is the elastic energy of the system 
given by equation (5). Since o;~ = 0, by integrating 
JY a&, dv = &a&m, ds - ~V@‘ii dv by parts we can 
calculate the third term in equation (9) 

= o;& dv = l’o&. (10) 
s Y 

Equation (9) can therefore be rewritten as 

G = F, + E,, - 
s 

Zii, ds = F, + E,, 
s 

- I’+,, = F, + E (11) 

where E = E,, - V@,,. Minimizing E with respect 
to ci, 

aE 
a = 0 = vc,,,, - V*C,,c~, - vo;. (12) 

B 

We obtain 

tg = s,,, o;, + wt; (13) 

where S,,, is the compliance tensor and w = VP/V. 
Substituting equation (13) back into the expression of 
E, we obtain the expression of E 

[nio~~jk(A)u~,nl]le(it)l' - Vpbj;EkOi. (14) 

The growth of a TillNr4 precipitate variant is 
simulated by the temporal evolution of the concen- 

tration and the structural order parameter fields 
whose relaxation is described by so-called time- 
dependent Ginzburg-Landau (TDGL) equations 
[20, 211: 

MVx-_._-- dC,f$ t) 6F 
6C(?, t) 

dv(i, t) _L 6F 
dt se, t) 

(15) 

where M and L are kinetic coefficients which 
characterize the atomic diffusivity and interface 
boundary mobility. F is the total free energy of the 
system which includes the free energy in stress-free 
condition and the elastic strain energy. The 
expression for F is dependent on the constraint 
condition. In the strain-constant condition, F is the 
Helmholtz free energy [equation @)I, whereas in the 
stress-constraint condition, F is the Gibbs free energy 
[equation (1 l)]. In the present simulation, the 
strain-constraint condition is considered. The 
Helmholtz free energy is therefore used as the total 
free energy. 

The TDGL equations were solved numerically in 
the reciprocal space. In order to save computing time, 
the simulation was conducted in a two-dimensional 
space (2D), which can be viewed as a projection of the 
3D space. A 200 x 200 square grid was used to 
represent the system. 

We chose the coordinate frame whose x, y, z axes 
are respectively parallel to [ 1 TO],, , [ 1 l&, and [ 11 11B2 
of the TiNi (B2) lattice. This coordinate frame may 
be called the variant coordinate frame. In this 
coordinate frame, the eigen-strain matrix of TillNil 
precipitate is 

i 

0.014 0 0 
(6;) = 0 0.014 0 

1 

(16) 
0 0 -0.029 

The elastic constants of the TiNi matrix and the 
TillNil precipitate phase were assumed to be the 
same, and have the following values: 
C1, = 1.62 x 10” Pa Cl2 = 1.29 x 10” Pa and 
C, = 0.34 x 10” Pa’ [35]. Since the given elastic 
constants are valid only in the coordinate frame 
(x’-y’-z’) whose three axes are, respectively, 
parallel to [1001B2, [010]s2, and [OO1lez, the elastic 
constants were converted to the variant coordinate 
frame (x-y-z) through the tensor transformation law 
[36]: 

c,,, = s,,, S$ s&, s,r Ci.,.k., (17) 

where S,,, is the coordinate transformation matrix 
which relates the x’-y/-z’ coordinate frame to the 
x-y-z coordinate frame. 

The gradient coefficients c(, and c(~ were assumed to 
be 5.0; L and M are chosen to be 2.0. Reduced time 
t* was used in the simulation, which is defined as 
t* = t/to, and to = (LksT)-‘. The simulation was 
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performed in the following way. Initially, a spherical 
TillNil particle with a radius r0 = 10 Ar (where Ar 
is the length of a unit cell of the grid) was generated 
in a TiNi matrix. The matrix had a concentration 
C,, = 0.43 and its structural parameter y = 0. 
The concentration of the TillNil particle was 
C? = 0.38 and its structural parameter had the 
equilibrium value q = q0 = 1.02. In order to investi- 
gate the constraint effect on the growth of the 
TillNil particle, compressive and tensile stresses 
(equal to T 30 MPa) were, respectively applied to the 
system initially and then fixed to the system’s 
boundary. Compressive and tensile constraint strains 
were then, respectively, established for the entire 
process of the precipitate growth. These stresses 
were initially applied in the X-Z plane and then at 
angles of 90’, 65., 20’, and 0” to the z axis (i.e. [ 11 llBZ 
axis). 

RESULTS AND DISCUSSION 

The growth of a TillNil precipitate in a 
supersaturated TiNi matrix without the strain 
constraint was simulated first. Figure 2 illustrates the 
growth of the precipitate viewed at the cross-section 
whose x (horizontal) and z (vertical) axes are 
parallel to [liO],, and [I 1 11B2, respectively. The 
simulation time was chosen long enough for the final 
precipitate to approach its equilibrium shape. The 
simulation demonstrated that during the precipi- 
tation process the precipitate grew and its shape 

changed from an initial sphere to a lens-like 
plate with a bamboo leaf-like cross-section; the 
normal of the lens-like precipitate is parallel to the z 
axis, i.e. parallel to the [ll lJ+ direction. These 
simulation results agree with experimental obser- 
vation [2, 111. 

The morphology of a coherent precipitate is 
determined by both the elastic strain energy and the 
interphase interfacial energy. When the precipitate is 
small, the effect of the interfacial energy is 
predominant. As the precipitate grows, however. the 
effect of the strain energy becomes more important, 
because the ratio of the interfacial energy to the strain 
energy, i.e. < = Es/E,,, decreases with increase in the 
length dimension of the precipitate. The interphase 
interfacial energy between a precipitate and the 
matrix can be calculated from 

.E = d'rj[,f,(C, ye) + ix, IVCI’ 

+ ~t121V~121 - [.Lm, + (1 - w&,1) (18) 

wheref; and,fi are the chemical free energies of the 
TillNil and TiNi phases, respectively, and w, is the 
volume fraction of the precipitate. For a simulated 
TillNil precipitate as illustrated in Fig. 3, corre- 
sponding 5 values were calculated and they are 0.73 
[corresponding to (b)] and 0.61 [corresponding to (c) 
and (41, respectively. For a realistic TillNil 

(b) 

Cd) 

Fig. 3. Growth of a TillNil variant, viewed at the cross-section; the normal of the lens-like precipitate 
is parallel to the [111]82 direction: (a) t* = 0, (b) f* = 1.0 x 10’. (c) f* = 3.5 x 103, (d) t* = 6.1 x IO”. 
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Fig. 4. Growth of a TillNil particle under a compressive constraint strain, applied along the normal to 
the lens-like variant; the constraint strain was established by an initially applied stress which was equal 

to -30 MPa: (a) t* = 0, (b) t* = 1.0 x 103, (c) t* = 2.1 x lo’, (d) t* = 3.5 x 10’. 

precipitate, its strain energy could be estimated using 
the approximation: E,, = At: VP (A and t are the 
typical elastic modulus (10” Pa) and typical stress- 
free transformation strain (lo-*), respectively, and V, 
is the volume of the precipitate); the interfacial 
energy of the precipitate can be calculated using 
& = y,S, (ys and S, are the specific interfacial energy 
and the surface area of the precipitate, respectively). 
A lens-like TillNill precipitate with a diameter of 
0.1 pm and thickness 0.05 pm has an approximate 
volume of 1 x 10e3 pm3 and a surface area of 
6 x lo-* pm*. Since the interfacial energy of coherent 
precipitates is generally on the order of lo* erg/cm*, 
the interfacial energy of such a TillNil precipitate is 
therefore on the order of 6 x lo-* ergs; the strain 
energy of the precipitate is on the order of 
E,, = Ad VP z 1 x lo-‘ergs. Thus the ratio, 5, of the 

interfacial energy to the strain energy of the TillNil 
precipitate is on the order of lo-‘, which matches the 
values of 5 obtained in the simulation. Therefore, the 
numerical coefficients employed in the simulation 
provide a reasonable value for the ratio of the 
interfacial energy to the elastic strain energy. 

Effects of both tensile and compressive constraint 
strains on the precipitate growth were then investi- 
gated. Figure 4 illustrates the effect of a compressive 
constraint strain on the growth of a TillNil., 
precipitate. It was demonstrated that when the 
compressive constraint strain was parallel to the z 
axis (i.e. [I 1 11B2, the normal to the TillNil precipitate 
plate), the precipitate grew faster than that without 
the constraint. This positive effect of compressive 
constraint strain on the precipitate growth comes 
from the reduction in strain energy by the coupling 
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of the constraint strain with the local strain. This 
conclusion may also be drawn simply from the 
eigen-strain, from which one may see that the 
precipitate has a compressive strain component in the 
2 direction but a lower tensile component in x-_r 
plane. This implies that when a precipitate nucleus is 
formed and grows in the matrix, it could introduce a 
tensile strain in the z direction but a lower 
compressive strain in the X-J plane. This strain 
energy increases the system’s free energy, and thus 
brings an energy barrier to the precipitate’s growth. 
When a compressive constraint strain is applied in the 
- direction during the precipitation process, however, i 
it reduces both the local tensile strain in the z 
direction and the compressive strain in the X-J) plane. 
As a result, the strain energy caused by the precipitate 
is reduced, and this in turn favors the growth of the 
precipitate. A similar phenomenon was observed in 
other systems, e.g. the precipitation of disk-like x” 
(FelaNz) from a supersaturated Fe-N alloy. The z” 
disk causes a compressive strain parallel to its 
normal, which is significantly larger than other strain 
components. When a tensile stress is applied parallel 
to the normal to this variant, nucleation and growth 
of the variant is greatly promoted, against others that 
are oriented in different crystallographic directions 
[37, 381. 

The simulation also demonstrated that the effect of 
tensile constraint strain on the growth of TillNil 
precipitate is opposite to that of a compressive 
constraint strain. This is because the tensile 
constraint strain, when applied along the z axis, 
enhances both the local tensile strain in the z direction 
and the compressive strain in the .X-Y plane, and 
therefore increases the local strain energy. As a result, 
the growth of the precipitate is retarded, and it may 
shrink and dissolve eventually. 

When a stress was applied in different directions, 
however, the effect of the resultant constraint strain 
on the precipitate growth changed. In the case of a 

compressive constraint strain, as the direction of the 
strain deviates from the normal to a Ti,, Nil, plate (i.e. 
the z axis), the growth rate of the precipitate is 
decreased. This variation with change in the direction 
of the applying strain (or initially applied stress) is 
demonstrated in Fig. 5, which illustrates the growth 
of a precipitate under a compressive constraint strain 
applied at angles of 0”, 20’, and 65’ to the normal of 
the precipitate. One may see that, as the applying 
direction of the compressive constraint strain 
approached the s axis, the effect of the constraint 
strain was reversed, and it retarded the growth of the 
precipitate. This reversed effect was so strong that it 
made the initially embedded Ti,,Ni,, particle shrink, 
and even dissolve when the stress was applied along 
the x axis. This reversed effect occurred because, as 
the compressive constraint strain approached the .Y 
axis, it enhanced both the local compressive strain in 
the x-y plane and the tensile strain in the 2 direction. 
Consequently, the local strain energy was not reduced 
but increased by the applied compressive strain, and 
this retarded the growth of the precipitate. 

If the applied strain is a tensile one, however, its 
effect on the growth of the precipitate is opposite to 
that of a compressive constraint strain. When applied 
in the : direction, the tensile strain retarded 
precipitate growth, but it favored precipitate growth 
as the applying direction of the strain approached the 
I axis. 

CONCLUSION 

In order to better understand the morphological 
evolution of Ti,, Nil4 precipitate and its selective 
variant growth in TiNi shape memory alloys during 
constrained precipitation processes and to develop 
efficient processing routes to control the microstruc- 
ture of TillNi14-TiNi two-phase systems, computer 
simulation studies were conducted on the shape of a 
single coherent TiilNiil precipitate variant and its 

Fig. 5. Variation in effect of compressive strain on Ti,,Ni $4 variant growth with an increase in the angle 
between the normal to the variant and the direction of the applied strain: (a) 0., (b) 20 . (c) 65 The 
particle dissolved when the strain was applied at 90 to the normal of the variant (the constraint strain 

was established by the initially applied stress which was equal to -30 MPa); f* = 3.5 x IO’. 
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growth under applied constraint strains, using a 
time-dependent Ginzburg-Landau kinetic model and 
taking into account the coupling between the applied 
constraint strain and the local strain caused by the 
precipitate. It was demonstrated that a TillNil 
precipitate grown from supersaturated TiNi matrix 
has a lens-like shape, and its growth is strongly 
affected by the constraint strain applied during the 
precipitation process. The growth of a TillNil 
precipitate variant may accelerate or the variant may 
shrink, depending on the interference between the 
applied strain and the local strain. The mechanism of 
precipitate growth, morphological evolution, and the 
constraint effects have been discussed. 
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