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Abstract

The microstructural evolution and kinetics of Ostwald ripening were studied in the high volume fraction regime by
numerically solving the time-dependent Ginzburg–Landau (TDGL) and Cahn–Hilliard equations. It is shown that the
growth exponentm is equal to 3, independent of the volume fraction, and the kinetic coefficientk increases as the
volume fraction increases. The shape of size distributions changes significantly with increasing volume fraction of the
coarsening phase; the skewness changes continuously from negative to positive while the kurtosis decreases in the low
fraction regime and increases in the high volume fraction regime. 2002 Acta Materialia Inc. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Ostwald ripening is a process related to the
coarsening of one phase dispersed in the matrix of
another. The average size of the particles of the
dispersed phase increases during coarsening due to
diffusion through the matrix phase, and their total
number decreases. Modern theories of Ostwald rip-
ening are based on the classical work of Lifshitz,
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Slyozov and Wagner [1,2], which is known as
LSW theory. In LSW theory, the problem of coars-
ening kinetics was modeled by assuming a steady-
state diffusion field, an infinitesimally dilute
second phase, spherical particles and by assuming
that particles interact only indirectly with each
other through a mean field provided by the matrix.

The LSW theory predicts that during diffusion
controlled coarsening the average particle size
should increase as a power law in time,Rm

t �
Rm

0 � kt, with an exponent,m � 3 and a particle
size distribution function that, when scaled by the
average particle size, is time independent. These
predictions hold rigorously in the limitt→�. Since
interparticle diffusional interactions are neglected
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in LSW theory, this theory is valid only in the
physically unrealistic limit of zero volume fraction
of the second phase. This is one of the reasons used
to explain the disagreement in the size distribution
functions measured experimentally [3] and those
predicted from the LSW theory.

A variety of techniques have been used to incor-
porate the effect of finite volume fractions on
coarsening, including statistical mechanical
theories, mean field theories and numerical simula-
tions [4–13] for three-dimensional (3-D) and [14–
20] for two-dimensional (2-D) systems. Despite the
different physical bases of these models and
theories, most of them assume that the coarsening
particles are spherical in shape to avoid the com-
plexity of irregular geometry. However, this
assumption cannot remain valid at sufficiently high
volume fractions, where the particles within the
microstructure become constrained geometrically
and exhibit shape accommodation. Shape accom-
modation results in the non-uniform distribution of
curvature along the particle interface. At very high
volume fractions of coarsening particles, crowded
particles develop flattened sides, curved edges and
rounded vertices or corners. This shape accommo-
dation can occur strictly as a result of interparticle
diffusional interactions [21]; stresses generated at
particle contacts are not necessary to develop flat
interfaces [22]. The effects of geometrical com-
plexity present at high volume fractions in systems
with sufficient number of particles to determine the
evolution of the average particle size have not been
included in the theoretical treatments. As a result,
the dynamics of Ostwald ripening in the high vol-
ume fraction regime remains poorly understood.
Since Ostwald ripening is a moving boundary
problem, it is very difficult to solve analytically in
the high volume fraction regime.

Experimentally, however, testing of the theories
describing the effects of volume fractions of coars-
ening phase on the kinetics of Ostwald ripening is
quite difficult to perform. Despite the fact that an
increase in the kinetic coefficient k with increasing
volume fraction of the coarsening phase has been
demonstrated by many experiments [23–27], a var-
iety of growth exponent values m ranging from 2
to 8 have been reported [28–32]. Recently a series
of careful experiments on coarsening in solid–

liquid systems have been performed [33]. These
experiments show that the time required to reach
the asymptotic coarsening state predicted by LSW
can be quite long. It was never attained in the time-
scale of the experiments. This difficulty will also
be present in simulations of the coarsening process.
If the growth exponent m indeed ultimately varies
with volume fraction, then a kinetic coefficient cal-
culated using the classical LSW exponent becomes
questionable at high volume fractions.

The purpose of this paper is to study the effect
of volume fraction on the Ostwald ripening
behavior in 2-D by employing a phase field formu-
lation. The authors have used similar method-
ologies to study grain growth in single-phase sys-
tems [34,35] and the microstructural evolution in
two-phase polycrystalline materials [36–39]. Com-
puter simulations using this model allow one not
only to monitor the detailed temporal microstruc-
ture evolution during Ostwald ripening but also to
obtain all the information about the average grain
size and size distributions. We will focus on the
high volume fraction regime where analytical
theories have the most difficulty. The dependencies
of growth exponent m, kinetic coefficient k and
shapes of size distributions on the volume fractions
of the coarsening phase will be systematically
examined.

2. The phase field model

The details of this numerical model have been
reported in another publication [40]. A schematic
microstructure of particles of one phase dispersed
in the continuous matrix of another is shown in
Fig. 1. In this microstructure, the solubilities or
equilibrium concentrations are Ca and Cb for the
matrix phase and second phase, respectively. We
define a set of continuous field variables,

h1(r), h2(r), …, hp(r), C(r)

where p is the number of possible orientations of
the second phase grains in space, hi (i � 1, …, p)
are orientation field variables with each orientation
field representing grains of a given crystallographic
orientation in space, and r is the position in space.
These variables change continuously in space and
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Fig. 1. A schematic microstructure of a two-phase system
with second phase particles dispersed in a matrix phase. The
orientation field variables h1, …, hj represent different crystal-
lographic orientations of the second phase grains in space. All
orientation fields are zero in liquid or disordered (matrix) phase.
The equilibrium compositions or solubilities are Ca for the
matrix phase and Cb for the second phase respectively.

assume values ranging from �1.0 to 1.0. All orien-
tation field variables are zero in the matrix phase,
which simulates the liquid or disordered phase.
C(r) is the composition field which takes the value
of Ca within the matrix phase and Cb within a
second phase grain. C(r) has intermediate values
between Ca and Cb at the interfacial region
between the matrix phase and a second phase
grain.

The total free energy of an inhomogeneous sys-
tem can be written as:

F � ��f0(C(r); h1(r), h2(r), …, hp(r)) (1)

�
�C

2
(�C(r))2 � �p

i � 1

�i

2
(�hi(r))2� d3r

where �C and �hi are gradients of concentration
and orientation fields, �C and �i are the correspond-
ing gradient energy coefficients, and f0 is the local
free energy density which, in this work, is assumed
to be,

f0 � f1(C) � �p

i � 1

f2(C,hi) � �p
i � 1

�p

j � i

f3(hi,hj) (2)

where

f1(C) � �(A /2)(C�Cm)2 � (B /4)(C�Cm)4

� (Da /4)(C�Ca)4 � (Db /4)(C�Cb)4

f2(C,hi) � �(g /2)(C�Ca)2(hi)2 � (d /4)(hi)4

f3(hi,hj) � (eij /2)(hi)2(hj)2

where Ca and Cb are the solubilities in the matrix
phase and the second phase respectively, Cm �
(Ca � Cb) /2, A, B, Da, Db, g, d, and eij are

phenomenological parameters. The parameters are
chosen in such a way that fo has 2p degenerate min-
ima with equal depth located at (h1,h2,…,hp) �
(1,0,…,0), (0,1,…,0), …, (0,0,…,1) at the equilib-

rium concentration Cb. This requirement ensures
that each point in space can only belong to a grain
with a given orientation of a given phase.

This formulation guarantees that, when two par-
ticles with different orientations are in contact with
each other, a grain boundary forms. Two particles
will coalesce when they have the same orientation,
which also happens in real systems. The difference
is that there are an infinite number of orientations
in a real system and only a finite number of order
parameters can be used in a simulation. It has been
shown [34–37] that, if a large number of order
parameters (more then 30) are used in simulations,
the kinetics will converge to a value independent
of the number of orientations.

It should be pointed out that, in this paper, we
only study the coarsening of particles after the
initial phase transformation that creates the two-
phase mixtures. The driving force for particle
coarsening is the minimization of total surface
energy (grain boundary energy and interfacial
energy). Therefore, as long as the correct grain
boundary and interfacial energies can be obtained,
the exact form of the free energy density (f0) is not
an issue. Free energy density (f0) determines the
driving force for the phase transformation.

The energy of a planar grain boundary, sgb,
between a grain of orientation i and another grain
of orientation j for two second phase grains, can
be written as follows,



1898 D. Fan et al. / Acta Materialia 50 (2002) 1895–1907

sgb � �
� �

��

��f(hi,hj,C) �
�C

2 �dC
dx�2

(3)

�
�i

2�dhi

dx �2

�
�j

2�dhj

dx �2� dx

in which

�f(hi,hj,C) � f0(hi,hj,C)�f0(hi,e,hj,e,Cb)�(C (4)

�Cb)�∂f0

∂C�hi,e,hj,e,Cb

where f0(hi,e,hj,e,Cb) represents the free energy den-
sity minimized with respect to hi and hj at the equi-
librium composition of the second phase Cβ. Simi-
larly, the interphase boundary energy between the
matrix phase and a second phase grain with orien-
tation i can be defined.

In the present model, the evolution kinetics of
these field variables are described by the gen-
eralized time-dependent Ginzburg–Landau
(TDGL) and Cahn–Hilliard equations:

dhi(r,t)
dt

� �Li

dF
dhi(r,t)

, i � 1,2,…,p, (5a)

dC(r,t)
dt

� ��D�� dFdC(r,t)��, (5b)

where Li and D are kinetic coefficients related to
grain boundary mobilities and atomic diffusion
coefficients, t is time, and F is the total free energy
given in Eq. (1). The difference between kinetic
equations for orientation field variables hi(r) and
concentration field C(r) comes from the fact that
C(r) is a conserved field, due to the requirement
of mass conservation, and the orientation fields are
non-conserved variables.

3. Simulation results and discussions

3.1. Microstructural evolution and scaling

To study Ostwald ripening, we chose a set of 30
orientation variables and a concentration field to
characterize the microstructures. A 2-D
512 × 512 square system was employed. The

phenomenological parameters were chosen such
that the liquid, or matrix, phase totally wets the
solid, or coarsening, phase, i.e., the ratio of grain
boundary energy to interfacial energy is larger than
2.0. We assumed the following phenomenological
parameters in Eqs. (1)–(4): Ca � 0.05, Cb �
0.95, Cm � (Ca � Cb) / 2 � 0.5, A � 2.0, B �
A / (Cb�Cm)2, g � 2/ (Cb�Ca)2, d � 1.0, Da �
Db � g /d2, eij � 3.0. The gradient coefficients

were chosen as: �i � �j � �C � 2.0. These para-
meters give an energetic ratio sgb /sin � 2.14,
which satisfies the total wetting condition. The kin-
etic equations were discretized using centered
finite differences and integrated in time using an
explicit method. The grid size along both Cartesian
coordinate axes, �x, was chosen to be 2.0, and the
time step for integration, �t � 0.1. Periodic
boundary conditions were applied. The diffusivi-
ties and mobilities were assumed to be the same
for both phases.

Computer simulations were started from a liquid
or disordered phase, i.e., a phase with small ran-
dom values for all field variables (±0.001) and the
average concentration for the composition field
with thermal noise. This ensures the desired vol-
ume fractions. After the quench, grains of the
coarsening phase will spontaneously nucleate from
the liquid or disordered phase. The nucleation pro-
cess was completed roughly within first 1500 time
steps. Allowing enough time for the system to
reach the steady state or as close as we could reach
in these calculations (after the first 5000 time
steps), the kinetic data for Ostwald ripening and
size distributions were extracted from the simu-
lated microstructures. At time step 5000, there are
about 600 grains or particles in the 25% coarsening
phase system and about 700 grains in the high vol-
ume fraction systems. The simulations were
stopped when there were about 100 grains left in
the 25% volume fraction system and about 200 left
in the high volume fraction systems.

The temporal evolution of the microstructures
with 25%, 50%, 75%, and 90% volume fractions
of second phase is shown in Figs. 2–5, respect-
ively. In these microstructures, the bright phase is
the coarsening, or solid, phase, and the dark phase
represents the matrix phase. It can be seen that at



1899D. Fan et al. / Acta Materialia 50 (2002) 1895–1907

Fig. 2. Microstructural evolution of Ostwald ripening in 2-D
with 25% coarsening phase. The system size is 512 × 512. The
initial microstructure is a liquid. After nucleation, there are
about 600 particles in this system at the 5000 time step.

Fig. 3. Microstructural evolution of Ostwald ripening in 2-D with 50% coarsening phase. The system size is 512 × 512. The initial
microstructure is a liquid. After nucleation, there are about 750 particles in this system at the 5000 time step.

low volume fraction (25%), the coarsening grains
are almost perfect circles and the coarsening is
solely controlled by the interparticle diffusion
through the matrix phase. At 50% of the coarsen-

Fig. 4. Microstructural evolution of Ostwald ripening in 2-D
with 75% coarsening phase. The system size is 512 × 512. The
initial microstructure is a liquid. After nucleation, there are
about 650 particles in this system at the 5000 time step.

ing phase, particle coalescence is observed, which
is the result of a finite number of orientation vari-
ables employed in the simulations, and most of the
grains are still nearly circular. However, at 75%
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Fig. 5. Microstructural evolution of Ostwald ripening in 2-D
with 90% coarsening phase. The system size is 512 × 512. The
initial microstructure is a liquid. After nucleation, there are
about 650 particles in this system at the 5000 time step.

volume fraction, shape accommodation becomes
apparent and the particle shapes start to depart
from circular shapes. The microstructures with vol-
ume fractions larger than 90% are comprised of
particles with flattened sides, curved edges and
rounded vertices or corners. In all cases, the coars-
ening particles are wetted by the matrix phase as
a result of our choice of the gradient energy coef-
ficients.

A common method used to determine whether
a system has reached the scaling regime is to
examine the normalized structural function S(k, t)
[41–43], which is the Fourier transform of the spa-
tial correlation function. It is suggested that the
normalized structural function can be written as
s(k,t) � �(t)dF(x,t), where k is the wave vector, d
dimensions, x � k /�(t), t the time, �(t) a time-
dependent length scale which behaves as
�(t) � tn for positive n. F(x, t) is called the scaling
function. In the scaling regime, F(x,t) � F(x),
which is independent of time.

Therefore, the dynamical scaling of a system can

be determined by calculating the scaling function
of the system. If the shape of the scaling function
does not change significantly with time, it means
that the system has reached the scaling state or ste-
ady state. Following the formulations of Lebowitz
et al. [37], the structure functions and its scaled
version are calculated. Fig. 6 shows an example of
the calculated scaling function for the 90% coars-
ening phase system at different time steps. It is
clear that scaling functions are invariant with time,
indicating that over the time scale of our calcu-
lations, the system may have reached the steady
state. It should be pointed out that due to the lim-
ited system size and limited number of time steps
in our simulations, Fig. 6 is not a rigorous proof
that the system has reached the scaling regime. It
is possible that the system evolves very slowly to
the scaling regime, and the statistics are not suf-
ficiently accurate to distinguish potentially small
variations in the scaling functions. The scaling
functions in other volume fractions are similar to
Fig. 6.

Fig. 6. Relations of the scaling function F(x, t) with the nor-
malized wave number x (x � k /�(t)) in the reciprocal space at
different time steps in 90% coarsening phase system. Time
step=20,000, 40,000, 60,000, 80,000, and 100,000.
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3.2. Kinetics of Ostwald ripening

The time dependence of the average grain size
in systems with 25% and 90% of the coarsening
phase are shown in Figs. 7 and 8. In these plots,
the solid lines are the non-linear fits to the power
growth law Rm

t �Rm
0 � kt with three variables m, k

and R0. It is found that these data fit the power
growth law very well with m � 3 in all cases, even
for the very high volume fraction of coarsening
phase (90%). Thus even in systems with 90% vol-
ume fraction the coarsening process is not well
described by m � 1 /2, which would be expected
in the limit of very high volume fractions. It is
clear that the shape accommodation of particles
will not affect the growth exponent m as long as
the system is in the scaling regime. Even though
the growth exponent is independent of the volume
fraction of the coarsening phase, the kinetic coef-
ficient k is strongly volume-fraction dependent.

The dependence of the kinetic coefficient k on
the volume fraction of the coarsening phase is
shown in Fig. 9. At 25% coarsening phase, the kin-
etic coefficient k is 0.833, while at 90% coarsening

Fig. 7. Time dependence of the average grain size of the
coarsening phase in the 25% coarsening phase system. The dots
are the measured data from simulated microstructures. The solid
line is a non-linear fit to the power growth law Rm

t �Rm
0 � kt

with three variables m, k and R0.

Fig. 8. Time dependence of the average grain size of the
coarsening phase in the 90% coarsening phase system. The dots
are the measured data from simulated microstructures. The solid
line is a non-linear fit to the power growth law Rm

t �Rm
0 � kt

with three variables m, k and R0.

Fig. 9. Dependence of the kinetic coefficient k on the volume
fraction of the coarsening phase.
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phase, the coefficient increases to 24.45 that is
about 30 times higher than that in the 25% system.
The rapid increase in the kinetic coefficient k can
be attributed to the dramatic decrease of the dif-
fusion distance of atoms in the matrix phase as the
volume fraction of coarsening phase increases. At
low volume fraction (25%), the typical diffusion
distance is the mean spacing between particles,
which is much larger than the grain boundary
thickness. At 90% coarsening phase, it can be seen
from microstructures (Fig. 5) that the typical dif-
fusion distance between grains becomes compara-
ble with the grain boundary width, which will gre-
atly enhance the coarsening kinetics but, as
mentioned above, not change the temporal
exponent. The rapid increase in k at high volume
fraction is qualitatively similar to that obtained
from experiments using solid–liquid mixtures in
the Fe–Cu, Co–Cu, Pb–Sn, Sn–Pb systems [3].

3.3. Size distributions

Examples of size distributions at different times
in systems with 25% and 90% coarsening phase
are shown in Figs. 10 and 11, respectively. It is

Fig. 10. The time dependence of grain size distributions in
25% coarsening phase system. Time step=40,000, 120,000,
200,000, 280,000, 360,000. There are about 300 grains at the
40,000 time step and 100 grains at the 360,000 time step.

Fig. 11. Time dependence of grain size distributions in 90%
coarsening phase system. Time step=5000, 7500, 10,000,
12,500, 15,000. There are about 500 grains at the 5000 time
step and 300 grains at the 15,000 time step.

clear that the shapes of size distributions in all sys-
tems does not vary significantly with time, indicat-
ing the system evolves very slowly to the true sca-
ling regime or the system is very close to the
scaling regime. However, the shapes of size distri-
butions between different volume fractions are dif-
ferent. The dependence of the shape of size distri-
butions on the volume fraction is given in Fig. 12.
In this plot, the dots represent the average data of
size distributions at different volume fractions, and
the lines are the smooth fits to those data. For a
direct comparison, all size distributions at different
volume fractions were normalized to satisfy the
relation 	r(x) dx � 1, where r(x) is the size distri-
bution, and x � R / 	R
. As the volume fraction of
the coarsening phase increases, the size distribution
broadens and the peak of the size distribution
decreases. Fig. 12 also shows that in the low vol-
ume fraction regime (25%), the size distribution
skews to the left side and becomes more symmetric
at 50%. To quantitatively study the skewness of
the size distributions, the skewness was calculated
for different volume fractions, as shown in Fig. 13,
in which the skewness is defined as m3 /m3/2

2 , where
mm is the mth moment of the size distribution. A



1903D. Fan et al. / Acta Materialia 50 (2002) 1895–1907

Fig. 12. Dependence of grain size distributions on the volume
fraction of coarsening phase. Dots represent the average data
of size distributions at different volume fractions and lines are
the smooth fits to those data.

Fig. 13. Dependence of the skewness of size distributions on
the volume fractions of the coarsening phase.

positive skewness means the distribution has a
longer tail to the right of the mean value than to
the left. If the reverse is true, skewness is negative.
It can be seen that at 25% volume fraction the
skewness is negative, i.e., skewed to the left, and
that it continuously changes toward positive values
as the volume fraction increases. In the high vol-
ume fraction regime, the size distributions skew to
the right in contrast to the low volume fraction
regime. Most theories, on the other hand, predict
that skewness increases with the volume fraction
of coarsening phase, but does not change sign. It
should be noted, however, that there are very few
theories that attempt to predict the particle size dis-
tributions at volume fractions in excess of 70% and
thus this change in the sign of the skewness may
be primarily a result of the volume fractions
employed in our computer simulations.

Another important characteristic of size distri-
butions is the so-called kurtosis, the degree of
peakedness of distributions. The kurtosis or excess
kurtosis is defined as m4 /m2

2�3, which is the rela-
tive sharpness compared to the normal distribution.
The dependence of kurtosis of the size distributions
on the volume fraction is shown in Fig. 14. At low
volume fraction (25%), the kurtosis is positive and

Fig. 14. Dependence of the kurtosis of size distributions on
the volume fractions of the coarsening phase.
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more peaked than the normal distribution. A rapid
decrease of peakedness is observed from 25% to
50% of the coarsening phase, and the kurtosis is
negative for the 50% case, indicating that it is more
flattened than the normal distribution. In this vol-
ume fraction regime (
50%), the trend of kurtosis
as a function of volume fraction agrees with the
prediction of analytical theories, i.e., the peak of
size distributions becomes more flattened
(decreasing kurtosis) with increasing volume frac-
tion. However, in the high volume fraction regime
(�50%), the kurtosis increases with increasing vol-
ume fraction, i.e., the size distribution becomes
more peaked as it continuously skews to the
right side.

Similar behaviors for skewness and kurtosis in
the high volume fraction regime have also been
found in Monte Carlo simulations by Tikare [44].
However, since the Monte Carlo simulations were
only performed in the higher volume fraction
regime (�40%), there is no reported continuous
change of skewness from a large negative value
(strongly skewed to the left) to a large positive
value (strongly skewed to the right), and the sig-
nificant decrease of kurtosis from positive to nega-
tive in the low volume fraction regime. Both Monte
Carlo and current simulations showed that in the
high volume fraction regime size distributions
skew to the right and peakedness increases with
increasing volume fraction of the coarsening phase.
Davies et al. [45] predicted the change of skewness
from negative to positive with increasing volume
fraction in 3-D, by taking into account the encoun-
ter or coalescence of particles and modifying the
continuity equation of LSW theory. However, the
coalescence of particles was explicitly prevented
in Monte Carlo simulations while in the current
simulations the coalescence did occur. Since both
simulations predicted similar behaviors for skew-
ness and kurtosis in the high volume fraction
regime, the coalescence may not be the controlling
factor that determines the volume-fraction depen-
dences of skewness and kurtosis. The factors that
may affect their volume-fraction dependences
should include the spatial correlations of particles
and shape accommodation in the high volume frac-
tion regime, which affect the local driving force
and local concentration gradient and in turn may

influence the shape of size distributions. A second
possibility is that the evolution of the particle size
distribution towards its asymptotic shape may be
extremely slow at high volume fractions, and thus
the observed skewness would disappear if the sys-
tem were allowed to coarsen longer [33].

The size distribution for the 25% coarsening
phase system predicted by the current simulation is
compared with the result for 21% coarsening phase
obtained by Chakrabarti et al. [17] through numeri-
cally solving the Cahn–Hilliard equation, as shown
in Fig. 15. It can be seen that these two results are
almost identical. As a matter of fact, the current
model will reduce to the Cahn–Hilliard equation if
no orientation field variables are involved. How-
ever, the Cahn–Hilliard equation itself cannot be
employed to study Ostwald ripening in the high
volume fraction regime since an interconnected
microstructure will be formed when the volume
fraction is larger than about 40%. At the low frac-
tion regime, the current model and numerical sol-
ution of the Cahn–Hilliard equation are equivalent.

Due to the lack of experimental and theoretical
results in 2-D for the high volume fraction regime,
the current simulation result of 50% volume frac-

Fig. 15. Comparison of the size distribution of the present
result in 25% coarsening phase system with the result for 21%
coarsening phase system obtained by Chakrabarti et al. [17]
through numerical solving the Cahn–Hilliard equation.
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tion is compared with the thin-film experimental
result of 40% [24] and the theoretical prediction at
40% by Marqusee [16], as shown in Fig. 16. To
make a direct comparison, these distributions were
normalized to satisfy the relation 	r(x) dx � 1. It
is clear that the shape of the distribution obtained
from the current simulation is in good agreement
with the shape obtained from 2-D experiment
results, except at the large size regime. The fre-
quencies of large size particles in the current simul-
ation with 50% coarsening phase are higher than
those obtained from experiments with a volume
fraction of 40% coarsening phase. This difference
could come from the higher volume fraction in the
simulated system, and from the fact that some
coalescence is observed in the simulated 50% sys-
tem. This difference has been found to be a signa-
ture of a transient coarsening process [33]. It was
found that very long coarsening times are required
for the largest growing particles to decrease their
size relative to the average and thus decrease the
magnitude of the frequency at large R / 	R
. It is
thus possible that the calculated scaled distri-
butions are not completely in steady state.

Fig. 16. Comparison of the size distribution of the present
result in 50% coarsening phase system with the prediction of
Marqusee theory [16] and experimental result [24] for 40%
coarsening phase system.

3.4. Effect of partial wetting

In the above simulations and all other theories
a total wetting energetic condition was assumed.
However, in many practical systems or solid–liquid
two-phase alloys, the liquid, or matrix, phase only
partially wets the solid phase or coarsening phase.
The partial wetting energetic condition will result
in direct contact between particles of the coarsen-
ing phase, which changes the local concentration
distribution and local curvatures. Therefore, it is
necessary to examine if the wetting condition will
affect the coarsening kinetics of Ostwald ripening.

In this section, a system with 90% of coarsening
phase and with the energetic ratio sgb /sin � 1.85
was chosen to study the effect of the energetic ratio
on coarsening kinetics. The temporal evolution of
the microstructure of this system is shown in Fig.
17. It can be seen that microstructures under this
energetic condition are quite different from those
of total wetting systems. The liquid phase or matrix

Fig. 17. Microstructural evolution in the partial wetting sys-
tem with 90% coarsening phase. sgb /sin � 1.85. The system
size is 512 × 512. The initial microstructure is a liquid. After
nucleation, there are about 580 particles in this system at the
5000 time step.
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phase is not continuous anymore and stays at grain
boundaries and grain corners of the coarsening
phase because of its low volume fraction. The time
dependence of the average grain size of the coars-
ening phase is shown in Fig. 18. It is quite interest-
ing to see that the growth exponent m is still 3 for
the coarsening phase, which is not affected by the
change in wetting conditions and microstructural
details. Therefore, as long as Ostwald ripening is
the rate controlling process in a two-phase mixture,
the growth exponent will not depend on which
phase undergoes Ostwald ripening. Because we
assume the same diffusivity for both phases, the
kinetic coefficient k in this partial wetting system
is also identical to that of a total wetting system
with 90% coarsening phase. However, if the diffus-
ivities are different in the two phases and in the
grain boundary regions, a strong dependence of
kinetic coefficient k on the wetting condition can
be expected. The time dependence of size distri-
butions in this system is shown in Fig. 19. These
size distributions are approximately self-similar or
time-invariant, indicating the system is nearly at
the steady state. The shape of these size distri-

Fig. 18. Time dependence of the average grain size in the par-
tial wetting system with 90% coarsening phase. sgb /sin �
1.85. The dots are the measured data from simulated micro-
structures. The solid line is a non-linear fit to the power growth
law Rm

t �Rm
0 � kt with three variables m, k and R0.

Fig. 19. Time dependence of size distributions in the partial
wetting system with 90% coarsening phase. sgb /sin � 1.85.
Time step=5000, 7500, 10,000, 12,500, 15,000. There are about
450 grains at time step 5000 and 250 grains at time step 15,000.

butions is equivalent to that in the total wetting
system with 90% coarsening phase. Hence, under
the assumption of both phases having the same
diffusivity, the characteristics of Ostwald ripening
are not affected by the wetting condition, even
though the microstructures are very different in
total wetting and partial wetting systems. This is
not the case if the diffusivities are different for two
phases and in grain boundary regions [46].

4. Summary

The characteristics of Ostwald ripening in a two-
phase mixture have been systematically studied
over a range of volume fractions of the coarsening
phase. It was found that the growth exponent
m � 3 is independent of the volume fraction of the
coarsening phase and the details of the microstruc-
tures up to a volume fraction of 90%. The kinetic
coefficient k increases as the volume fraction of
the coarsening phase increases, with a very strong
increase above volume fractions of 70%. The
simulation predictions agree well with experi-
mental results from different systems. It was shown
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that the shape of size distributions changes dra-
matically with increasing volume fraction of the
coarsening phase. The skewness continuously
changes from negative to positive while the kur-
tosis decreases in the low fraction regime and
increases in the high volume fraction regime. The
wetting of a second phase will not affect the coars-
ening exponent under the conditions that two
phases and grain boundary have the same diffusion
coefficient or mobility, and the volume diffusion
is the controlling mechanism for diffusion.
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