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Computer simulation of grain growth kinetics with solute drag
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The effects of solute drag on grain growth kinetics were studied in two-dimensional (2D)
computer simulations by using a diffuse-interface field model. It is shown that, in the low
velocity/low driving force regime, the velocity of a grain boundary motion departs from

a linear relation with driving force (curvature) with solute drag. The nonlinear relation

of migration velocity and driving force comes from the dependence of grain boundary
energy and width on the curvature. The growth expomemf power growth law for a
polycrystalline system is affected by the segregation of solutes to grain boundaries. With
the solute drag, the growth exponentcan take any value between 2 and 3, depending

on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological
distributions are unaffected by solute drag, which are the same as those in a pure system.

. INTRODUCTION that the migration velocity of grain boundaries may
Grain growth is a process of grain boundary mi-not be linearly proportional to the driving force if
gration to decrease total grain boundary area and totanpurity is segregated to grain boundaries, which de-
free energy of a system, driven by mean curvatures gbends on the migration velocity, driving force and the

grain boundaries. The kinetics of grain growth dependgoncentration of segregation. Hillert and Sundah-
strongly on the presence or absence of solute or impurittained similar results to those of Cahn by using a
segregation at grain boundaries. In a pure material, thifee energy dissipation theorem and idealized models
only process which occurs during grain growth is localfor interaction energy profiles. Even though the theory
atomic rearrangement. If solute segregation is presenéxplains a number of experimental observations, the
the migration of grain boundaries may be controlled bydirect derivation of a grain-growth law from this theory
long range diffusion. It is well understood that grainis difficult.
growth follows power growth lawR™ — Ry' = kt with Krzanowski and Allefr’® studied the effects of
the growth exponent: = 2 in a pure materiaf;® where  segregation on antiphase boundary migration kinetics by
R, is the initial average grain sizeR, is the average employing a diffuse-interface theory. They obtained a re-
grain size at timet, and k is the kinetic coefficient. lationship of migration velocity with driving force (here
Experimentally, however, the growth exponemt is it is the mean curvature of curved boundaries) in the low
found to be larger than 2 even if a very low impurity velocity/low driving force regime, which is found to be
level (a few ppm or less) is present in pure metdis.  equivalent to that of CahhiThey indicated that the value
Theoretically, Cahh studied the effects of solute of the interfacial mobility is dependent on the presence
drag on migration kinetics of grain boundaries by con-of segregation and the kinetics of boundary migration
sidering the interaction of impurity atmosphere withis retarded when the segregation of solute is present
grain boundaries. Cahn predicted that, according to that boundaries. Interestingly, however, they showed that,
migration velocity and driving force, the migration of by assuming interfacial energy and interfacial thickness
grain boundaries with impurity segregation can be clasare constant, the growth exponemt(=2) is unaffected
sified into different regimes: (a) a low velocity/low by the presence of segregation at boundd@fe$heir
driving force regime, where long-range diffusion of experimental results of Fe—Al alloys seem to support
impurity is important; (b) a high velocity/high driv- their theoretical prediction®. Krzanowski and Allekt
ing regime, where long-range diffusion is not neces-also found both theoretically and experimentally that,
sary and desorption of solute may occur accordinghowever, the growth exponent will change to 3 if the
the diffusivity of impurity; and (c) a transition re- antiphase domain boundaries are wetted by a thin layer
gion between these two regimes. It was also showmf a second phase, indicating that long-range diffusion
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controls the coarsening kinetics in this case. Despitemumber ofp (p > 30) might be sufficient to realistically
theoretical prediction of the nonlinear relation betweensimulate grain growtfA3-1°

the migration velocity and the driving force in the To study the effects of solute segregation, a con-
presence of solute drag, other researchers predicted thegntration fieldC(r) is introduced, which describes the
the solubility of impurity may also affect the growth spatial distribution of solute atoms. Within the diffuse
exponentn'?; i.e., m is 3 for low solubility of impurity  interface theory/ the total free energy of an inhomoge-
and is 2 in high solubility regime. Therefore, from the neous system can be written as:

theoretical point of view, it is still unclear if and how

the solute drag will affect the growth exponent for F = f{f,,[c(r);m(r), mr), ..., m,(r)]
polycrystalline materials.

Recently, the authors have developed a diffuse- Ko LS X
interface field model for simulating the grain growth in Ty Ve + > 5 (Vo (N rd’r, (1)
pure materiaf$1* and for studying the microstructure i=1
evolution in volume-conserved two-phase systéfm8. where VC and Vy, are gradients of concentration and
A significant feature of this model is that the microstruc-orientation fields,xc and «; are the corresponding
tural complexity and long-range diffusion can be takengradient energy coefficients, ant}, is the local free

into account conveniently and simultaneously. Computeenergy density which, in this work, is assumed to be
simulations using this model allow one not only to

monitor the detailed temporal microstructure evolution _ N ' C N o
during grain growth but also to obtain all the information fo=Fi(C) + l.;fZ(C’ mi) + ;;f3(n” ). @)
about the average grain size and size distributions. In this

paper, we modify this diffuse-interface field model to in Which

study the effects of sqlute drag on grain growth l_(inetics. £(C) = —(A/2)(C — C,)* + (B/4)(C — C,)*

We focus on the grain growth in the low velocity/low

driving force regime, in which the driving force for grain + (Du/4) (C = Cu)' + (Dg/4) (C — Cp)',
boundary migration is the mean curvature (capillarity) _

and solute atmosphere moves with grain boundaries.fz(c’ m) = —(y/2[(C = )

The migration of grain boundaries with solute drag +(C = CP () + (8/4) (),

was studied by computer simulations and the effects
of segregation on growth exponent were analyzed forf;(n:, n;) = (€,/2) (m:)*(n,)*,

olycrystalline materials. ,
polyery where C, and Cg are the solubilitiesX or Y in «

and B phases, respectively;, = (C, + Cg)/2, and
Il. DIFFUSE-INTERFACE FIELD MODEL A, B, D,, Dg, v, 6, and €; are phenomenological
We assume a binary alloy consisting of element@rameters. A main requirement ffy is that it has2p
X and Y for studying grain growth in a solid solution degenerate minima at equilibrium concentratiop or
with solute drag. At a certain temperatufe there are Cpto distinguish th& p orientation dlﬁ‘erfences of grains
two possible stable solid solutions and 8 with the N Space. The parameters_are chosen in such a way that
equilibrium concentrationg, and Cy, respectively, in o has2p degenerate minima with equal depth located

this system. By choosing the average alloy concentratioAt (11, 72,-.., m,) = (1,0,...,0), (0,1,....0)...,
C within the solid solution regions{ < C, or C = Cg), (O,Q, e .1) at the equilibrium concentratiofi, or Cg.
the grain growth with solute drag can be studied. This requirement ensures that each point in space can

In this diffuse-interface field model, an arbitrary P€lONg only to a grain with a given orientation of a

polycrystalline microstructure is described by a set ofdiven phase. The justification for using such a free
continuous field variables, energy model in the study of coarsening was discussed

previously*3-15

The energy of a planar grain boundasy,,, between
a grain of orientation and another grain of orientation
o for two stablea grains, can be written as follows:

7}1(”)s”72(”)’ s”]p(”),

where p is the number of possible orientations in spac

andn; (i = 1,..., p) are called orientation field vari- +o ke (dC?
ables which distinguish the different orientations of b =f |:Af(n,-,nj,C) + 7<d_>
grains and are continuous in space, and the position w *

to 1.0. In real materials, the number of orientations is fad)

in the space. Their values continuously vary frem.0 <
infinite (p = ). However, it was shown that a finite 2

d77i>2 Kj <d77j>2
— 1 + —L -7
dx 2 \ dx ax, 3)
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in which both directions. The total number of orientation field
B variables are 36 = 36).
Af(ni,m;, €) = fo(mi: 1), €) = fo(Mies Mjes Ca) The following parameters for the free energy func-

dfo tion [Eq. (2)] were assumed in this study:= 2.0,B =
- (C - Ca)<%> . (4 988,C, =0.05Cs =095D, =Dg =152,y =
M- Tjie:Ca 2.0,8 = 1.0, ande;; = 3.0, which give two equilibrium
where fo(9;., m;., C.) represents the free energy den-solid solutions and satisfy the requirements mentioned
sity minimized with respect tg; andn; at the equilibri-  in Sec. Il for free energy functior,. We also assumed
um composition ofx phaseC, . If average concentration isotropic grain boundary energies= «; = x = 2.0 and
C = Cg, C, is replaced byCy in Eq. (4) sinceB phase «c = 2.0. The mobilities are chosen & = L, = L =
is the only stable phase. 1.0, which give isotropic grain boundary mobility. In this
The evolution of orientation and concentration Study, the average concentration of the alloy was chosen
field variables are described by the time-dependends C < C,) and hence ensures that the microstructure
Ginzburg—Landau (TDGL§ and Cahn—Hilliar¢?  consists of single phase grains with the segregation of
equations, Y atoms at grain boundaries.
To generate the initial microstructure, a single phase

dni(r,1) =L, S_F’ grain growth simulation was first performed to obtain a

dt 8ni(r,1) fine grain structure. Grains are then randomly assigned
i=12,...,p, (5a)  with the average concentratio and an orientation

field. The concentration of solute atoms is conserved

dC(r.1) during the simulations of grain growth; e.g., average

—a V{DV|: BC(S(I: t)} , (5b)  concentrationC is a constant and solute atoms can
’ diffuse only within the system. The initial segregation
where L; and D are kinetic coefficients related to the Was obtained by relaxing the system for certain time
grain boundary mobilities and atomic diffusion coeffi- steps (100 time steps), which gives a grain structure with
Cients’t is time' andF is the total free energy given in solute segregation at grain boundaries. The kinetics of
Eq. (1). The microstructural evolution of grain growth grain growth with solute drag was then studied. The area
with solute drag can be studied by numerically solvingof each grain at a given time step is directly calculated

Egs. 5(a) and 5(b) coupled kinetic equations. from the microstructure by counting the number of grid
points within a grain, and grain size is obtained from
Il. NUMERICAL METHODOLOGY the area by assuming a circular shape for all grains;

therefore, area= 7w R>. The average grain radius at a
iven time step is then obtained by averaging over all
e grains in a system. All the kinetic data and size
stributions were obtained using 5X2512 grid points
Vi = and averaged from independent runs. There are more
than 3000 grains at the beginning of collecting data
for calculating the statistics and there are about 200 at

(AL)Z [% Dby = ) + % Z,(d’f" - ¢,-)] the end.

To numerically solve the set of kinetic equations (5),
one needs to discretize them with respect to space.
discretize Laplacian using the following approximation: di

6) IV. MIGRATION OF A GRAIN BOUNDARY WITH

wheredg is any function Ax is the grid size; represents SOLUTE DRAG

the set of first nearest neighbors ofind j' is the set To study the effects of solute drag on the migration
of second nearest neighborsiofFor discretization with of a grain boundary, we consider a circular graip )(
respect to time, we employed the following simple Eulerembedded in another graim4). We employed 200x

technique, 200 square lattice points to spatially discretize the kinetic
d equations with periodic boundary conditions applied
ot + At) = d(2) + o X At, (7) along both Cartesian coordinate axes. The initial radius

of the circular grain was chosen to have 60 grid points.
where At is the time step for integration. All the results The microstructural evolution of the circular grain is
discussed below were obtained by usiig= 2.0,As =  shown in Fig. 1. It can be seen from Fig. 1 that the grain
0.1 to ensure numerical stability. The kinetic equationsboundary is very smooth and circular at all times, in-
are discretized in 2D by using 512 512 square grid dicating that the parameters chosen for numerical simu-
points with periodic boundary conditions applied alonglations are proper and no apparent lattice anisotropy is
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() (b)

() (d)

FIG. 1. (a—d) The microstructural evolution of a circular grain.

introduced by discretizing the continuous equations (5)L, = L. In this case, the area of the circular grain
The snapshots of concentration profiles across the middidecreases linearly with respect to timeHowever, the
of the circular grain are shown in Fig. 2. The segregatiormigration of grain boundary with solute drag may not
of solutes at grain boundary is obvious and the solutdéollow this linear relationship. To study the effects of
atmosphere moves with grain boundary, which indicate&inetic conditions on grain boundary migration kinetics,
a low velocity/low driving force condition [case (a)]. It two kinetic conditions are employed. First, the ratio
should be noted that, in this dynamic system, the velocitypetween the kinetic coefficie®?, which is related to the
of grain boundary is not constant and there is no timesolute diffusivity in lattice, and the kinetic coefficieht
for the concentration profile to relax to its equilibrium which is related to grain boundary mobility, is chosen
shape at a given time and velocity. Therefore, manyo be 1.0. Under this condition, the lattice diffusion
runs are needed to calculated the average segregatiosie is fast enough so that solute atoms can move with
concentration at a given time step. grain boundaries without significantly delaying the grain
The driving force for the grain boundary movementboundary motion. Second, the ratio of kinetic coefficients
is the mean curvature, which 1gR in this caseR isthe D and L is chosen to be 0.5 by keepirg fixed at its
radius of the circular grain). It was shown that, if without value for case one and decreasing the kinetic coefficient
solute drag, the kinetics of a circular grain follows the D. The time evolution of the areas of the circular grain
equationR} — R? = 2L«1,18202whereR, is the original  with solute drag is shown in Fig. 3. It can be seen that
radius of the circular grainR is the radius at time, areas of the circular grain decrease slightly nonlinearly
gradient coefficienk, = x, = «, and the mobilityL.; =  with time for D/L = 1.0 conditions. The smaller the
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g
)

long-range diffusion becomes the controlling factor for
] grain boundary migration and the shrinkage kinetics of
1 the circular grain departs from the linear relation.

For the single-phase grain growth (without solute
drag), the velocity of grain boundary migration can be
expressed a%20-2

_O
n
——r

e
w
——

v=MEK, +K,), 8)

wherev is the velocity, €, + K;) is the mean curvature
of the grain boundary, and/ is a kinetic constant
dependent on coefficients and x. For a 2D circular
grain,v = dR/dt, (K, + K;) = 1/R, and Eqg. (9) can
be easily integrated into relatioR; — R = 2Lk,

J P i.e., a linear relation between grain and area and time
; s t. However, the velocity expression obtained for grain
ol v v v v v growth with solute drag was given ®%

0 50 100 150 200
Lattice site

FIG. 2. The time dependence of concentration profiles across thwhere o is the grain boundary energyy is grain
grain boundary of a circular grain. Dotted line:= 1000; double  boundary thickness, angd is a coefficient which is a
dotted line:z = 3000; solid line:r = 5000. function of diffusivity, surface excess energy, and other
thermodynamic factors. If we assume thaté, and u
are independent of the curvature (or grain radRjs
D/L ratio, the more obvious the nonlinearity. When theEq. (10) can also be integrated into a similar relation
diffusion of solute atoms in the lattice is fast enoughRj — R> = 2uot/6 for a circular grain. Actually,
(condition D/L = 1.0), long-range lattice diffusion of Krzanowski and Allef® made the same assumptions and
solute atoms has less effect on grain boundary migratiorobtained the growth law with growth exponent= 2
In this case, the relation between grain areas and timfar the polycrystalline grain growth with solute drag.
is very close to a linear one (Fig. 3). However, if the With these assumptions, the only difference between
rate of lattice diffusion of solute is much smaller thangrain growth with and without solute drag is the kinetic
the motion of grain boundaries (conditidw/L = 0.5), coefficient of the growth law, while the growth exponent
m will not be affected.
However, Fig. 3 indicates that the velocity with
ST e B L A solute drag is not linearly related to the driving force
] [(K; + K,) or 1/R for a circular grain]. To directly
= ——e--05 ] visualize the relation of the velocity with the driving
GQO.. --e---1.0 force for grain boundary migration, we plafR/dt
°Qo‘ ] with 1/R (curvature) in Fig. 4 for the shrinkage of a
5 1 circular grain in simulations. Th@R/dr values were
5, @ ] obtained by fitting thek-¢ curve with a smooth function
8 .\. j and then taking derivatives of that function at time
; t. The relation ofdR/dr and 1/R for gain boundary
9, ' ] motion without solute drag is also plotted in Fig. 4
% l for comparison. Figure 4 shows that the velocity of
% , ] grain boundary migration without solute drag keeps a
% hY ] good linear relation with curvature (driving force), which
% '-.. ; ensures that the growth exponentis 2 in the power
®b® %, ] law. On the other hand, as solute atoms segregate to
T .'°, ] grain boundaries, the velocity starts to depart from the
linear relationship, which results in the change of growth
0 500 1000 1500 2000 2500 3000 exponentn and a nonlinear relation between the average
t grain area and time. It is also shown that the migration

FIG. 3. The time dependence of the grain area of a circular grain wittV€lOCity iS_ dra.matica“y decreased by solute c_irag; i:e-,
kinetic conditionD/L = 1.0 andD/L = 0.5. at a certain driving force (curvature), the velocities with
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FIG. 4. The relationship of driving force (curvatuigR) with the 1 5 The calculated relation of the peak concentration of segrega-
migration velocity of grain boundary in a pure system and in systemgjon at grain boundary with the curvature of a circular grain.

with segregation under kinetic conditioRy'L = 0.5 andD/M = 1.0.

§ISC TS 3 I DL LR B IR B

solute drag are much smaller than that without solute i
drag (Fig. 4). The smaller the diffusivity, the more , {34 |
severely the grain boundary motion will be retarded.
This slowing-down actually confirms the Krzanowski
and Allen’s formulatiofl in the low velocity/low driving
force regime.

To investigate which parameter affects the linear.8
relation of velocity and driving force, the dependence of § K

: : N 2 130
grain boundary energy on curvature is plotted in Fig. 6.2
It can be seen that grain boundary enetgydecreases £ -
as 1/R increases and there is no simple relation can b & l
extracted from the simulation data. Sineedecreases as 128 I ’
curvature increases, the slope of the velocity-curvatur: 1
curve will decrease as curvature increases [Eqg. (9)], i.e L | | 1
the v — 1/R relation will curve down when solute seg- 1.26 e
regation occurs. This is what exactly observed in Fig. 4 00z 003 004 005 006 007 008

The segregation concentration of solute at grair 1/R
boundaries wil aﬁeqt the grain boundary e.ne?éy.' FIG. 6. The calculated dependence of grain boundary energy on the
Therefore,. the varla}tlon_ of solute_ concentration With,con curvature of a circular grain,
curvature is shown in Fig. 5. In this plot, the dots are

measured maximum concentrations at moving grain
boundaries and the solid line is a fit to the average oépeed up, they always desorb more and more solute.

these data. It was reportédhat a linear relation exists Therefore, one may expect that in simulations, as a circu-
between grain boundary energy and segregation lar grain shrinks, its velocity increases and there should
concentration. However, there is no such linear relatiorbe a smaller amount of solute at smaller grain size.
which can be extracted from current simulations. It can  We believe that this difference comes from the fact
be seen that the segregation concentration increases wittat, in Cahn’s work, the concentration profile at a
the increase of curvaturd (R) in current simulations. boundary is influenced only by the part of the boundary
This result seems to show a different trend from thatstill approaching, and it reflects no influence of the parts
obtained by Cahf.He showed that as grain boundariesalready past.As a result, more and more solute is left

132 [

ry energy,
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behind the boundary as it speeds up. However, in thavidth increases with the increase of curvature. According
current model, the desorption of solute from the movingto Eq. (9), the increase of grain boundary width with
boundary increases the concentration of solute in theurvature will also make thes — 1/R curve bend
bulk of grain past, which drives the bulk of grain away down. However, the effect of grain boundary width on
from its thermodynamic equilibrium and significantly migration velocity of a grain boundary may be important
increases the total free energy of the system. To minimizenly if the grain size is compatible to grain boundary
the total free energy, the solute is pushed back to thevidth, i.e., for nanocrystals. For a normal system in
grain boundary region by diffusion, which is possible which grain size is much larger than the width of grain
only in the low velocity/low driving regime. The driving boundaries, the variation of grain boundary energy with
force for this process is the chemical potential differencecurvature may be the dominant reason for the deviation
in the supersaturated solid solution and in the boundargf the linear relation between velocity and curvature.
region. As the circular grain shrinks, there is less totalTherefore, it can be concluded that the migration velocity
grain boundary area in the system. Therefore, there aref grain boundaries with solute drag is not linearly
more solute segregated at the grain boundary as thgroportional to the driving force. The nonlinear relation
system evolves, since we employed a conserved systemf migration velocity and driving force comes from the
The significance of this process is that a much largedependence of grain boundary energy and the width on
solute-drag effect is imposed on grain boundaries thathe curvature, which may result in the change of growth
that predicted by Cahn. This raises an interesting poinéxponentm in the growth law.
that the solute-drag effect may be also dependent on
the shape of the free energy curve as a function of
concentration (i.e., the value @ff,/dc) for the solid V. EFFECT OF SOLUTE DRAG ON GRAIN
solution at a given temperature. If the change of the fre&ROWTH OF POLYCRYSTALS
energy curve with concentration is sharp, the solute is not ~ With solute drag, the grain boundary motion will be
likely to desorb from the grain boundary, which imposesretarded and the velocity will depart from linear relation
a greater drag or pinning effect on grain boundarieswith driving force. In this section, the effect of solute
Of course, the desorption of the solute from boundariesirag on power growth law, grain size distributions, and
occurs much more easily if this process does not affediopological distributions in 2D polycrystalline systems
the bulk free energy severely. were studied. We chose a 512 512 cell with 36
The grain boundary width (full width) may also orientation field variablespy( = 36), which is sufficient
change with curvature since the segregation concentrae realistically simulate grain growti1°
tion at grain boundary varies with curvature. The relation A typical microstructural evolution of grain growth
of calculated grain boundary width and curvature iswith solute drag is shown in Fig. 8. The characteristics
shown in Fig. 7. It is shown that the grain boundaryof these microstructures are essentially similar to those
of grain growth in a pure system. The only noticeable
difference is that the lifetime of a quadrijunction (a
junction of four grains which is thermodynamically
unstable in these systems) with solute drag is longer than
that in a pure system, which is resulted from the fact
that microstructural evolution is controlled by diffusion
in solute drag systems. Therefore, some quadrijunc-
| tions have been captured in microstructures at different
ow 1 timesteps, which is seldom observed in simulation and
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experimental microstructures of a pure systém.

To study the kinetics of grain growth with solute
drag, two kinetic conditiond)/L = 1.0 andD/L = 0.5,
were chosen, which are the same as previous sections.
The average grain radius as a function of time for the
D/L = 1.0 system is shown in Fig. 9. To extract growth
exponentn and coefficienk, the data were then fitted to
the equatiorR}" — R, = k¢ by a multiparameter nonlin-
ear least-square fitting routine. The growth exponent
for this system is found to be 2 0.01, which is very
close tom = 2 in a pure system. In this system, the lattice

FIG. 7. The calculated dependence of grain boundary width on théjiﬁl_JSion rate i_S comparable to the diﬁUSion_ rate_acr(_)ss
mean curvature of a circular grain. grain boundaries; therefore, long-range lattice diffusion
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FIG. 8. The microstructural evolution of grain growth with solute drag in a 2D polycrystalline system. £a)p000; (b) r = 10,000;
(c) + = 15,000; (d)r = 20,000.

is not the limiting factor for grain boundary motion. It is diffusion and growth exponent: depart significantly
shown in the above section that grain boundary velocityfrom that in pure system.

slightly departs from linear relation with driving force. It is clear that, according to the ratio of lattice
As a result, the growth exponent for this system is diffusion and grain boundary mobility, long-range dif-
not significantly affected by the solute drag. fusion plays different roles in determining the growth

The time dependence of average grain size in théaw of a polycrystalline system. It can be expected that,
D/L = 0.5 system is shown in Fig. 10. It can be if lattice diffusion is much slower than grain boundary
seen that growth exponemt has changed to 2.49 migration, the growth exponent can be very close to 3,
0.01, significantly different from that in thé®/L =  in which grain boundary motion is totally controlled by
1.0 system. It is well understood that growth exponentattice diffusion. Therefore, with solute drag, the growth
m is 2 for grain growth of a pure system,'?3and exponentn can have a value anywhere between 2 and
it is 3 for Ostwald ripening process in two-phase sys-3, depending on the ratio of lattice diffusion and grain
tems, in which long-range diffusion controls coarseningboundary mobility. This result seems to explain a variety
kinetics!® Clearly growth exponent: in grain growth  of growth exponentsn obtained experimentally from
with solute drag cannot be easily determined, whichdifferent alloys systents in which the growth exponent
is dependent on diffusion mechanisms in a system. lwalues vary fromm = 2 to m = 3 with an average of
the D/L = 0.5 system, lattice diffusion rate is not fast 2.5 + 0.4 and diffusion mechanisms vary significantly.
enough to follow the grain boundary migration, and the  The time dependences of grain size distributions in
motion of grain boundaries is pinned by solute atomsD/L = 1.0 andD/L = 0.5 systems are shown in Fig. 11
Therefore, coarsening kinetics is controlled by latticeand Fig. 12, respectively. For comparison, a typical grain
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FIG. 11. The time dependence of grain size distributions under kinetic
FIG. 9. The time dependence of average grain size under kineticonditionD/L = 1.0. The solid line is a typical grain size distribution
conditionD/L = 1.0. The solid line is a nonlinear fit to power growth in a pure system (without solute drag).
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law R, — Ry, = kt, which givesm 2.1 = 0.01.
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. L . condition D/L = 0.5.
FIG. 10. The time dependence of average grain size under kinetic

conditionD/L = 0.5. The solid line is a nonlinear fit to power growth
law R} — R, = kt, which givesm = 2.49 = 0.01.
i.e., the shape of grain size distribution is time invariant.
Second, by comparing these figures, it can be seen that
size distribution obtained from 2D simulations for a purethe shapes of grain size distributions are the same in
system (without solute drag) is also shown in Fig. 11.these two systems, which are almost identical to that in
Two conclusions can be drawn from these two figuresa pure system (Fig. 11§.the topological distributions
First, both systems have reached a scaling or steady stata; D/L = 1.0 andD/L = 0.5 systems are shown in
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Fig. 13 and Fig. 14 at different time steps. A topologicalsystems is located at 5-sided grains, which is identical
distribution for a pure system is compared in Fig. 13. Itto that for a pure system (Fig. £3)while the peak

is also clear that topological distributions are time invari-can change to 6-sided grains in a two-phase systéh.
ant. Comparison of two systems shows that the shapekherefore, even though the grain growth kinetics is very
of topological distributions are identical to each other,sensitive to solute drag and diffusion mechanisms, the
indicating that topological distributions are unaffected bygrain size and topological distributions will not be altered
solute drag. The peak of topological distributions in bothby solute drag and diffusion mechanisms, which are the

same as those in a system without solute drag.

0.35 T 1 T T T 1T T T T T T T 1
VI. CONCLUSIONS
0s k- . v 4218?)8 i Our computer simulations of grain boundary migra-
@ @ o 6000 tion with solute drag show that the motion of a grain
025 F . o 8000 i bou_ndary is greatly retarded by _solute segregation at
) o 10000 grain boundary. In the low velocity/low driving force
g:f o = Pure regime, the velocity of a mobile grain boundary departs
5} 0.2 © T from a linear relation with driving force (curvature) with
g 2 solute drag. The diffusivity and diffusion mechanisms
£ 015 o B = will affect the migration velocity and grain growth
8 kinetics. The nonlinear relation of migration velocity
o1 F % 0 4 and driving force comes from the dependence of grain
Q boundary energy and width on the curvature. We have
shown that the growth exponent of power law for a
0.05 I E | polycrystalline system will be affected by the segregation
o of solute to grain boundaries. With the solute drag, the
o —-& g L v 80660 growth exponentn can take any value between 2 and
0 2 4 6 8 10 12 14 3, depending on the ratio of lattice diffusion and grain
grain sides, n boundary mobility. It is found that the grain size and

topological distributions are unaffect lute dr
FIG. 13. The time dependence of grain topological distributions under()pdoc(i).gf Ca. dis bIE‘] 0. S are Lrj] 6;1 ec etc:1 by solute C:hag
kinetic conditionD/L = 1.0. A topological distribution for a pure an ifiusion mechanisms, which are the same as those

system (without solute drag) is shown in this figure for comparison. in & pure system.
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