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The effects of solute drag on grain growth kinetics were studied in two-dimensional (2D
computer simulations by using a diffuse-interface field model. It is shown that, in the lo
velocity/low driving force regime, the velocity of a grain boundary motion departs from
a linear relation with driving force (curvature) with solute drag. The nonlinear relation
of migration velocity and driving force comes from the dependence of grain boundary
energy and width on the curvature. The growth exponentm of power growth law for a
polycrystalline system is affected by the segregation of solutes to grain boundaries. W
the solute drag, the growth exponentm can take any value between 2 and 3, depending
on the ratio of lattice diffusion to grain boundary mobility. The grain size and topologic
distributions are unaffected by solute drag, which are the same as those in a pure sys
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I. INTRODUCTION

Grain growth is a process of grain boundary m
gration to decrease total grain boundary area and to
free energy of a system, driven by mean curvatures
grain boundaries. The kinetics of grain growth depen
strongly on the presence or absence of solute or impu
segregation at grain boundaries. In a pure material,
only process which occurs during grain growth is loc
atomic rearrangement. If solute segregation is prese
the migration of grain boundaries may be controlled b
long range diffusion. It is well understood that grai
growth follows power growth lawRm

t 2 Rm
0 ­ kt with

the growth exponentm ­ 2 in a pure material,1–3 where
R0 is the initial average grain size,Rt is the average
grain size at timet, and k is the kinetic coefficient.
Experimentally, however, the growth exponentm is
found to be larger than 2 even if a very low impurit
level (a few ppm or less) is present in pure metals.1,4,5

Theoretically, Cahn6 studied the effects of solute
drag on migration kinetics of grain boundaries by co
sidering the interaction of impurity atmosphere wit
grain boundaries. Cahn predicted that, according to
migration velocity and driving force, the migration o
grain boundaries with impurity segregation can be cla
sified into different regimes: (a) a low velocity/low
driving force regime, where long-range diffusion o
impurity is important; (b) a high velocity/high driv-
ing regime, where long-range diffusion is not nece
sary and desorption of solute may occur accordi
the diffusivity of impurity; and (c) a transition re-
gion between these two regimes. It was also sho
J. Mater. Res., Vol. 14, No. 3, Mar 1999
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that the migration velocity of grain boundaries ma
not be linearly proportional to the driving force if
impurity is segregated to grain boundaries, which de
pends on the migration velocity, driving force and th
concentration of segregation. Hillert and Sundman7 ob-
tained similar results to those of Cahn by using
free energy dissipation theorem and idealized mode
for interaction energy profiles. Even though the theor
explains a number of experimental observations, th
direct derivation of a grain-growth law from this theory
is difficult.

Krzanowski and Allen8–10 studied the effects of
segregation on antiphase boundary migration kinetics
employing a diffuse-interface theory. They obtained a re
lationship of migration velocity with driving force (here
it is the mean curvature of curved boundaries) in the lo
velocity/low driving force regime, which is found to be
equivalent to that of Cahn.6 They indicated that the value
of the interfacial mobility is dependent on the presenc
of segregation and the kinetics of boundary migratio
is retarded when the segregation of solute is prese
at boundaries. Interestingly, however, they showed th
by assuming interfacial energy and interfacial thicknes
are constant, the growth exponentm (­2) is unaffected
by the presence of segregation at boundaries.8,9 Their
experimental results of Fe–Al alloys seem to suppo
their theoretical predictions.10 Krzanowski and Allen11

also found both theoretically and experimentally tha
however, the growth exponentm will change to 3 if the
antiphase domain boundaries are wetted by a thin lay
of a second phase, indicating that long-range diffusio
 1999 Materials Research Society 1113
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controls the coarsening kinetics in this case. Desp
theoretical prediction of the nonlinear relation betwee
the migration velocity and the driving force in the
presence of solute drag, other researchers predicted
the solubility of impurity may also affect the growth
exponentm12; i.e., m is 3 for low solubility of impurity
and is 2 in high solubility regime. Therefore, from th
theoretical point of view, it is still unclear if and how
the solute drag will affect the growth exponentm for
polycrystalline materials.

Recently, the authors have developed a diffus
interface field model for simulating the grain growth in
pure materials13,14 and for studying the microstructure
evolution in volume-conserved two-phase systems.15,16

A significant feature of this model is that the microstruc
tural complexity and long-range diffusion can be take
into account conveniently and simultaneously. Compu
simulations using this model allow one not only t
monitor the detailed temporal microstructure evolutio
during grain growth but also to obtain all the informatio
about the average grain size and size distributions. In t
paper, we modify this diffuse-interface field model t
study the effects of solute drag on grain growth kinetic
We focus on the grain growth in the low velocity/low
driving force regime, in which the driving force for grain
boundary migration is the mean curvature (capillarity
and solute atmosphere moves with grain boundari
The migration of grain boundaries with solute dra
was studied by computer simulations and the effec
of segregation on growth exponent were analyzed f
polycrystalline materials.

II. DIFFUSE-INTERFACE FIELD MODEL

We assume a binary alloy consisting of elemen
X and Y for studying grain growth in a solid solution
with solute drag. At a certain temperatureT , there are
two possible stable solid solutionsa and b with the
equilibrium concentrationsCa and Cb , respectively, in
this system. By choosing the average alloy concentrat
C within the solid solution regions (C < Ca or C > Cb),
the grain growth with solute drag can be studied.

In this diffuse-interface field model, an arbitrary
polycrystalline microstructure is described by a set
continuous field variables,

h1srd , h2srd , . . . , hpsrd ,

wherep is the number of possible orientations in spac
and hi (i ­ 1, . . . , p) are called orientation field vari-
ables which distinguish the different orientations o
grains and are continuous in space, andr is the position
in the space. Their values continuously vary from21.0
to 1.0. In real materials, the number of orientations
infinite (p ­ `). However, it was shown that a finite
1114 J. Mater. Res., Vol. 1
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number ofp (p . 30) might be sufficient to realistically
simulate grain growth.13–15

To study the effects of solute segregation, a con-
centration fieldCsrd is introduced, which describes the
spatial distribution of solute atoms. Within the diffuse
interface theory,17 the total free energy of an inhomoge-
neous system can be written as:

F ­
Z

hfofCsrd;h1srd, h2srd , . . . , hpsrdg

1
kC

2
f=Csrdg2 1

pX
i­1

ki

2
f=hisrdg2j d3r , (1)

where =C and =hi are gradients of concentration and
orientation fields,kC and ki are the corresponding
gradient energy coefficients, andfo is the local free
energy density which, in this work, is assumed to be

fo ­ f1sCd 1

pX
i­1

f2sC, hid 1

pX
i­1

pX
jfii

f3shi , hjd , (2)

in which

f1sCd ­ 2sAy2d sC 2 Cmd2 1 sBy4d sC 2 Cmd4

1 sDay4d sC 2 Cad4 1 sDby4d sC 2 Cbd4 ,

f2sC, hid ­ 2sgy2d fsC 2 Cad2

1 sC 2 Cbd2g shid2 1 sdy4d shid4 ,

f3shi , hjd ­ seijy2d shid2shjd2 ,

where Ca and Cb are the solubilitiesX or Y in a

and b phases, respectively,Cm ­ (Ca 1 Cb)y2, and
A, B, Da, Db , g, d, and eij are phenomenological
parameters. A main requirement forf0 is that it has2p
degenerate minima at equilibrium concentrationCa or
Cb to distinguish the2p orientation differences of grains
in space. The parameters are chosen in such a way th
f0 has2p degenerate minima with equal depth located
at (h1, h2, . . . , hp) ­ s1, 0, . . . , 0d, s0, 1, . . . , 0d. . .,
s0, 0, . . . , 1d at the equilibrium concentrationCa or Cb .
This requirement ensures that each point in space ca
belong only to a grain with a given orientation of a
given phase. The justification for using such a free
energy model in the study of coarsening was discusse
previously.13–15

The energy of a planar grain boundary,sgb, between
a grain of orientationi and another grain of orientation
j for two stablea grains, can be written as follows:

sgb ­
Z 1`

2`

"
Dfshi , hj , Cd 1

kC

2

µ
dC
dx

∂2

1
ki

2

µ
dhi

dx

∂2

1
kj

2

µ
dhj

dx

∂2
#

dx , (3)
4, No. 3, Mar 1999
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Dfshi , hj , Cd ­ f0shi , hj, Cd 2 f0shi,e, hj,e, Cad

2 sC 2 Cad
µ

≠f0

≠C

∂
hi,e ,hj,e ,Ca

, (4)

wheref0shi,e, hj,e, Cad represents the free energy de
sity minimized with respect tohi andhj at the equilibri-
um composition ofa phaseCa. If average concentration
C > Cb , Ca is replaced byCb in Eq. (4) sinceb phase
is the only stable phase.

The evolution of orientation and concentratio
field variables are described by the time-depend
Ginzburg–Landau (TDGL)18 and Cahn–Hilliard19

equations,

dhisr , td
dt

­ 2Li
dF

dhisr , td
,

i ­ 1, 2, . . . , p , (5a)

dCsr , td
dt

­ =

(
D=

"
dF

dCsr, td

#)
, (5b)

where Li and D are kinetic coefficients related to th
grain boundary mobilities and atomic diffusion coeffi
cients,t is time, andF is the total free energy given in
Eq. (1). The microstructural evolution of grain growt
with solute drag can be studied by numerically solvi
Eqs. 5(a) and 5(b) coupled kinetic equations.

III. NUMERICAL METHODOLOGY

To numerically solve the set of kinetic equations (5
one needs to discretize them with respect to space.
discretize Laplacian using the following approximatio

=2f ­

1
sDxd2

24 1
2

X
j

sfj 2 fid 1
1
4

X
j0

sfj0 2 fid

35 ,

(6)

wheref is any function,Dx is the grid size,j represents
the set of first nearest neighbors ofi and j0 is the set
of second nearest neighbors ofi. For discretization with
respect to time, we employed the following simple Eu
technique,

fst 1 Dtd ­ fstd 1
df

dt
3 Dt , (7)

whereDt is the time step for integration. All the result
discussed below were obtained by usingDx ­ 2.0,Dt ­
0.1 to ensure numerical stability. The kinetic equatio
are discretized in 2D by using 5123 512 square grid
points with periodic boundary conditions applied alon
J. Mater. Res., Vol. 1
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both directions. The total number of orientation field
variables are 36 (p ­ 36).

The following parameters for the free energy func-
tion [Eq. (2)] were assumed in this study:A ­ 2.0,B ­
9.88, Ca ­ 0.05, Cb ­ 0.95, Da ­ Db ­ 1.52, g ­
2.0,d ­ 1.0, andeij ­ 3.0, which give two equilibrium
solid solutions and satisfy the requirements mentione
in Sec. II for free energy functionf0. We also assumed
isotropic grain boundary energieski ­ kj ­ k ­ 2.0 and
kC ­ 2.0. The mobilities are chosen asL1 ­ L2 ­ L ­
1.0, which give isotropic grain boundary mobility. In this
study, the average concentration of the alloy was chose
as C , Ca) and hence ensures that the microstructur
consists of single phasea grains with the segregation of
Y atoms at grain boundaries.

To generate the initial microstructure, a single phas
grain growth simulation was first performed to obtain a
fine grain structure. Grains are then randomly assigne
with the average concentrationC and an orientation
field. The concentration of solute atoms is conserve
during the simulations of grain growth; e.g., average
concentrationC is a constant and solute atoms can
diffuse only within the system. The initial segregation
was obtained by relaxing the system for certain time
steps (100 time steps), which gives a grain structure wit
solute segregation at grain boundaries. The kinetics o
grain growth with solute drag was then studied. The are
of each grain at a given time step is directly calculated
from the microstructure by counting the number of grid
points within a grain, and grain sizeR is obtained from
the area by assuming a circular shape for all grains
therefore, area­ pR2. The average grain radius at a
given time step is then obtained by averaging over a
the grains in a system. All the kinetic data and size
distributions were obtained using 5123 512 grid points
and averaged from independent runs. There are mo
than 3000 grains at the beginning of collecting data
for calculating the statistics and there are about 200 a
the end.

IV. MIGRATION OF A GRAIN BOUNDARY WITH
SOLUTE DRAG

To study the effects of solute drag on the migration
of a grain boundary, we consider a circular grain (h1)
embedded in another grain (h2). We employed 2003
200 square lattice points to spatially discretize the kineti
equations with periodic boundary conditions applied
along both Cartesian coordinate axes. The initial radiu
of the circular grain was chosen to have 60 grid points

The microstructural evolution of the circular grain is
shown in Fig. 1. It can be seen from Fig. 1 that the grain
boundary is very smooth and circular at all times, in-
dicating that the parameters chosen for numerical simu
lations are proper and no apparent lattice anisotropy
4, No. 3, Mar 1999 1115
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(a) (b)

(c) (d)
FIG. 1. (a–d) The microstructural evolution of a circular grain.
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introduced by discretizing the continuous equations (
The snapshots of concentration profiles across the mi
of the circular grain are shown in Fig. 2. The segregat
of solutes at grain boundary is obvious and the sol
atmosphere moves with grain boundary, which indica
a low velocity/low driving force condition [case (a)].
should be noted that, in this dynamic system, the velo
of grain boundary is not constant and there is no ti
for the concentration profile to relax to its equilibriu
shape at a given time and velocity. Therefore, ma
runs are needed to calculated the average segreg
concentration at a given time step.

The driving force for the grain boundary moveme
is the mean curvature, which is1yR in this case (R is the
radius of the circular grain). It was shown that, if witho
solute drag, the kinetics of a circular grain follows th
equationR2

0 2 R2 ­ 2Lkt,18,20,21whereR0 is the original
radius of the circular grain,R is the radius at timet,
gradient coefficientk1 ­ k2 ­ k, and the mobilityL1 ­
J. Mater. Res., Vol. 1
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L2 ­ L. In this case, the area of the circular grain
decreases linearly with respect to timet. However, the
migration of grain boundary with solute drag may not
follow this linear relationship. To study the effects of
kinetic conditions on grain boundary migration kinetics,
two kinetic conditions are employed. First, the ratio
between the kinetic coefficientD, which is related to the
solute diffusivity in lattice, and the kinetic coefficientL,
which is related to grain boundary mobility, is chosen
to be 1.0. Under this condition, the lattice diffusion
rate is fast enough so that solute atoms can move wit
grain boundaries without significantly delaying the grain
boundary motion. Second, the ratio of kinetic coefficients
D and L is chosen to be 0.5 by keepingL fixed at its
value for case one and decreasing the kinetic coefficien
D. The time evolution of the areas of the circular grain
with solute drag is shown in Fig. 3. It can be seen tha
areas of the circular grain decrease slightly nonlinearl
with time for DyL ­ 1.0 conditions. The smaller the
4, No. 3, Mar 1999
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FIG. 2. The time dependence of concentration profiles across
grain boundary of a circular grain. Dotted line:t ­ 1000; double
dotted line:t ­ 3000; solid line:t ­ 5000.

DyL ratio, the more obvious the nonlinearity. When t
diffusion of solute atoms in the lattice is fast enou
(condition DyL ­ 1.0), long-range lattice diffusion o
solute atoms has less effect on grain boundary migrat
In this case, the relation between grain areas and t
is very close to a linear one (Fig. 3). However, if th
rate of lattice diffusion of solute is much smaller tha
the motion of grain boundaries (conditionDyL ­ 0.5),

FIG. 3. The time dependence of the grain area of a circular grain w
kinetic conditionDyL ­ 1.0 andDyL ­ 0.5.
J. Mater. Res., Vol. 1
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long-range diffusion becomes the controlling factor for
grain boundary migration and the shrinkage kinetics o
the circular grain departs from the linear relation.

For the single-phase grain growth (without solute
drag), the velocity of grain boundary migration can be
expressed as18,20,21:

y ­ MsK1 1 K2d , (8)

wherey is the velocity, (K1 1 K2) is the mean curvature
of the grain boundary, andM is a kinetic constant
dependent on coefficientsL and k. For a 2D circular
grain, y ­ dRydt, (K1 1 K2) ­ 1yR, and Eq. (9) can
be easily integrated into relationR2

0 2 R2 ­ 2Lkt,
i.e., a linear relation between grain and area and tim
t. However, the velocity expression obtained for grain
growth with solute drag was given by6,9:

y ­
ms

d
sK1 1 K2d , (9)

where s is the grain boundary energy,d is grain
boundary thickness, andm is a coefficient which is a
function of diffusivity, surface excess energy, and othe
thermodynamic factors. If we assume thats, d, andm

are independent of the curvature (or grain radiusR),
Eq. (10) can also be integrated into a similar relation
R2

0 2 R2 ­ 2mstyd for a circular grain. Actually,
Krzanowski and Allen8,9 made the same assumptions and
obtained the growth law with growth exponentm ­ 2
for the polycrystalline grain growth with solute drag.
With these assumptions, the only difference betwee
grain growth with and without solute drag is the kinetic
coefficient of the growth law, while the growth exponent
m will not be affected.

However, Fig. 3 indicates that the velocity with
solute drag is not linearly related to the driving force
[(K1 1 K2) or 1yR for a circular grain]. To directly
visualize the relation of the velocity with the driving
force for grain boundary migration, we plotdRydt
with 1yR (curvature) in Fig. 4 for the shrinkage of a
circular grain in simulations. ThedRydt values were
obtained by fitting theR-t curve with a smooth function
and then taking derivatives of that function at time
t. The relation ofdRydt and 1yR for gain boundary
motion without solute drag is also plotted in Fig. 4
for comparison. Figure 4 shows that the velocity of
grain boundary migration without solute drag keeps
good linear relation with curvature (driving force), which
ensures that the growth exponentm is 2 in the power
law. On the other hand, as solute atoms segregate
grain boundaries, the velocity starts to depart from th
linear relationship, which results in the change of growth
exponentm and a nonlinear relation between the averag
grain area and time. It is also shown that the migratio
velocity is dramatically decreased by solute drag; i.e
at a certain driving force (curvature), the velocities with
4, No. 3, Mar 1999 1117
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FIG. 4. The relationship of driving force (curvature1yR) with the
migration velocity of grain boundary in a pure system and in syste
with segregation under kinetic conditionsDyL ­ 0.5 andDyM ­ 1.0.

solute drag are much smaller than that without solu
drag (Fig. 4). The smaller the diffusivity, the mor
severely the grain boundary motion will be retarde
This slowing-down actually confirms the Krzanows
and Allen’s formulation9 in the low velocity/low driving
force regime.

To investigate which parameter affects the line
relation of velocity and driving force, the dependence
grain boundary energy on curvature is plotted in Fig.
It can be seen that grain boundary energys decreases
as 1yR increases and there is no simple relation can
extracted from the simulation data. Sinces decreases as
curvature increases, the slope of the velocity-curvat
curve will decrease as curvature increases [Eq. (9)], i
the y 2 1yR relation will curve down when solute seg
regation occurs. This is what exactly observed in Fig.

The segregation concentration of solute at gra
boundaries will affect the grain boundary energy.22

Therefore, the variation of solute concentration wi
curvature is shown in Fig. 5. In this plot, the dots a
measured maximum concentrations at moving gr
boundaries and the solid line is a fit to the average
these data. It was reported22 that a linear relation exists
between grain boundary energys and segregation
concentration. However, there is no such linear relat
which can be extracted from current simulations. It c
be seen that the segregation concentration increases
the increase of curvature (1yR) in current simulations.
This result seems to show a different trend from th
obtained by Cahn.6 He showed that as grain boundarie
1118 J. Mater. Res., Vol.
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FIG. 5. The calculated relation of the peak concentration of segreg
tion at grain boundary with the curvature of a circular grain.

FIG. 6. The calculated dependence of grain boundary energy on th
mean curvature of a circular grain.

speed up, they always desorb more and more solut
Therefore, one may expect that in simulations, as a circu
lar grain shrinks, its velocity increases and there shoul
be a smaller amount of solute at smaller grain size.

We believe that this difference comes from the fac
that, in Cahn’s work, the concentration profile at a
boundary is influenced only by the part of the boundar
still approaching, and it reflects no influence of the part
already past.6 As a result, more and more solute is left
14, No. 3, Mar 1999
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behind the boundary as it speeds up. However, in t
current model, the desorption of solute from the movin
boundary increases the concentration of solute in t
bulk of grain past, which drives the bulk of grain away
from its thermodynamic equilibrium and significantly
increases the total free energy of the system. To minimi
the total free energy, the solute is pushed back to t
grain boundary region by diffusion, which is possible
only in the low velocity/low driving regime. The driving
force for this process is the chemical potential differenc
in the supersaturated solid solution and in the bounda
region. As the circular grain shrinks, there is less tot
grain boundary area in the system. Therefore, there a
more solute segregated at the grain boundary as
system evolves, since we employed a conserved syste
The significance of this process is that a much larg
solute-drag effect is imposed on grain boundaries th
that predicted by Cahn. This raises an interesting poi
that the solute-drag effect may be also dependent
the shape of the free energy curve as a function
concentration (i.e., the value of≠foy≠c) for the solid
solution at a given temperature. If the change of the fre
energy curve with concentration is sharp, the solute is n
likely to desorb from the grain boundary, which impose
a greater drag or pinning effect on grain boundarie
Of course, the desorption of the solute from boundarie
occurs much more easily if this process does not affe
the bulk free energy severely.

The grain boundary width (full width) may also
change with curvature since the segregation concent
tion at grain boundary varies with curvature. The relatio
of calculated grain boundary width and curvature i
shown in Fig. 7. It is shown that the grain boundar

FIG. 7. The calculated dependence of grain boundary width on t
mean curvature of a circular grain.
J. Mater. Res., Vol. 14
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width increases with the increase of curvature. Accordin
to Eq. (9), the increase of grain boundary width with
curvature will also make they 2 1yR curve bend
down. However, the effect of grain boundary width on
migration velocity of a grain boundary may be importan
only if the grain size is compatible to grain boundar
width, i.e., for nanocrystals. For a normal system i
which grain size is much larger than the width of grai
boundaries, the variation of grain boundary energy wit
curvature may be the dominant reason for the deviatio
of the linear relation between velocity and curvature
Therefore, it can be concluded that the migration veloci
of grain boundaries with solute drag is not linearly
proportional to the driving force. The nonlinear relation
of migration velocity and driving force comes from the
dependence of grain boundary energy and the width
the curvature, which may result in the change of growt
exponentm in the growth law.

V. EFFECT OF SOLUTE DRAG ON GRAIN
GROWTH OF POLYCRYSTALS

With solute drag, the grain boundary motion will be
retarded and the velocity will depart from linear relation
with driving force. In this section, the effect of solute
drag on power growth law, grain size distributions, an
topological distributions in 2D polycrystalline systems
were studied. We chose a 5123 512 cell with 36
orientation field variables (p ­ 36), which is sufficient
to realistically simulate grain growth.13–15

A typical microstructural evolution of grain growth
with solute drag is shown in Fig. 8. The characteristic
of these microstructures are essentially similar to tho
of grain growth in a pure system. The only noticeabl
difference is that the lifetime of a quadrijunction (a
junction of four grains which is thermodynamically
unstable in these systems) with solute drag is longer th
that in a pure system, which is resulted from the fac
that microstructural evolution is controlled by diffusion
in solute drag systems. Therefore, some quadrijun
tions have been captured in microstructures at differe
timesteps, which is seldom observed in simulation an
experimental microstructures of a pure system.13

To study the kinetics of grain growth with solute
drag, two kinetic conditions,DyL ­ 1.0 andDyL ­ 0.5,
were chosen, which are the same as previous sectio
The average grain radius as a function of time for th
DyL ­ 1.0 system is shown in Fig. 9. To extract growth
exponentm and coefficientk, the data were then fitted to
the equationR

m
t 2 R

m
0 ­ kt by a multiparameter nonlin-

ear least-square fitting routine. The growth exponentm
for this system is found to be 2.16 0.01, which is very
close tom ­ 2 in a pure system. In this system, the lattic
diffusion rate is comparable to the diffusion rate acros
grain boundaries; therefore, long-range lattice diffusio
, No. 3, Mar 1999 1119
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(a) (b)

(c) (d)
FIG. 8. The microstructural evolution of grain growth with solute drag in a 2D polycrystalline system. (a)t ­ 5000; (b) t ­ 10,000;
(c) t ­ 15,000; (d) t ­ 20,000.
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is not the limiting factor for grain boundary motion. It is
shown in the above section that grain boundary veloc
slightly departs from linear relation with driving force
As a result, the growth exponentm for this system is
not significantly affected by the solute drag.

The time dependence of average grain size in t
DyL ­ 0.5 system is shown in Fig. 10. It can b
seen that growth exponentm has changed to 2.496
0.01, significantly different from that in theDyL ­
1.0 system. It is well understood that growth expone
m is 2 for grain growth of a pure systemm,1,2,13 and
it is 3 for Ostwald ripening process in two-phase sy
tems, in which long-range diffusion controls coarsenin
kinetics.15 Clearly growth exponentm in grain growth
with solute drag cannot be easily determined, whi
is dependent on diffusion mechanisms in a system.
the DyL ­ 0.5 system, lattice diffusion rate is not fas
enough to follow the grain boundary migration, and th
motion of grain boundaries is pinned by solute atom
Therefore, coarsening kinetics is controlled by lattic
1120 J. Mater. Res., Vol. 1
ty

e

t

-
g

h
In

e
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e

diffusion and growth exponentm depart significantly
from that in pure system.

It is clear that, according to the ratio of lattice
diffusion and grain boundary mobility, long-range dif-
fusion plays different roles in determining the growth
law of a polycrystalline system. It can be expected that,
if lattice diffusion is much slower than grain boundary
migration, the growth exponent can be very close to 3,
in which grain boundary motion is totally controlled by
lattice diffusion. Therefore, with solute drag, the growth
exponentm can have a value anywhere between 2 and
3, depending on the ratio of lattice diffusion and grain
boundary mobility. This result seems to explain a variety
of growth exponentsm obtained experimentally from
different alloys systems1,4 in which the growth exponent
values vary fromm ­ 2 to m ­ 3 with an average of
2.5 6 0.4 and diffusion mechanisms vary significantly.

The time dependences of grain size distributions in
DyL ­ 1.0 andDyL ­ 0.5 systems are shown in Fig. 11
and Fig. 12, respectively. For comparison, a typical grain
4, No. 3, Mar 1999
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FIG. 9. The time dependence of average grain size under kin
conditionDyL ­ 1.0. The solid line is a nonlinear fit to power growth
law R

m
t 2 R

m
0 ­ kt, which givesm 2.1 6 0.01.

FIG. 10. The time dependence of average grain size under kin
conditionDyL ­ 0.5. The solid line is a nonlinear fit to power growth
law R

m
t 2 R

m
0 ­ kt, which givesm ­ 2.49 6 0.01.

size distribution obtained from 2D simulations for a pu
system (without solute drag) is also shown in Fig. 1
Two conclusions can be drawn from these two figure
First, both systems have reached a scaling or steady s
J. Mater. Res., Vol. 1
tic

tic

.
s.
te;

FIG. 11. The time dependence of grain size distributions under kineti
conditionDyL ­ 1.0. The solid line is a typical grain size distribution
in a pure system (without solute drag).

FIG. 12. The time dependence of grain size distributions under kineti
condition DyL ­ 0.5.

i.e., the shape of grain size distribution is time invariant.
Second, by comparing these figures, it can be seen th
the shapes of grain size distributions are the same i
these two systems, which are almost identical to that in
a pure system (Fig. 11).13 the topological distributions
in DyL ­ 1.0 andDyL ­ 0.5 systems are shown in
4, No. 3, Mar 1999 1121
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Fig. 13 and Fig. 14 at different time steps. A topologic
distribution for a pure system is compared in Fig. 13.
is also clear that topological distributions are time invar
ant. Comparison of two systems shows that the shap
of topological distributions are identical to each othe
indicating that topological distributions are unaffected b
solute drag. The peak of topological distributions in bo

FIG. 13. The time dependence of grain topological distributions und
kinetic conditionDyL ­ 1.0. A topological distribution for a pure
system (without solute drag) is shown in this figure for comparison

FIG. 14. The time dependence of grain topological distributions und
kinetic conditionDyL ­ 0.5.
1122 J. Mater. Res., Vol. 14
l
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r

r

systems is located at 5-sided grains, which is identica
to that for a pure system (Fig. 13)14 while the peak
can change to 6-sided grains in a two-phase system.16,20

Therefore, even though the grain growth kinetics is very
sensitive to solute drag and diffusion mechanisms, th
grain size and topological distributions will not be altered
by solute drag and diffusion mechanisms, which are th
same as those in a system without solute drag.

VI. CONCLUSIONS

Our computer simulations of grain boundary migra-
tion with solute drag show that the motion of a grain
boundary is greatly retarded by solute segregation a
grain boundary. In the low velocity/low driving force
regime, the velocity of a mobile grain boundary departs
from a linear relation with driving force (curvature) with
solute drag. The diffusivity and diffusion mechanisms
will affect the migration velocity and grain growth
kinetics. The nonlinear relation of migration velocity
and driving force comes from the dependence of grai
boundary energy and width on the curvature. We hav
shown that the growth exponentm of power law for a
polycrystalline system will be affected by the segregation
of solute to grain boundaries. With the solute drag, the
growth exponentm can take any value between 2 and
3, depending on the ratio of lattice diffusion and grain
boundary mobility. It is found that the grain size and
topological distributions are unaffected by solute drag
and diffusion mechanisms, which are the same as thos
in a pure system.
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