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The Zener pinning effect with growing second-phase par-
ticles in Al2O3–ZrO2 composite systems were studied by
two-dimensional (2-D) computer simulations using a dif-
fuse-interface field model. In these systems, all second-
phase particles are distributed at grain corners and bound-
aries. The second-phase particles grow continuously, and
the motion of grain boundaries of the matrix phase is
pinned by the second-phase particles which coarsen
through the Ostwald ripening mechanism, i.e., long-range
diffusion. It is shown that both matrix grains and second-
phase particles grow following the power-growth law,Rt

m −
R0

m = kt with m = 3. It is found that the mean size of the
matrix phase (D) depends linearly on the mean size of the
second-phase particles (r) for all volume fractions of second
phase from 10% to 40%, which agrees well with experi-
mental results. It is shown that D/r is proportional to the
volume fraction of the second phase (f ) as f −1/2 for a vol-
ume fraction less than 30%, which agrees with Hillert and
Srolovitz’s predictions for 2-D systems, while experimental
results from 2-D cross sections of three-dimensional (3-D)
Al2O3-rich systems showed that either af −1/2 or a f −1/3

relation might be possible. It is also found thatD/r is not
proportional to f −1/3 and f −1 in 2-D simulations, which sug-
gests that the Zener pinning effect can be very different in
2-D and 3-D systems.

I. Introduction

ZENER pinning is a phenomenon in which second-phase par-
ticles retard the coarsening of a matrix phase (grain

growth) by pinning the motion of grain boundaries. Since con-
trolling grain size is a critical issue for the processing and
application of advanced materials, the inhibition of grain
growth by second-phase particles has been extensively stud-
ied.1–6A detailed theoretical treatment of Zener pinning is very
complicated, and a number of approximations have to be in-
troduced.

Zener1 first derived an analytical model of inhibition of grain
growth for three-dimensional (3-D) system by assuming that
second-phase particles were spherical, monosized, randomly

distributed, and did not coarsen. The grain growth in matrix
phase will be stopped and the final grain size is determined by

D

r
=

4

3f
(1)

whereD is the mean grain size of the matrix phase,r is the size
of second-phase particles, andf is the volume fraction of sec-
ond-phase particles. In a more precise calculation, Hellman and
Hillert7 showed that the relation should beD/r 4 8/9f−0.93 for
f less than 0.1. However, they2,7 indicated that, for a volume
fraction f larger than 0.1, the relation should be

D

r
=

3.6

f 1/3 (2)

for 3-D systems when most of the particles are located at grain
corners and boundaries. This prediction seems to be supported
by the experimental results from different two-phase ceramic
systems,8 in which the pinning relationship for a variety of
zirconia- or alumina-based ceramic composites (f < 0.15) has
been found to be consistent with 1/f 1/3 while the constant for
this relation was found to be 0.75 in these systems, smaller than
3.6 in Eq. (2).

Srolovitz et al.,5 on the other hand, showed that in two-
dimensional (2-D) systemsD/r should be proportional to 1/f,
the same as Eq. (1), if particles are randomly distributed. By
assuming that grain growth will stop when there is one particle
on each one of the six boundaries of an average grain and all
the particles are distributed at grain boundaries, they stated
that, in two dimensions,

D

r
=

3.46

f 1/2 (3)

which is different from that for 3-D systems (Eqs. (1) and (2)).
Their 2-D Monte Carlo simulations5 supported this analysis. A
similar relation ofD/r with 1/f 1/2 was also obtained by Doherty
et al.9 for 3-D systems by assuming all particles are in contact
with grain boundaries.

The above formulations were obtained by introducing a con-
siderable number of approximations, such as simple geometry
(spherical or circle) and monosized particles, and the Q-states
Potts model simulations considered only small and immobile
second-phase particles which cannot coarsen. While, in real
materials, the geometry of particles can be complicated, and if
the two phases have limited mutual solubilities, the second-
phase particles will grow dynamically as time increases. There-
fore, the main purpose of this paper is to examine the relation-
ship betweenD/r and the volume fraction of a second phase in
two-phase systems when the second-phase particles can
coarsen.

We employed a diffuse-interface computer simulation
model10–12 for studying the microstructural evolution in two-
phase polycrystalline materials. One of the main advantages of
this model is that the complexity of microstructural evolution
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and long-range diffusion in two-phase materials can be auto-
matically taken into account. We employed the well-studied
Al2O3–ZrO2 two-phase composite systems as a model system
to study the Zener pinning effect, since many thermodynamic
and kinetic data are available for these systems.8,13,14The de-
tailed computer simulations of microstructural evolution in
Al2O3–ZrO2 two-phase composites have been previously re-
ported.15 We will focus on examining the relationship of the
Zener pinning effect on matrix grain size with dynamically
growing second-phase particles and comparing simulation re-
sults with theoretical analyses.

II. The Diffuse-Interface Field Model

Details about this model have been reported in previous
papers,10–12and hence only a brief account of the model will be
given here. To describe an arbitrary two-phase polycrystalline
microstructure, we define a set of continuous field vari-
ables11,12

h1
a~r!, h2

a~r!, . . . ,hp
a~r!, h1

b~r!, h2
b~r!, . . . ,hq

b~r!, C~r!
(4)

where hi
a(i = 1, . . . , p) and hj

b( j 4 1, . . . , q) are called
orientation field variables, with each orientation field repre-
senting grains of a given crystallographic orientation of a given
phase (denoted asa or b). Those variables change continu-
ously in space and assume continuous values ranging from
−1.0 to 1.0.C(r) is the composition field which takes the value
of Ca within an a grain andCb within a b grain.

The total free energy of a two-phase polycrystal system,F,
is then written as
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where =C, =hi
a and =hj

b are gradients of concentration and
orientation fields,kC, ki

a, andki
b are the corresponding gradi-

ent energy coefficients,fo is the local free energy density,
which is, in this work, assumed to be11

fo = f~C! + (
i=1

p

f~C,hj
a! + (
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q
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b! + (

k=a

b

(
i=1

p

(
j=1

q

f~hi
k,hj

k!

(6)

in which

f~C! = −~A/2!~C − Cm!2 + ~B/4!~C − Cm!4

+ ~Da/4!~C − Ca!4 + ~Db/4!~C − Cb!4

f~C,hj
a! = −~ga/2!~C − Cb!2~hi

a!2 + ~da/4!~hi
a!4

f~C,hj
b! = −~gb/2!~C − Ca!2~hi

b!2 + ~db/4!~hi
b!4

f~hi
k,hj

k! = ~«ij
kk/2!~hi

k!2~hj
k!2

whereCa andCb are the equilibrium compositions ofa andb
phases,Cm = (Ca + Cb)/2, A, B, Da, Db, ga, gb, da, db, and«ij

kk

are phenomenological parameters. The justification of using
such a free-energy model in the study of coarsening was pre-
viously discussed.11

The temporal evolution of the field variables are described
by the time-dependent Ginzburg–Landau (TDGL)16 and Cahn-
Hilliard17 equations.

dhi
a~r,t)
dt

= −Li
a

dF

dhi
a~r,t!

i = 1, 2, . . . ,p (7a)

dhi
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= −Li
b
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= =HLC=F dF

dC~r,t!GJ (7c)

whereLi
a, Li

b and LC are kinetic coefficients related to grain
boundary mobilities and atomic diffusion coefficients,t is time,
andF is the total free energy given in Eq. (5).

III. Numerical Methodology

The microstructural evolution of a two-phase system can be
simulated by solving coupled kinetic Eq. (7). To numerically
solve the set of kinetic equations, one needs to discretize them
with respect to space. We discretize the Laplacian using the
following approximation:

=2f =
1

~Dx!2
F1

2 (
j

~fj − fi! +
1

4 (
j8

~fj8 − fi!G (8)

wheref is any function,Dx is the grid size,j represents the set
of first nearest neighbors ofi, andj8 is the set of second nearest
neighbors ofi. For discretization with respect to time, we em-
ployed the following simple Euler technique:

f~t + Dt! = f~t! +
df

dt
× Dt (9)

whereDt is the time step for integration. All the results dis-
cussed below were obtained by usingDx 4 2.0, Dt 4 0.1 to
ensure the numerical stability. The kinetic equations are dis-
cretized using 512 × 512 points with periodic boundary con-
ditions applied along both directions. The total number of ori-
entation field variables for two phases is 30.

In the Al2O3–ZrO2 systems, it was reported8,18 that the ratio
of the grain boundary energy to the interphase energy for the
Al2O3 phase (denoted asa phase) isRa 4 sa

alu/sint
ab 4 1.4, and

that for the ZrO2 phase (denoted asb phase) isRb 4 sb
zir/

sint
ab 4 0.97. We assumed isotropic grain boundary and inter-

phase boundary energies. It is found that parametersA 4 2.0,
B 4 9.88,Ca 4 0.01,Cb 4 0.99,Da 4 Db 4 1.52,ga 4 gb

4 1.23,da 4 db 4 1.0, « 4 7.0, kC 4 1.5, ki
a 4 2.5 and

ki
b 4 2.0 give the correct grain boundary to interphase bound-

ary energy ratios for the Al2O3–ZrO2 system.11 We also as-
sumed that both phases have the same diffusivity and grain
boundary mobility.

All the kinetic data and size distributions were obtained
using 512 × 512 grid points and averaged from three indepen-
dent runs. There are more than 2700 grains at the beginning of
collecting data for calculating the statistics and there are about
200 at the end. To generate the initial two-phase microstruc-
ture, a single-phase grain growth simulation was first per-
formed to obtain a fine-grain structure. Grains are then ran-
domly assigned with the equilibrium compositionCa or Cb and
an orientation field, keeping the overall average composition
corresponding to the desired equilibrium volume fractions. The
grain area was measured by counting all points within a grain,
and the grain sizeRwas calculated by assuming areaA 4 pR2.

IV. Simulation Results and Discussion

The details of kinetics and microstructural evolution in
ZrO2–Al2O3 two-phase composites have been previously dis-
cussed.11,13Six representative simulated two-phase microstruc-
tures at six different volume fractions of the ZrO2 phase are
shown in Fig. 1. In these microstructures, ZrO2 grains are
bright and Al2O3 grains are gray. It can be seen that simulated
microstructures have a striking resemblance to those of experi-
mental observations.18 All the main features of coupled grain
growth and Ostwald ripening, observed experimentally, are
predicted by the computer simulations. For example, at a low
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volume fraction of ZrO2 phase, the particles of ZrO2 phase are
located mainly at trijunctions and grain boundaries of Al2O3
grains, and the coarsening of these particles is controlled by the
Ostwald ripening process; i.e., relatively large particles grow at
the expense of smaller ones by long-range diffusion. The mo-
tion of grain boundaries of Al2O3 grains is essentially pinned
by the ZrO2 particles, and the grain size of Al2O3 grains is fixed
by the locations and distributions of ZrO2 particles. During
microstructural evolution or coarsening, all second-phase par-
ticles are in contact with grain boundaries.

The time dependencies of the average grain size in the 10%
ZrO2 system with the initial microstructure generated from a
fine-grain structure are shown in Fig. 2 for Al2O3 (a-phase)
and in Fig. 3 for ZrO2 (b-phase). In these plots, the dotted lines
are the data measured from the simulated microstructures, and
the solid lines are the nonlinear fits to the power growth law
Rt

m − Ro
m 4 kt. It can be seen that both second-phase particles

and matrix grain size grow dynamically as time increases. Ac-
cording to the nonlinear fits, growth kinetics for both matrix
phase and second phase particles follow the power law with
m 4 3, a strong indication that the coarsening kinetics are
controlled by the long-range diffusion. The kinetic coefficient
k for the a phase is 31.85, and is 0.785 for theb-phase in the
10% b-phase system, which is about1⁄50 that for thea-phase.
This dramatic variation comes from the different diffusion dis-
tances of the two phases during coarsening as the volume frac-
tion changes. For the low volume fractionb-phase, the coars-
ening kinetics are controlled solely by Ostwald ripening and

the typical diffusion distance is about the typical separation
distance betweenb-phase grains. However, grain growth for
the high volume fraction ofa-phase depends on the fraction of
grain boundaries that are pinned byb grains, and therefore the
volume fraction ofb. It has been shown that the variation of
volume fractions will dramatically change the coarsening ki-
netics of both phases.11,15

Experimentally, Alexanderet al.19 have examined the rela-
tionship between the matrix grain size and the size of growing
second-phase particles in alumina-rich, zirconia-toughened

Fig. 1. Typical simulated microstructures in Al2O3–ZrO2 systems
with different volume fractions of ZrO2 phase: (a) 30%; (b) 50%; (c)
60%; (d) 70%; (e) 80%; (f) 90%. System size is 512 × 512. ZrO2 grains
are bright and Al2O3 grains are gray.

Fig. 2. Time dependence of the average grain size of Al2O3 (a)
phase. The volume fraction of ZrO2 phase is 10%.Ra 4 1.4, Rb 4
0.97. The dots are the measured data from simulated microstructures.
The solid line is a nonlinear fit to the power growth lawRt

m − R0
m 4

kt with three variablesm, k, andR0.

Fig. 3. Time dependence of the average grain size of ZrO2 (b) phase.
The volume fraction of ZrO2 phase is 10%.Ra 4 1.4,Rb 4 0.97. The
dots are the measured data from simulated microstructures. The solid
line is a nonlinear fit to the power growth lawRt

m − R0
m 4 kt with three

variablesm, k,andR0.
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composites. They showed that a good linear relationship be-
tween the average alumina grain size (D) with the mean zir-
conia particle size (r) is maintained at all zirconia contents
(10% ∼ 40%), as shown in Fig. 4. The ratio of the alumina/
zirconia grain size (D/r) is constant at a given volume fraction
of zirconia phase,19 which does not change with sintering time
and temperature. They found that the ratioD/r decreases with
increasing volume fraction of the zirconia phase, and the ratios
observed are 4.6, 3.5, and 2.1 for 10%, 20%, and 40% of
zirconia phase,19 respectively. The relationship ofD/r with
growing zirconia particles, from computer simulations, is
shown in Fig. 5, for alumina–zirconia composites with 10%,
20%, and 40% of zirconia. It can be seen that all features
observed experimentally have been predicted from computer
simulations. It is clear that a good linear relationship exists
betweenD andr at all zirconia volume fractions, and the ratio
D/r decreases as the volume fraction of zirconia increases.
From computer simulations, the ratiosD/r are predicted as 4.4,
3.1 and 1.6, for 10%, 20%, and 40% of zirconia, respectively.
The agreement between computer simulations and experimen-
tal results is surprisingly good, considering the assumptions we
made in the simulations and the fact that we only fitted the data
of grain boundary energies and interfacial energy.

To compare the simulation results with analytical solutions
(Eqs. (1)–(3)), we plot the matrix grain size (D) against the size
(r) of second-phase particles, which is normalized by an ap-
propriate form of volume fraction. For example, to examine if
D/r has a relationship with volume fraction as 1/f 1/3, we plotD
againstr/f 1/3 for different volume fractions. It is obvious that if
that relation is obeyed, a common slope (or constantA) should
be found for different volume fractions of second phase, which
satisfies the equationD 4 Ar/f1/3. Figures 6 and 7 show the
simulation results for the relationships of matrix grain sizeD
with second-phase particle sizer normalized with 1/f 1/3 for the
Al2O3-rich and the ZrO2-rich systems, respectively. In these
plots, the volume fraction of second phase (ZrO2 or Al2O3)
varies from 10% to 40%. It can be seen that the slopes of these
linear relations at different volume fractions are different for
both Al2O3-rich and ZrO2-rich two-phase systems, indicating
that there is no uniqueA which can be found to satisfy the
relationD 4 Ar/f 1/3 for different volume fractions. This sug-

gests thatD/r is not proportional to 1/f 1/3 in these 2-D two-
phase systems. However, experimental results8 showed that the
relationD 4 Ar/f 1/3 is followed in zirconia- or alumina-based
ceramic composites withf < 0.15. Hence, the relationD 4
Ar/f 1/3 may apply only to 3-D systems.

The relationD 4 Ar/f is examined from simulations for
Al2O3-rich systems and ZrO2-rich systems in Figs. 8 and 9,
respectively. It is clear that this relation is not obeyed in small
volume fraction systems. However, it is interesting to notice
that in high volume fraction systems (30% and 40% second
phase) a fairly good relation might be found for both Al2O3-
rich and ZrO2-rich systems. The relationD 4 Ar/f for 3-D
systems (Eq. (1)) was obtained by assuming the numbers of

Fig. 4. Experimental results for the dependence of mean diameters
(D) of alumina phase on mean diameters (r) of zirconia phase after
isochronal and isothermal treatments at different volume fractions of
zirconia. (Experimental data are adapted from Fig. 5 of Ref. 22, by
Alexanderet al.) TheD/r ratios are 4.6, 3.5, and 2.1 for 10%, 20%, and
40% of zirconia phase, respectively.

Fig. 5. Simulation results for the dependence of mean size (D) of
alumina phase on mean size (r) of zirconia phase as a function of
zirconia volume fraction. TheD/r ratios are 4.4, 3.1, and 1.6 for 10%,
20%, and 40% of zirconia phase, respectively.

Fig. 6. Simulation results for the relations of matrix grain sizeD with
the second-phase particle sizer normalized with 1/f 1/3 for Al2O3–ZrO2
two-phase systems. The Al2O3 phase is the matrix phase.
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particles at a boundary proportional to the particle radius and a
random particle distribution. However, this is not the case in
these simulations of high volume fraction systems, in which all
second-phase grains stay at grain boundaries and become in-
terpenetrated at 40%. Liu and Patterson20,21 modified the Ze-
ner’s equation in 2-D by accounting for the nonrandomness of
the particle distribution. By defining a parameterR 4 fgb/f, the
degree of contact between grain boundaries and second-phase
particles, wherefgb is the area fraction of second phase at the
grain boundaries andf the total fraction, they obtainedD/r 4
p/4Rf.TheR value, which varies among material systems, and
with volume fraction, particle size, etc.,20,21was not calculated
in current simulations. Therefore, whether 2-D Al2O3–ZrO2

systems follow this equation remains to be more carefully ex-
amined.

Figures 10 and 11 show the simulated relations of the matrix
grain sizeD with r/f 1/2 in Al2O3-rich and ZrO2-rich two-phase
systems. It is found that the relationD 4 Ar/f 1/2 is followed
reasonably well for volume fractions of second phases equal or
less than 30%, with the constantA values being 1.32 for Al2O3-
rich systems and 1.27 for ZrO2-rich systems. TheseA values
are much smaller than 3.4, which was obtained by Srolovitzet
al.5 for small and immobile particles. The smallerA values
mean a smaller matrix grain size at a certain size of second-
phase particles. Therefore, the pinning effect of growing sec-
ond-phase particles is much stronger than that in systems with

Fig. 7. Simulation results for the relations of matrix grain sizeD with
the second-phase particle sizer normalized with 1/f 1/3 for Al2O3–ZrO2
two-phase systems. The ZrO2 phase is the matrix phase.

Fig. 8. Simulation results for the relations of the matrix grain sizeD
with the second-phase particle sizer normalized with 1/f for Al2O3–
ZrO2 two-phase systems. The Al2O3 phase is the matrix phase.

Fig. 9. Simulation results for the relations of the matrix grain sizeD
with the second-phase particle sizer normalized with 1/f for Al2O3–
ZrO2 two-phase systems. The ZrO2 phase is the matrix phase.

Fig. 10. Simulation results for the relations of the matrix grain size
D with the second-phase particle sizer normalized with 1/f 1/2 for
Al2O3–ZrO2 two-phase systems. The Al2O3 phase is the matrix phase.
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small and noncoarsening particles. The main reason for the
larger pinning effect in the studied composite systems is that it
is almost impossible for grain boundaries to pass through sec-
ond-phase particles in these long-range diffusion-controlled
systems. It is also interesting to notice that the difference of
grain boundary energies in alumina and zirconia does not affect
the relationship of Zener pinning in these simulations. Even
though the coarsening rate for alumina and zirconia matrix can
be slightly different, both Al2O3-rich and ZrO2-rich two-phase
systems show identical relationships of Zener pinning in these
simulations. When the volume fraction of second phase is
larger than 40%, the relationD 4 Ar/f 1/2 is not followed
anymore, which may result from the fact that at this volume
fraction the second-phase grains become interconnected in a
two-phase microstructure.

To compare the 2-D simulation results with experimental
observations, we re-plot the experimental data (Fig. 4, adapted
from Ref. (19)) with the normalized second-phase (zirconia)
grain size in Figs. 12, 13, and 14. It should be noted that these
experimental data were obtained from the 2-D cross sections of
3-D microstructures,19 which may be different from 2-D sys-
tems. It is quite clear that the relationD 4 Ar/f is not followed
by those experimental systems either. While there may not be
enough evidence to conclude that the relationD 4 Ar/f 1/3 is
not obeyed in those systems (f < 10%), it is obvious thatD 4
Ar/f 1/2 fits these experimental data better for volume fractions
between 10% and 20%. Since most of the second-phase grains
are distributed at grain boundaries19 in these two-phase com-
posites, it seems that those experimental results agree with the
analysis by Dohertyet al.9 for 3-D systems, in which aD 4
Ar/f 1/2 relation is predicted by assuming all particles are in
contact with grain boundaries. As mentioned before, in zirco-
nia- or alumina-based ceramic composites, aD 4 Ar/f 1/3 re-
lation was observed8 for f < 0.15. Therefore, it can be seen that
Zener pinning effect may depend on the dimensionality, vol-
ume fraction, and distribution of second-phase particles.

V. Conclusions

The Zener pinning effect with growing second-phase par-
ticles in the Al2O3–ZrO2 two-phase composites has been stud-
ied through computer simulations using a diffuse-interface

field model. The simulated microstructures are in excellent
qualitative agreement with experimental observations for
Al2O3–ZrO2 two-phase composites. It is found that the coars-
ening kinetics for both phases are controlled by long-range
diffusion and follow the power growth lawRt

m − Ro
m 4 kt with

m 4 3, while the kinetic coefficientk for the second-phase
particles is much smaller than that of the matrix phase. A linear
relation between matrix grain size (D) and second-phase grain
size (r) is found for all volume fractions of second phase,
which agrees with experimental results. TheD/r ratios are de-
pendent on the volume fraction of the second phase and are
predicted as 4.4, 3.1, and 1.6 for 10%, 20%, and 40% of zir-

Fig. 11. Simulation results for the relations of the matrix grain size
D with the second-phase particle sizer normalized with 1/f 1/2 for
Al2O3–ZrO2 two-phase systems. The ZrO2 phase is the matrix phase.

Fig. 12. Experimental observations of the relation of the mean di-
ameters of alumina with mean diameters of zirconia normalized with
1/f 1/2. (Experimental data are adapted from Fig. 5 of Ref. 19, by
Alexanderet al.)

Fig. 13. Experimental observations of the relation of the mean di-
ameters of alumina with mean diameters of zirconia normalized with
1/f 1/3. (Experimental data are adapted from Fig. 5 of Ref. 19, by
Alexanderet al.)
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conia, respectively, which are very close to experimental ob-
servations. It is found that the relationship between matrix
grain size and second-phase grain size followsD 4 Ar/f 1/2 in
the 2-D simulations when the volume fraction of the second
phase is less than 30%. The 1/f 1/3 and 1/f relationships are not
observed in these 2-D two-phase simulation systems with dy-
namically growing second-phase particles. Comparison with
experimental results shows that the Zener pinning effect may
depend on the dimensionality, volume fraction, and distribution
characteristics of the second-phase particles.
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