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Abstract 

Phase field formulations have been constructed for modeling Ostwald ripening in two-phase systems. The microstructural 
evolution and the kinetics of Ostwald ripening were studied by numerically solving the time-dependent Ginzburg-Landau 
(TDGL) equations. The simulated microstructures are in a striking resemblance with experimental observations. The shape 
accommodation of second phase particles occurs as the volume fraction increases. It was observed that these two-phase 
systems reach the steady state or scaling state after a short transient time and the scaling functions are independent of time 
for all volume fractions of the second phase. The kinetics of Ostwald ripening in a two-phase mixture have been studied over 
a range of volume fractions of the coarsening phase. It was found that the coarsening kinetics of second phase particles 
follows the power growth law Rr - Rr = kr with m = 3, which is independent of the volume fraction of the coarsening 

phase. The kinetic coefficient k increases significantly as the volume fraction of the coarsening phase increases. 0 1998 
Published by Elsevier Science B.V. 

1. Introduction 

Ostwald ripening is a process related to the coars- 
ening of one phase dispersed in the matrix of an- 

other. The average size of the particles of the dis- 
persed phase increases during coarsening due to 
diffusion through the matrix phase, and their total 
number decreases. The driving force for the process 
is the reduction of the total interfacial area and thus 
of the total energy of the system. Ostwald ripening is 

a common microstructural evolution process ob- 

served in a wide variety of two-phase systems and 
has been extensively studied because of its practical 
importance in casting, welding processes, liquid 

phase sintering and in precipitation hardening alloys. 
Modern theories of Ostwald ripening are based on 

the classical work of Lifshitz and Slyozov and Wag- 
ner [1,2], which is known as LSW theory. In LSW 
theory, the problem of coarsening kinetics was solved 
by assuming a steady-state diffusion field, an in- 

finitesimally dilute second phase, spherical particles 
and by assuming that particles interact only indi- 
rectly with each other through a mean field provided 
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by the interparticle matrix. There are three equations 
necessary to describe the ripening kinetics of a two- 
phase system: a kinetic equation describing the 
growth or shrinkage rate of a particle of a given size, 
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a continuity equation describing the temporal evolu- 
tion of a particle size distribution function, and a 
mass conservation equation. Based upon assumptions 
made and solutions to these equations. the LSW 

theory predicted a power growth law KY - R;;’ = kt 

with nr = 3 and a grain size distribution function in 
steady state for diffusion controlled coarsening. Since 

interparticle diffusional interactions are neglected in 
LSW theory, this theory is valid only in the physi- 

cally unrealistic limit of zero volume fraction of the 

second phase. This is one of the reasons given to 
explain the fact that the experimental results do not 

agree with the size distribution function [3,4] ob- 
tained from LSW theory. 

Many efforts have been made to include a finite 

volume fraction of the second phase using a variety 

of techniques, including statistical mechanical theo- 
ries, mean field theories and numerical simulations 
[5-IO] for 3D and [I I -I 31 for 2D. Despite the 

different physical bases and features of these models 
and theories, most of them assume that the coarsen- 

ing particles are spherical in shape to avoid the 
complexity of irregular geometry. However, this as- 
sumption cannot remain valid at high volume frac- 
tions, where the particles within the microstructure 
become crowded and exhibit shape accommodation. 
Shape accommodation results in the non-uniform 

distribution of curvature over the particle interface. 
At very high volume fractions of coarsening parti- 

cles, crowded particles develop flattened sides. 
curved edges and rounded vertices or corners. The 
effects of geometrical complexity at high volume 
fractions have not been included in the theoretical 
treatments. As a result, the behaviors of Ostwald 
ripening in the high volume fraction regime remain 
poorly understood. Since Ostwald ripening is a mov- 
ing boundary problem, it is very difficult to solve 
analytically in the high volume fraction regime. As a 
result, computer simulations [ I41 play an important 

role in understanding Ostwald ripening behavior. 
Therefore, it is the purpose of this paper to con- 

struct a computer modeling methodology using the 
continuum field theory for studying Ostwald ripen- 
ing behavior over a range of volume fractions of the 
coarsening phase. The authors have employed simi- 
lar methodologies to study the grain growth in single 
phase systems [15,16] and the microstructural evolu- 
tion in two-phase polycrystalline materials [ 17,181. 
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Fig I. A schematic mtcrostructure of a two-phase system with 

second phase particles dtspersed in a matrix phase. The onentation 

tield variables q,, q, represent different crystallographic 

orlentatlons of the second phase grains m space. AH orientation 

fields are lero m liquid or disordered (matrix) phase The equilih- 

~rlum composltlons or solubilities are C,, for the matru phase and 

c ‘ti for the second phase, respectively. 

One of the main advantages of this model is that the 
complexity of microstructural evolution and long- 
range diffusion in two-phase materials can be auto- 
matically taken into account. Computer simulations 
using this formulation allow one not only to monitor 
the detailed temporal microstructure evolution during 
Ostwald ripening but also to obtain all the informa- 
tion about the average grain size and size distribu- 
tions. We will focus on the microstructural scaling 
and the kinetics of Ostwald ripening in this paper. 

The effect of the volume fraction of second phase on 
size distributions will be presented in separate publi- 
cations. 

2. The phase field formulation 

2.1. Description of u microstructure using phase 

fields 

A schematic microstructure of one phase particles 
dispersed in the continuous matrix of another is 
shown in Fig. 1. In this microstructure, there are 
different crystallographic orientations in the space 
for second phase particles or grains. The solubilities 
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or equilibrium concentrations are C, and C, for the 
matrix phase and second phase, respectively. Ac- 
cording to the continuum field theory, we define a 

set of continuous field variables, 

where p is the number of possible orientations of the 

second phase grains in space and r); (i = 1, . . , p) 

are orientation field variables with each orientation 
field representing grains of a given crystallographic 
orientation in space, r is the position in the space. 

These variables change continuously in the space 
and assume continuous values ranging from - 1.0 to 

1.0. For example, a value of 1.0 for v,(r) with all 

other orientation variables being 0.0 means that the 
material at position r belongs to the grain with the 

crystallographic orientation labeled as 1; a value of 
- 1.0, indicates that the grain at position r is 180”- 
rotation related to orientation 1. At the grain bound- 

ary region between two grains with orientation 1 and 
2, vi(r) and v2(r) will have absolute values inter- 

mediate between 0.0 and 1.0. All orientation field 
variables are zero in the matrix phase, which simu- 
late the liquid or disordered phase. C(r) is the 
composition field which takes the value of C, within 
the matrix phase and Cs within a second phase 
grain. C(r) has intermediate values between C, and 

CP at the interfacial region between the matrix phase 
and a second phase grain. Therefore, with the set of 
field variables, we can completely describe a mi- 

crostructure with the second 
persed in the matrix phase. 

phase particles dis- 

2.2. Energetics of a two-phase system 

Within the diffuse-interface field theory, the total 

free energy of an inhomogeneous system can be 
written as: 

F= 

++(VC(r))‘+ f: :(Vq(r))’ d3r (1) 
i- 1 1 

where VC and Vqi are gradients of concentration and 
orientation fields, K~ and ~~ are the corresponding 

gradient energy coefficients, and f, is the local free 
energy density which, in this work, is, 

f,=f,(C) + ,$,fz(C, 77;) + f: lkfX(%v 77/j 
i=l j#i 

(2) 

in which 

f,(C) = -(A/w-Cd2 + (g/4)(C- CmJ4 

+U?J4NC-CJ4 + (&/4>(C- Cfi)“7 

f*(C3 77,) 

= -(Y/2)(C- Cd2(rlJ2 + (6/4)(77J4. 

fLi(rliy 7,) = ( Eij/2)(7)t)'CVj)2 

where C, and CD are the solubilities in the matrix 
phase and the second phase respectively, C, = (C, 

+ CP)/2, A, B, D, , Dp , y, 8, and E,~ are phe- 
nomenological parameters. A main requirement for 
fO is that it has 2p degenerate minima at equilibrium 

concentration CP to distinguish the 2 P orientation 

differences of the second phase grains in space. The 
parameters are chosen in such a way that fO has 2p 
degenerate minima with equal depth located at (77,’ 

7723 . . . . ?&=(l,O, . . . . 0X(0, 1, . . . . o>, . . . . (O,O, 
. . ) 1) at the equilibrium concentration CP. This 

requirement ensures that each point in space can 
only belong to a grain with a given orientation of a 
given phase. In the matrix phase, all orientation field 
variables are zero. The justification for using such a 
free energy model in the study of coarsening was 
discussed previously [ 1% 181. 

The energy of a planar grain boundary, us,, be- 
tween a grain of orientation i and another grain of 
orientation j for two second phase grains, can be 
written as follows, 

ugb = 

2 (3) 

in which 



where .f&~,.~~ v,,,. Cp> represents the free energy 
density minimized with respect to 77, and 7, at the 
equilibrium composition of the second phase Cfi. 

Similarly, the interphase boundary energy be- 

tween the matrix phase and a second phase grain 
with orientation i is given by 

where 

(6) 

In this case, all other orientation field variables 
are zero. 

2.3. The kinetic equations 

By defining orientation and composition field 
variables, the kinetics of coupled grain growth can 
be described by their spatial and temporal evolution. 
In the present model, the evolution kinetics of these 
field variables are described by the generalized 
time-dependent Ginzburg-Landau (TDGL) equa- 
tions: 

drl,(r? t) 6F 

dt = 
-L, 

677,b t> ’ 

i= 1,2, . . . . p, (7a) 

dC( r, t) 
dt =v(Dv[ 6,;: i,]]’ (7b) 

where L, and D are kinetic coefficients related to 

grain boundary mobilities and atomic diffusion coef- 
ficients, t is time, and F is the total free energy 
given in Eq. (1). The difference between kinetic 
equations for orientation field variables vi(r) and 
concentration field C(r) comes from the fact that 
C(r) is a conserved field, due to the requirement of 
the mass conservation at all times in a system, which 
is governed by the Cahn-Hill&d equation (Eq. (7b)). 
The orientation fields are non-conserved variables 

whose evolutions are dependent on the Allen-Cahn 
equation (Eq. (7a)). 

Substituting the free energy functional F in (1) 
into the kinetic equation (Eqs. (7a) and (7b)) gives 

~=-,,[$K,v2?J], i=1,2 ,..., p, 

(gal 

(8b) 

The microstructural evolution of Ostwald ripening 
can be studied by numerically solving the above 

coupled kinetic equations. 

3. Numerical simulations 

To study Ostwald ripening, we chose a set of 30 

orientation variables and a concentration field to 
characterize microstructures. A 2D 512 X 512 square 

system was employed. The phenomenological pa- 
rameters were chosen to give the energetic condition 
that the liquid phase or matrix phase totally wets the 
solid phase or coarsening phase, i.e., the ratio of 
grain boundary energy with interfacial energy is 
larger than 2.0. We assumed the following phe- 
nomenological parameters: C, = 0.05, Cp = 0.95, C,, 

= (C, + C&2 = 0.5, A = 2.0, B = 1.0, Da = Dp 

= 1.2, y= 2.0, 6 = 1.0, and E,, = 3.0. The gradient 
coefficients were chosen as: K, = K, = K~ = 2.0. 
These parameters give an energetic ratio Q/V,” = 
2.14, which satisfies the total wetting condition. The 
kinetic equations were discretized by the explicit 
method. The grid size along both Cartesian coordi- 
nate axes, Ax, was chosen to be 2.0, and the time 
step for integration, At = 0.1. Periodic boundary 
conditions were applied. The diffusivities and mobil- 
ities were assumed to be the same for both phases. 

Computer simulations were started from a liquid 
or disordered phase, i.e., a phase with small random 
values for all field variables ( f 0.001) and the aver- 
age concentration for the composition field with the 
thermal noises. This ensures the desired volume 
fractions and the volume conservation. After the 
quench, grains of the coarsening phase will sponta- 
neously nucleate from the liquid or disordered phase. 
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The nucleation process was completed within 1500 
time steps. Allowing enough time to relax system to 
the steady state (5000 time steps), the kinetic data for 
Ostwald ripening and size distributions were ex- 

tracted from the simulated microstructures. At 5000 
time step, there are about 600 grains or particles in 
the 25% coarsening phase system and about 700 

grains in high volume fraction systems. The simula- 
tions were stopped when there are about 100 grains 

left in the 25% volume fraction system and about 

200 left in high volume fraction systems. 
The typical simulated microstructures with 25%, 

50%, 75%, and 90% volume fractions of second 

phase are shown in Fig. 2. In these microstructures, 
bright phase is the coarsening phase or solid phase, 
and the dark phase represents the matrix phase. It 

can be seen that at a low volume fraction (25%), the 
coarsening grains are almost perfect spheres and the 

coarsening is solely controlled by the interparticle 
diffusion through the matrix phase. At 50% of the 
coarsening phase, coalescence between coarsening 

60 @I 

Cc) (d) 

Fig. 2. The simulated microstructures of Ostwald ripening in 2D 
two-phase systems. The system size is 512 X 512. The initial 

microstructure is a liquid. (a) 25% of the second phase; (b) 50% 
of the second phase; k) 75% of the second phase; and (d) 90% of 

the second phase. 

phase grains is observed, which is a result of a finite 
number of orientation variables were employed in 
simulations, and most of the grains still keep the 
spherical shape. However, at 75% volume fraction, 
coarsening phase grains in microstructures become 
crowded and the shapes of grains start to depart from 

being spherical due to the shape accommodation. 

The microstructures with volume fractions larger 
than 90% are comprised of grains with flattened 

sides, curved edges and rounded vertices or corners. 

In all cases, the coarsening phase grains are wetted 
by the matrix phase because of the energetic condi- 
tion. 

Since all theoretical analyses assume a quasi-static 
diffusion field, it is necessary to examine if these 

systems reach the steady state or scaling regime. A 

common method used to study the scaling behavior 
of a system is to examine the structure function S(k, 
t) [19-211. In a two phase system, the correlation 
function of the concentration field c(r, t) can be 
written as 

G(r,t)=N-‘C(c(r,,t)c(r,+r,t)), (9) 
1 

where N is the total points in a system, and ( > 

represents an ensemble average. The structure func- 
tion is the Fourier transform of the spatial correlation 
function G(r, t): 

s(k, t) = xexp(ik+r)G(r, r), 
r 

(10) 

which is directly proportional to the X-ray or neutron 
scattering intensity at a wave number transfer k. It is 

convenient to introduce a normalized structure func- 
tion s(k, t), 

s(k, t) = Es@, t) 
lkl I 

cl 
tkl 

(‘1) 

where the sum is over all values of k in the first 
Brillouin zone. It is suggested [19-211 that the nor- 
malized structure function has a scaling regime in 
which it behaves as: 

s(k, t) = K(t)dF(x, f), (12) 

where k is the wave vector, x = k/~(r), r the time, 
K(t) a time-dependent length scale which behaves as 
K(t) - rR for positive n. F(x, r) is called the scaling 
function. In the scaling regime, F(x, r> = F(x), 
which is independent of time. 



Therefore. the dynamic scaling of a system can be 
determined by calculating the scaling function of the 
system. If the shape of scaling function does not 

change with time, it means that the system has 
reached the scaling state or steady state. Following 

the formulations of Lebowitz et al. [ 191. the structure 
functions and scaling functions are calculated for 

systems with different volume fractions of the coars- 
ening phase. The time dependence of the structure 
function with 50% coarsening phase is shown in Fig. 

3 as an example. It can be seen that the peak of the 
structure function increases as time increases and 

moves to smaller wave number k. Since the peak 

position k,,(f) is related to the length scale of real 
space as k,,(r) - I/R(r), the decrease of A,,,(t) indi- 

cates the increase of grain size in real space. There- 

fore, the time dependence of !~,~(t) can also be used 
to study the coarsening kinetics. We found that this 
method works well for the case of 50% of each 

phase. However, when the volume fraction departs 
from SO%, say for 90% coarsening phase. the struc- 
ture function has a large tail in the large k regime. 
which affects the accuracy of the kinetics calculated 
from structure functions. Therefore, WC still utilize 

the real space method to extract the coarsening kinet- 
ics. The calculated scaling function for 50% and 

90% of coarsening phase are shown in Figs. 4 and 5 
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Fig. 3. The relations of the structure function .s(k, I) with the 

wave number k in the reciprocal space at different time steps in 

SO% coarsening phase system. Time step = 40000, 80000. 120000, 

160000. and 2OOGOO. 
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F1p 1 The relations of the scaling function F(k, t) with the 

normalized wave number ,I- (s = k/K(r)) in the reciprocal space 

at different time steps m 50%~ coarsening phase system. Time 

btep = 40000, 80000. 120000. I60000, and 200000 

as examples. It is obvious that scaling functions arc 

Independent of time for all volume fractions shown, 
indicating that these systems have reached the steady 
state after a short transient time. The scaling func- 

tions in other volume fractions are similar to Figs. 4 
and 5 and all systems scale after a short transient 
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Rg. 5. The relations of the scaling function F(x, I) with the 

normahzed wave number x (x = k/~(t)) in the reciprocal space 

a.t different time steps in 90% coarsening phase system. Time 

step = 2OooO. 40000, 60000, 80000, and 100000. 
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time. Hence, the studies of scaling function give 
confidence in the kinetic data extracted from these 
simulations. 

The time dependencies of average grain size in 

systems with 25% and 90% of coarsening phase are 
shown in Figs. 6 and 7. In these plots, the solid lines 
are the non-linear fits to the power growth law 

Ry - R,” with three variables m, k and R,. It is 
found that these data fit power growth law very well 
with m = 3 in all cases, even for the very high 

volume fraction of coarsening phase (90%). It is 
clear that the shape accommodation of particles will 

not affect the growth exponent m as long as the 
system is in the scaling regime. Even though the 
growth exponent is independent of the volume frac- 

tion of the coarsening phase, the kinetic coefficient k 

is strongly volume-fraction dependent. The depen- 
dence of the kinetic coefficient k on the volume 
fraction of coarsening phase is shown in Fig. 8. At 

25% coarsening phase, the kinetic coefficient k is 
0.833, while at 90% coarsening phase, the coeffi- 
cient increases to 24.45 which is about 30 times 

higher than that in the 25% system. The rapid in- 
crease in the kinetic coefficient k can be attributed to 
the dramatic decrease of the diffusion distance of 
atoms in the matrix phase, as the volume fraction of 

16 

1 1c 2 lo-‘ 3 1W 4 10’ 5 lo‘ 

time step 

Fig. 6. The time dependence of the average grain size of the 

coarsening phase in the 25% coarsening phase system. The dots 

are the measured data from simulated microstructures. The solid 

line is a non-linear tit to the power growth law Ry - Rz = kt 

with three variables m, k and R,. 

16 

14 

12 

10 

8 
0 5000 1 lOa 1.5 104 2 lo’ 2.5 lO* 3 lO‘+ 

time step 

Fig. 7. The time dependence of the average grain size of the 

coarsening phase in the 90% coarsening phase system. The dots 

are the measured data from simulated microstructures. The solid 

line is a non-linear fit to the power growth law Rr - Rt = kt 

with three variables m, k and R,. 

coarsening phase increases. At low volume fraction 
(25%), the typical diffusion distance is the mean 
spacing between particles which is much larger than 
the grain boundary thickness. At 90% coarsening 
phase, it can be seen from microstructures (Fig. 2) 
that the typical diffusion distance between grains 
becomes comparable with the grain boundary width, 
which will greatly enhance the coarsening kinetics. 
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Fig. 8. The dependence of the kinetic coefficient k on the volume 

fraction of the coarsening phase. 
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4. Summary 

A computer simulation model for modeling Ost- 

wald ripening in two-phase systems has been con- 
structed by using continuum field theory. The mi- 
crostructural evolution and the kinetics of Ostwald 

ripening can be studied by numerically solving the 
time-dependent Ginzburg-Landau (TDGL) equa- 
tions. The simulated microstructures are in a striking 
resemblance with those experimental observations. 

The shape accommodation of second phase particles 
occurs as the volume fraction increases. It was ob- 

served that scaling functions are independent of time 

for all volume fractions after a short transient time. 
indicating that these two-phase systems reach the 
steady state or scaling state. It was found that the 

coarsening kinetics of second phase particles follows 
the power growth law R,” - R,” = kt and the growth 

exponent m = 3 is independent of the volume frac- 
tion of the coarsening phase and the details of the 
microstructures. The kinetic coefficient k increases 

dramatically as the volume fraction of the coarsening 
phase increases. 
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