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Introduction 

Recently, Cahn [l] performed a thermodynamic analysis for the stability of microstructures in a two- 
dimensional two-phase solid in which the volume fractions are not conserved, i.e., they have the same 
composition, and hence long-range diffision and Ostwald ripening are not involved. In his theory, the 
microstructural stability was analyzed based on the energetic ratios of grain boundaries to the interphase 
boundary, i.e. 1~. = IJ../u_~ and R, = er+,/c+ where o,, and app are the grain boundary energies of the a 
and p phases, respectively, and oap is the interphase boundary energy. It is shown that for 0 s R = s 0, 
aaa trijunctions are stable; otherwise, they are unstable with respect to the nucleation of p grains. 
Similarly, p p p trijunctions are stable for 0 s R p s fi and are unstable with respect to the nucleation of 
a grains for R ,, > 0. a a p and a p p trijunctions are stable under the conditions of 0 ?: R, < 2 and 0 < R, 
< 2. More interestingly, he found that the quadrijunctions aPaP will become stable if the condition 
Ri + Ri -2 4 is satisfied [l]. 

Following Cahn’s work, Holm et al. performed Monte Carlo simulations on the same system, i.e., a 
two-phase solid in which the volume fractions are not conserved [2]. They showed that quadrijunctions 
can indeed be stable within a certain range of the values for R, and R, as predicted by Cahn’s thermody- 
namic analysis. More surprisingly, based on their simulations, they predicted that the grain growth in a 
system with only quadrijunctions may be frozen [2]. 

The main objective of this paper is to investigate the stability and evolution kinetics of quadrijunctions 
in a model two-dimensional two-phase solid in which the volume fractions are CONSERVED, using a 
continuum difuse-interface grain growth model, i.e., by numerically solving a set of coupled continuum 
time-dependent partial differential equations. We have applied this model to grain growth in single-phase 
systems [3-51 and to coupled grain growth and Ostwald ripening in two-phase solids [6]. It should be 
emphasized that most two-phase solids in real applications belong to the case of conserved volume 
fractions. 
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Diffuse-Interface Descrintion of a Two-Phase Microstructure 

The details about this diffuse-interface field model have been given in a previous paper [6]. Within the 
diffuse-interface context, we describe an arbitrary two-phase polycrystalline microstructure using a set of 
continuous field variables [3-6], 

where $( i = 1, . . . , p) and $(j = 1, . . . , 4) are called orientation field variables with each repre- 
senting grains of a given crystallographic orientation of a given phase. Those variables assume continuous 
values ranging from - 1 .O to 1 .O. C(r) is the composition field which takes the value of C, within an a grain 

and C, within a p grain. 
The total free energy of a two-phase system, F, is written as 

F = / r, (C(r); nf(+n’l(r>, . . . 9 
[ 

rlf(r); d(r), d(r), . 

+ (K,/2)(vc(r))* + (l/2) 2 Ki” 0%(r))* + (l/2) f: 
i-1 I-l 

(2) 

where f0 is local free energy density, rrc, KY and Kf are the gradient energy coefficients, and p and q 
represent the number of orientation field variables for the a and p phases, respectively. 

The kinetics of microstxuctural evolution is described by the temporal evolution of the field variables 
by numerically solving the coupled time-dependent Ginzburg-Landau (TDGL) and Cahn-Hilliard (C-H) 
[7] equations, 

d$(r,t)ldt = -L~(liFIhq~ (r,t)), i = 1, 2, . . * 9 P, @a) 

dqf(r,t)ldt = -L/(hFlaqf (r,t)), i = 1, 2, . . * , 9, (3b) 

dC(r,t)ldt = V{L,V[tiFItiC (r,t)]} (3c) 

where L,“, Lf and L, are kinetic coefficients related to grain boundary mobilities and atomic diffusion 
coefftcients, t is time, and F is the total free energy given in equation (2). 

TemDoral Evolution of a Two-Phase Microstructure With OuadriiunctionS 

In order to study the stability of a two-phase microstructure with only quadrijunctions, we construct the 
following free energy density function, 

where, 

f(C) = -(.4/2)(C - Cm)’ + (B/4)(C 

m 111’) = -(Y/2)@ - C,)*($)* + 

f(C. $) = -(Y$2)(C - C‘)*(rlf)* + 

f($s llJ”> = (+2)($)*(l)lp)* 

- C,)’ + (D,/4)(C - C,)’ + (Dp/4)(C - Ce)’ 

(5/4)(04 

@$4)hB4 

(4) 
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where n:, nt are orientation field variables, C is the local composition, C, and C, are the equilibrium 
compositions of a and p phases, C, = (C, + C, )/2, A, B, D., D,, y., yp, &, $ and e:/B 
are phenomenological parameters. It can be shown thatfO has p degenerate minima with equal depth 
locatedat $, llf . . . . T$, =(l,O,. . .,O),(O,l,. . . ,O),. . .,(O,O,. . . , 1) in p-dimension orientation space 
at the equilibrium composition C,, and has q degenerate minima located at (n 1, nl, . . . , qi ) = 

w, . * .,0),(0,1,..., 0) ,..., (0,O ,..., 1) at C,,. This requirement ensures that each point in space can 
only belong to one crystallographic orientation of a given phase. 

The parameters in the free energy density function and the gradient energy coeffkients are chosen in 
such a way that grain boundary and interphase boundary energies satisfy the so-called “double” wetting 
condition, of + R p’ L 4, in which no trijunctions are stable and the only stable interfaces are the a/p inter- 
phase boundaries [ 11. In the following computer simulation, the following numerical values are employed: 
C, = 0.05, C, = 0.95, Cm = 0.5, A = 1.0, B = 4.94, Da = Db = 6.09, y. = ys = 2.47, ii,, = $, = 1.0, and 
eT, = 7.0. Using these values, R, and R, are found to be R, = R, = 2.1. We assumed that L r = ;L ! = 1.0 

and tc = 0.5. The coupled TDGL and CH equations are numerically solved using the simple exphcn Euler 
technique in two-dimensions with 256 x 256 or 5 12 x 5 12 grid points and with periodic boundary condi- 
tions applied along both directions. The time step and grid size are chosen to be 0.1 and 2.0, respectively. 
The initial condition is generated by assigning small random values to all the orientation field variables 
and the overall average composition to the composition variable at each discrete lattice point. 

The microstructural evolution of a two-phase solid with 50% volume fraction is shown in Fig. 1. It can 
be seen that, the microstructures are comprised only of quadrijunctions CC pap and a/p interphase boun- 
daries. The angles of the quadrijunctions vary within a certain range, i.e., there is no thermodynamically 
fwed angle for quadrijunctions. The above observations seem to be consistent with Cahn’s thermodynamic 
predictions even though his analysis was made on a system in which the volume fractions are noncon- 
served [l]. 

ToDolo~ical Transformations 

The topological transformations during grain growth can be directly obtained from the temporal micro- 
structures generated from the computer simulations. It is observed that two-sided grains (grams surrounded 
by two quadrijunctions) and three-sided grains (grains surrounded by three quadrijunctions) can directly 
undergo vanishing during grain growth of a two-phase solid with only quadrijunctions. The vanishing of 
a two-sided grain results in the disappearance of two quadrijunctions and the appearance of a new quadri- 
junction while the two former grains neighboring to the vanishing grain lose one quadrijunction each. The 
vanishing of three quadrijunction grains leads to the formation of a hexajunction (a junction at which six 
grains, with three of each phase, meet). However, a hexajunction is highly unstable in a two-phase solid 
and it quickly splits into two new quadrijunctions. As a result, each of the two adjacent grains of the other 

(4 @I @I WI 
Figure 1. The microstructural evolution in all quadrijunction microstructures (R. = R, = 2.1). The volume fraction of L 
phase is 50%. (a] t = 5000; (b) t = 10000; (c) t = 30000; (d) t = 50000. 
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Figure 2. The time dependency of topological distributions 
of 01 phase in all quadrijunction microstructums. The volume 
fraction of (r phase is 50%. 
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Figure 3. The time dependency of grain size distributions of 
L phase in all quadrijunction microstructures. The volume 
fraction of OL phase is 50%. 

phase loses one interface and one quadrijunction; one of the same phase grains gains one interface and one 
quadrijunction; and other grains remain unchanged in terms of the topology. 

The time dependence of topological distributions is shown in Fig. 2. It can be seen that the shapes of 
these distributions do not change with time in the steady-state, i.e., the topological distribution is time- 
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Figure 4. The time dependency of grain size distributions of 
p phase in ail quadrijunction microstructures. The volume 
fraction of g phase is 50%. 

1 
0 1 IO4 2 IO’ 3 lo4 4 10’ 5 10’ 6 10’ 

time step 

Figure 5. The time dependency of the average grain size of c 
phase in all quadrijunction microstructures. The volume tint- 
tion of a phase is 50%. The dashed line is simulation data and 
the solid tine is a fitting into equation R’, - R’ ( = kt. 
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Figure 6. The time dependency of the average grain size of p phase in all quadrijunction microstmctures. The volume fix&on of p 
phase is 50%. The dashed line is simulation data and the solid line is a fitting into equation II-, - R’, = kt. 

invariant in a two-phase microstructure with only quadrijunctions, similar to the grain growth in single 
phase systems [5]. However, in a single-phase system with trijunctions, 2-sided grains never appear where- 
as in Fig. 2 there are quite a few two-sided grains whose occurrence is due to the fact that grain growth 
in a two-phase solid with conserved volume tractions is controlled by long-range diffusion, not just by the 
mean curvature as in single-phase systems. As a result, the avearge number of grain edges in a two-dimen- 
sional two-phase solid will not be 6 per grain, which comes from the requirement of space filling and 
balance of surface tension for a single-phase system. Actually, the average number of grain edges varies 
with the energetic conditions, i.e., values of R. and R,. The average number of grain edges obtained from 
the microstructures in Fig. 1 is about 5.92 per grain. 

Time-Denendence of Grain Size and Size Distributions 

The time dependencies of grain size distributions for a and p phases corresponding to the microstructures 
in Fig. 1 are shown in Figs. 3 and 4 respectively. It can be seen that the distributions for a and p phases 
are almost idlentical and the peaks of size distributions for both phases occur at average size (log,,ou<R>) 
= 0.0) posit:ion. The shape of size distributions is independent of time, indicating that this system has 
reached the dynamic steady state after 5000 time steps. The average grain size for the two phases are 
shown in Figs. 5 and 6, respectively. In contrast to the freezing of grain growth predicted in the Potts 
model simulations for a two-phase solid with non-conserved volume tractions [2], it is shown that the 
average grain sizes increase with time and follows the power growth law R: -Rz = kt with m = 3, 
indicating the long-range diffusion controlled coarsening (Figs. 5 and 6). 

Conclusions 

The stability and evolution of quadrijunctions in a two-dimensional two-phase solid with conserved vol- 
ume tractions were investigated by computer simulations based on a diffise-interface field kinetic model. 
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It is shown that under certain thermodynamic conditions quadrijunctions can be stable in a two-phase 
solid. The kinetic simulations show that 2-sided grains can be stable in a two-phase solid with conserved 
volume tractions and the average number of grain edges is less than six. The topological transformations 
in a two-phase microstructure with only quadrijunctions is dramatically different from those in a single- 
phase system or a two-phase with only trijunctions. It was shown that in the steady state, both the shape 
and size distributions of each phase are invariant with time, whereas the average grain radius for each 
phase with time was found to follow t”3 law, implying the long-range diffusion controlled grain growth 
in a two-phase solid with stable quadrijunctions and with conserved volume fractions. 
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