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ABSTRACT

A di� use-interface kinetic ® eld model for describing grain boundary motion is
proposed. It is based on the time-dependent Ginzburg± Landau equations, in
which grain orientations are described by non-conserved order parameters. A
simple example, a two-dimensional circular grain boundary with isotropic grain
boundary energy, is considered. It is shown that, in the sharp-interface limit, the
boundary migration velocity does not explicitly depend on the magnitude of grain
boundary energy, and is linearly proportional to its mean curvature. Our
numerical simulations demonstrated that, even for a boundary with a ® nite
thickness, its migration velocity is also proportional to the mean curvature,
which is, surprisingly, insensitive to the accuracy of the numerical method,
although the values for the boundary velocity match the sharp-interface
solution only if there are enough grid points to resolve the boundary region in
the simulation. The applicability of the di� use-interface model to simulating
microstructural evolution and grain growth kinetics is discussed.

§ 1. INTRODUCTION

Grain boundary migration takes place in polycrystalline materials to reduce the
total excess free energy associated with them, a process usually referred to as grain
growth. Most of previous mean-® eld and statistical theories as well as computer
simulation models for grain growth were reviewed by Atkinson (1988), Glazier
(1990) and Fradkov (1993). Essentially all these models are based on the sharp-
interface model of grain boundaries, which describes grain boundaries as abstract
geometrical surfaces possessing properties such as area, curvature, free energy, and
mobility. Recently, we proposed a rather di� erent model for investigating grain
growth kinetics (Chen 1995, Chen and Yang, 1994, Fan 1996, Fan and Chen
1997). A key new feature of this model is that the grain boundaries are di� use
with a ® nite thickness, similar to the theoretical treatment of antiphase domain
boundaries by Allen and Cahn (1979). The grain boundary energy is automatically
introduced through the gradient energy terms in the free energy functional. One of
the main advantages of this model is that an arbitrary microstructure can be easily
treated since the interfaces are not singular surfaces requiring imposition of moving
boundary conditions as in the sharp-interface description, but just a region where the
® elds have high gradients. The main purpose of this letter is to discuss the relation-
ship between the sharp- and di� use-interface descriptions for the motion of a grain
boundary and the validity of the di� use-interface ® eld model in describing
curvature-driven microstructural evolution. A particular example, the shrinking of
a circular grain boundary with isotropic grain boundary energy in two dimensions,
will be considered.

0950± 0839/97 $12 ´00 Ñ 1997 Taylor & Francis Ltd.
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§ 2. DIFFUSE-INTERFACE DESCRIPTION OF A GRAIN BOUNDARY

In the di� use-interface ® eld model, a grain, with an arbitrary orientation in
space, is described by a continuous ® eld variable h (r), and hence a grain boundary
separating two grains can be described by two ® eld variables, h 1(r) and h 2(r). The
total free energy of an inhomogeneous system with a grain boundary can be written
as:

F = ò f0( h 1(r), h 2(r)) +
·1

2
( Ñ h 1(r))2 +

·2

2
( Ñ h 2(r))2[ ] d3r, (1)

where Ñ h 1 and Ñ h 2 are the gradients of h 1(r) and h 2(r), f0 is the local free energy
density, and ·1 and ·2 are the gradient energy coe� cients. The energy of a ¯ at grain
boundary between grain 1 and 2, s gb, can be calculated as

s gb = ò
+ ¥

- ¥
D f0( h 1, h 2) +

·1

2
dh 1

dx( ) 2

+
·2

2
dh 2

dx( ) 2

[ ] dx. (2)

For a ¯ at boundary, the equilibrium pro® les of h 1(r) and h 2(r) across the
boundary may be obtained by solving the following Euler equations:

¶ D f0
¶ h 1

= ·1
d2 h 1

dx2 , (3 a)

¶ D f0
¶ h 2

= ·2
d2 h 2

dx2 , (3 b)

where D f0( h 1, h 2) is the excess free energy density of an inhomogeneous system over
an homogeneous system with equilibrium values of h 1(r) and h 2(r). Taking into
account eqns (3 a) and (3 b), we have

s gb = ò
¥

- ¥
2D f0 dx = ò

¥

- ¥
·1

dh 1

dx( ) 2

+·2
dh 2

dx( ) 2( ) dx. (4)

If ·1 /= ·2, it is not trivial to derive a closed analytical expression for the dependence
of grain boundary width on the gradient coe� cients ·i. However, for ·1 = ·2 = ·, it
can be easily shown that grain boundary width

l = h eq

·

D f0( ) 1 /2

. (5)

§ 3. MOTION OF A SHARP GRAIN BOUNDARY

Since the ® eld variables describing the orientations of grains are non-conserved
quantities, their spatial and temporal evolution of orientation ® eld variables is
described by the time-dependent Ginzburg± Landau equations,

dh i(r, t)
dt

= - L i
d F

d h i(r, t) , i = 1,2, (6)

where L i are the kinetic coe� cients, t is time, and F is total free energy given in
eqn. (1). Following the theoretical analysis of Allen and Cahn (1979) for antiphase
domain boundaries, the derivation of the motion law for a more general sharp grain
boundary in three dimensions is rather straightforward; however, for simplicity and

188 D. Fan and L.-Q. Chen
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for comparison with numerical simulation results, we will consider the particular
case of a circular grain embedded in another grain. In this case, we may employ the
polar coordinates in two dimensions and substituting eqn. (1) into eqn. (6), one gets

1
L 1

¶ h 1

¶ t
= ·1

¶ 2 h 1

¶ r2 +
1
r
¶ h 1

¶ r[ ] - ¶ f0

¶ h 1
, (7 a)

1
L 2

¶ h 2

¶ t
= ·2

¶ 2 h 2

¶ r2 +
1
r
¶ h 2

¶ r[ ] - ¶ f0

¶ h 2
. (7 b)

Here, the orientation ® eld variables ( h 1, h 2) are the functions of position r and time t.
The velocity at a constant h i surface at the grain boundary is given by (Allen and
Cahn 1979)

v =
¶ r
¶ t( ) h i

= - ¶ h i

¶ t( ) r/ ¶ h i

¶ r( ) t
. (8)

Substitute this expression into equation (7),

- v
L 1

¶ h 1

¶ r
= ·1

¶ 2 h 1

¶ r2 +
·1

r
¶ h 1

¶ r - ¶ f0

¶ h 1
(9 a)

- v
L 2

¶ h 2

¶ r
= ·2

¶ 2 h 2

¶ r2 +
·2

r
¶ h 2

¶ r
- ¶ f0

¶ h 2
. (9 b)

In order to obtain a simple analytical solution, we assume ·1 = ·2 = · and the
radius R of the circular grain is much greater than the grain boundary thickness
(R @ l). We multiply eqn. (9 a) by ¶ h 1 / ¶ r and eqn. (9 b) by ¶ h 2 /¶ r, and integrate
both equations from 0 < r < ¥ , employing the following boundary conditions:

¶ h 1 / ¶ r = ¶ h 2 /¶ r = 0, h 1 = h 1eq, h 2 = 0, at r = 0,
¶ h 1 / ¶ r = ¶ h 2 /¶ r = 0, h 2 = h 2eq, h 1 = 0, at r = ¥ ,

and noticing that f0( h 1eq,0) = f0(0, h 2eq), and ¶ h 1 /¶ r and ¶ h 2 /¶ r are not zero only
around the grain boundary region, we have

- v
L 1

+
v

L 2( ) =
2·

R
. (10)

Therefore, the velocity of a circular sharp grain boundary is

v =
dR
dt

= - 2L 1L 2

L 1 + L 2
·

1
R

(11)

which shows that the boundary velocity is linearly proportional to the mean curva-
ture, 1 /R. It can also be seen from eqn. (11) that the boundary velocity is indepen-
dent of the local free energy density f0, and more surprisingly, independent of the
grain boundary energy s gb. However, the result is consistent with the Allen± Cahn
prediction on the motion of an antiphase domain boundary (Allen and Cahn 1979).
The fact that the boundary velocity is independent of its energy while the driving
force for its motion is proportional to its energy has been elegantly discussed by Bray
(1994).

The dependence of the radius R on t is, then,

Diffuse-interface description of GB motion 189
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R2
0 - R2 =

4L 1L 2

L 1 + L 2
·t. (12)

An immediate result from eqn. (12) is that a circular grain with a sharp boundary
will shrink following a power law with m = 2. If L 1 = L 2 = L , eqn. (12) is reduced to

R2
0 - R2 = 2L kt. (13)

§ 4. NUMERICAL SIMULATIONS

According to eqns. (11) and (5), the velocity of a sharp-interface grain boundary
with isotropic grain boundary energy is linearly proportional to the mean curvature,
and dependent on the coe� cients ·i and L i, but not on D f0, whereas its thickness
and grain boundary energy vary with ·i and D f0. Therefore, varying D f0 while
keeping ·i and L i constant will change the boundary energy and thickness but not
its velocity. However, eqn. (11) was derived based on the assumption that the grain
size is much larger than the boundary width, i.e. the sharp-interface limit.
Meanwhile, in computer simulation of grain growth using a uniform grid for dis-
cretizing the di� erential eqns. (6), the condition R @ l is usually not satis® ed.
Therefore, it is important to understand the relationship between the numerical
simulation based on the di� use-interface description and its sharp-interface limit,
the behaviour of a di� use-boundary with ® nite thickness and, therefore, the validity
of the di� use-interface model in describing grain growth kinetics.

To simulate the grain boundary motion, we again consider a circular grain ( h 1)
embedded in another grain ( h 2). We assumed a simple free energy density function,

f0( h 1, h 2) = å
2

i= 1
- a

2
h 2

i +
b

4
h 4

i( ) + g h 2
1 h 2

2, (14)

where a , b and g are phenomenological parameters. It can be shown that, if g > b /2,
eqn. (14) gives four potential minima (wells) located at ( h 1, h 2) = (1,0), (- 1,0),
(0,1), (0, - 1), which represent the equilibrium free energies of crystalline grains in
four di� erent orientations.

In the computer simulation, eqns. (6) are discretized in space and time. The
Laplacian is discretized by

Ñ 2 h i =
1

( D x)2
1
2 å j

( h j - h i) +
1
4 å k

( h k - h i)[ ], (15)

where D x is the grid size, j represents the ® rst-nearest neighbours of site i, and k
represents the second-nearest neighbours of site i. For discretization with respect to
time, the explicit Euler equation is used:

h i(t + D t) = h i(t) +
dh i

dt
D t, (16)

where D t is the time step for integration. In this paper, we employed 200 ´ 200
square lattice points to spatially discretize the kinetic equations with periodic bound-
ary conditions applied along both Cartesian coordinate axes. The discretizing grid
size D x is chosen to be 2 0́ and the time step D t is 0 2́5.

We ® rst consider the case k1 = k2 = k = 2 0́ and L 1 = L 2 = L = 1 0́, which gives
an isotropic grain boundary energy and isotropic grain boundary mobility, respec-

190 D. Fan and L.-Q. Chen
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tively. For the local free energy density function, the following initial parameters
were assumed: a = 1 0́, b = 1 0́ and g = 1 0́. To vary D f0, the local free energy
density function f0 was multiplied by a coe� cient ¹ . The width and energy of the
grain boundary vary with ¹ while the velocity in the sharp-interface limit should not
be a� ected. The initial radius of the circular grain was chosen as 120 grid points in
diameter, which is much greater than the width of the grain boundary.

The temporal evolution of a circular grain for ¹ = 1 0́ was shown in ® g. 1 and the
time dependences of the grain area for di� erent values of ¹ are shown in ® g. 2. The
solid line in ® g. 2 is the analytical solution described by eqn. (16). Decreasing ¹

reduces D f0, and hence increases the width of the grain boundary according to
eqn. (5). It is shown that a circular grain with a narrower boundary (® g. 2) shrinks
more slowly than that with a thicker boundary, i.e. the kinetic coe� cient k increases
with the boundary width. However, for all cases, the areas of the circular grain
decrease linearly with respect to time, i.e. R2

t - R2
0 = kt, so the boundary velocity

is linearly proportional to the mean curvature. Moreover, although there is a sig-
ni® cant change in k when ¹ decreases from 1 0́ to 0 5́, there is almost no change when
¹ decreases further, e.g. from 0 2́5 to 0 1́25. Equivalently, we can also examine the
variation of grain radius with di� erent ¹ as shown in ® g. 3. The velocity v at a given
time step (v = dR /dt) is the slope of the R against t plot. It is clear that the grain
boundary position and velocity di� er signi® cantly from those predicted by the sharp
boundary approximation if there are not enough grid points to resolve the boundary
region (¹ = 1 0́). However, for ¹ = 0 1́25, for which the thickness of the grain

Diffuse-interface description of GB motion 191

Fig. 1

The temporal evolution of a circular grain embedded in another grain. (a) Time step= 1000;
(b) time step= 3000; (c) time step= 5000, (d) time step= 7000.
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192 D. Fan and L.-Q. Chen

Fig. 2

The time dependence of the area of a circular grain embedded in another grain. Comparing the
analytical solution with simulations of ¹ = 0´125, ¹ = 0 2́5, ¹ = 0 5́ and ¹ = 1 0́.

Fig. 3

The time dependence of the radius of a circular grain embedded in another grain. Comparing
the analytical solution with simulations of ¹ = 0´125, ¹ = 0´25, ¹ = 0 5́ and ¹ = 1 0́.
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boundary is about 10 grid points, a di� use grain boundary predicts identical posi-
tions and velocities with the sharp-boundary solution. Since the boundary thickness
is measured in terms of the number of grid points, we also compared the boundary
velocities obtained using two di� erent grid sizes D x, while keeping k, L , and D f0

constant. It is shown that the velocity obtained with a ® ner grid size agrees well
with the analytical solution and further re® nement does not change the boundary
velocity.

We also compared the numerical simulation results and the analytical solution
for the case, L 1 = 0 2́5, L 2 = 1 0́, ¹ = 0 1́25, ·1 = ·2 = 2 0́. These conditions ensure
that there are enough grid points to resolve the boundary width. In ® g. 4, the two
dashed lines are the predictions and simulations with L 1 = L 2 = 0 2́5 and
L 1 = L 2 = 1 0́ respectively. The solid dots represent the simulation with L 1 = 0 2́5,
L 2 = 1 0́ and the solid line is the analytical solution from eqn. (12). It can be seen
that the di� use boundary in the simulation behaves exactly the same as that pre-
dicted by the analytical solution (eqn. (12)) for the case that L 1 /= L 2.

Another important result obtained from simulations is that the motion of grain
boundaries in a single phase system with an isotropic grain boundary energy is
indeed independent of the grain boundary energy. In simulations, if there are enough
grid points to resolve a grain boundary regime, the velocity is independent of D f0,
while the grain boundary energy s a b does depend on the D f0 (eqn. (4)). This result is
consistent with eqn. (11) and the result of Allen and Cahn (1979) for antiphase
domain boundaries.

§ 5. DISCUSSION

We have shown that a di� use-interface description of a grain boundary provides
almost identical migration velocities to those derived for a sharp interface as long as

Diffuse-interface description of GB motion 193

Fig. 4

The grain boundary motion with different boundary mobilities. The two dashed lines are
theoretical predictions for L 1 = L 1 = 1 0́ and L 1 = L 1 = 0 2́5. The solid line is the
prediction with L = 2L 1L 2 /(L 1 + L 2). The solid dots represent the simulation data
with L 1 = 1 0́ and L 2 = 0 2́5.
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there are enough grid points to resolve the boundary width in the numerical simula-
tion, and even if there are not enough grid points, the boundary velocity is still
linearly proportional to the curvature. It is quite surprising that this seems to be
true even if the grain size is reduced to that comparable to the boundary width.
However, it appears not to be the case for solidi® cation (Caginalp and Socolovsky
1989, 1991, 1994, Wheeler, Boettinger and McFadden 1992, Warren and Boettinger
1995), in which numerical simulations based on the di� use-interface description of
the solid± liquid interface produced interface positions and velocities di� ering sig-
ni® cantly from those for a sharp interface if the interface width is too large compared
with the crystal size. We would like to emphasize the fundamental di� erences
between the interface motion during solidi® cation and the grain boundary motion
during coarsening. In the case of solidi® cation, the driving force for the interface
motion is the di� erence in the chemical potentials within the solid and liquid, which
comes from two parts: (1) the bulk free energy di� erence between the solid and
liquid; and (2) the chemical potential di� erence due to curvatures, the Gibbs±
Thomson e� ect. During solidi® cation, the bulk free energy di� erence is the dominant
driving force for the solid± liquid interface migration. If the interface is too di� use or
the interfacial width is too large, the driving force within the interface region will be
reduced and too small compared with that of a sharp interface or an interface with
narrower interfacial width. Therefore, the more di� use the interface is in the numer-
ical simulation, the greater the deviation for the interface velocity from that of a
sharp interface prediction. On the other hand, grain boundary motion during grain
growth for the case of isotropic grain boundary energy is driven by the mean cur-
vature. In the di� use-interface ® eld model, the grain boundary regions are those
where the gradients Ñ h i are non-zero. The curvature for a constant h i surface is
given by the divergence of a unit normal vector to that surface (Allen and Cahn
1979), i.e. Ñ ´ n̂, where n̂ is the unit vector normal to the surface. The Ñ ´ n̂ terms are
equal to the negative of the mean curvature of surfaces and are implicitly included in
the Ñ 2 h i terms. To precisely compute the Ñ 2 h i and Ñ ´ n̂ terms numerically, there
must be enough grid points to describe the grain boundary region. This is the reason
why the prediction of a di� use grain boundary approaches the sharp boundary
solution as the width of grain boundary increases for the problems of motion by
mean curvatures. The surface tension, which is crucial for the stability of grain
boundaries and plays a key role in polycrystalline materials, is proportional to
terms ò ( Ñ h i ´ n̂)2 dr in the di� use-interface model (Caginalp and Socolovsky 1991,
1994) and will not be calculated accurately either if there are not enough grid points
to resolve the boundary width. It remains to be seen if this is still true for the case of
anisotropic grain boundary energies.

For the purpose of modelling microstructural evolution and grain growth
kinetics, there are several advantages using the di� use-interface ® eld kinetic
model. First of all, it does not explicitly track the positions of grain boundaries.
Secondly, the di� use-interface ® eld model is a natural description of di� use bound-
aries associated with extremely small grains, for example, in nanocrystalline materi-
als. Finally, in the di� use-interface ® eld model, it is straightforward to describe long-
range di� usion, which takes place, for example, during solute segregation and
second-phase precipitation at grain boundaries in a polycrystalline material, by
coupling the kinetic equations for the orientation ® eld variables with the Cahn±
Hilliard di� usion equation for describing the composition evolution (Chen and
Fan 1996).

194 D. Fan and L.-Q. Chen
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However, as discussed above, in order to match results from the di� use-interface
computation to the analytical solution in the sharp-interface limit, about 10 grid
points are necessary for discretizing the ground boundary region. Furthermore, in
order to obtain good statistics on grain growth kinetics, several hundred to a few
thousand grains at each time step are required. Therefore, accurate spatial discreti-
zation of the kinetic equations and realistic simulation of the grain growth kinetics
would require very large-scale computer simulations even in two dimensions
(~ 1000 ´ 1000 grid points), in particular, if uniform grids are employed.
Although such simulations are possible in the current generation of computers,
they are computationally expensive. However, we have shown above that even if
not enough grid points are used to resolve the boundaries, the radius of the circular
domain still varies parabolically as a function of time, i.e. the boundary migration
velocity is still linearly proportional to the mean curvature, which provides a
physical basis for performing simulations with less accurate spatial discretization.
Indeed, we recently compared the grain growth simulations with two quite di� erent
boundary thicknesses, and we found that there were essentially no di� erences in the
grain growth kinetics including the parabolic growth law for the average grain size as
a function of time, the grain size and topological distributions (Fan 1996). The only
di� erence between the results obtained from the two sets of simulations occurs in the
rate constants of the parabolic growth laws (k), and from the present analysis, we
know precisely the magnitudes of errors in the rate constants due to inaccurate
spatial discretization.

§ 6. CONCLUSIONS

Based on the di� use-interface description, a corresponding sharp-interface
solution for the grain boundary velocity is derived. In the case of isotropic grain
boundary energies, the velocity of grain boundary migration is shown to be linearly
proportional to the mean curvature, and is independent of the grain boundary
energy, similar to the motion of antiphase domain boundaries as treated by Allen
and Cahn. It is shown the velocities of grain boundary migration obtained from a
numerical simulation of the grain boundary motion of much wider interfacial region
are also proportional to the mean curvature regardless of the numerical accuracy,
but their values are identical to those for a sharp grain boundary only if there are
enough grid points to resolve the boundary width in the simulation.
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