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Effect of grain boundary width on grain growth in a 
diffuse-interface field model 

1. Introduction 

Normal grain growth in single phase materials is a 
process of grain boundary migration, driven by mean 
curvatures of grain boundaries, to reduce the total 
amount of grain boundary energy or grain boundary 
area. Most of previous mean-field and statistical theo- 
ries as well as computer simulation models for grain 
growth were reviewed by Atkinson [I], Glazier [2] and 
Fradkov [3]. All these models assume sharp grain 
boundaries, which are abstract geometrical surfaces 
possessing properties such as area, curvature, free en- 
ergy and mobility. Due to the difficulty of directly 
incorporating topological features into analytical theo- 
ries of grain growth, the Potts model [4- 101 simulations 
and the evolution of soap froth [l I-141 have been 
extensively employed to study the kinetics and topolog- 
ical features of grain growth. While most Potts model 
grain growth simulation results agree with those of a 
soap froth, the Potts model simulations consistently 
predicted wider side and grain area distributions than 
the soap froth [ll]. Holm et al. [lo] showed that the 
lattice anisotropy introduced by the discrete lattice in 
the Potts model is responsible for the deviation of 
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distributions from the soap froth. In the low lattice 
anisotropy Potts model simulations, the moments of 
distributions are very close to those obtained from the 
evolution of soap froth [lo]. 

Recently, we proposed a rather different model for 
investigating grain growth kinetics (15-151. A key new 
feature of this model is that the grain boundaries are 
diffuse with a finite thickness, similar to the theoretical 
treatment of antiphase domain boundaries by Allen 
and Cahn [19]. The grain boundary energy is intro- 
duced through the gradient energy terms in the free 
energy functional. One of the main advantages of this 
model is that any arbitrary microstructure can be easily 
treated since the interfaces are not singular surfaces 
requiring imposition of moving boundary conditions as 
in the sharp-interface description. Another feature of 
this model is that the anisotropy associated with dis- 
cretizing the microstructure is almost non-existent as 
long as there are enough grid points to resolve the grain 
boundary regions [15.20]. Surprisingly, the moments of 

distributions obtained from this model are similar to 
those from Potts model simulations with high lattice 
anisotropy rather than those from soap froth [16]. 
These results suggest that there are effects, other than 
lattice anisotropy, which contribute to the discrepancies 
between the results of simulations and soap froth. In 
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this paper, we study the effect of grain boundary width 
on the grain growth kinetics and distributions in this 
diffuse-interface field model. 

2. Diffuse-interface field model 

In the diffuse-interface field model [15,17], an arbi- 
trary polycrystalline microstructure is described by a set 
of continuous field variables, 

where p is the number of possible orientations in space 
and tli (i= 1, . . . . p) are called orientation field variables 
which distinguish the different orientations of grains 
and are continuous in space. I’ is the position in the 
space. Their values continuously vary from - 1.0 to 
1.0. In real materials, the number of orientations is 
infinite (p = ccl). However, it was shown that a finite 
number of p @ > 30) might be sufficient to realistically 
simulate grain growth [15]. 

Within the diffuse interface theory [21], the total free 
energy of an inhomogeneous system can be written as: 

F= q#), . ..> t/,(r)) + i ; (Vi~~(r))~ d3r 
i= 1 -1 (1) 

where f0 is the local free energy density which is a 
function of field variables rl,, and /ii are the gradient 
energy coefficients. Grain boundary energy is intro- 
duced by the gradient terms (Viii)’ in Eq. (1). The 
smaller the gradient energy coefficient K, is, the thinner 
the boundary region. If all the gradient energy coeffi- 
cients go to zero, the boundary thickness- becomes 
infinitely thin, i.e. a sharp interface. 

The spatial and temporal evolution of orientation 
field variables is described by Ginzburg-Landau equa- 
tions: 

i= 1, 2, . . ..jl (2) 

where Li are the kinetic coefficients related to grain 
boundary mobility, t is time and F is total free energy 
given in Eq. (1). 

To simulate grain growth kinetics, we assumed the 
following simple free energy density functional, 

where CI, ,8 and y are phenomenological parameters. 
The main requirement for f0 in modeling grain growth 
for a pure single-phase is that it has p degenerate 
minima, fmin, located at (t/,, I/~, . . ., tfi,) = (1, 0, . .., 0), 

(0, 1, . ..) O), . . . . (0, 0, . . . . 1) in p-dimensions space. It 
can be shown that, if y > /3/2, Eq. (3) gives 2~ potential 
minima (wells) m the p-field space, which represent the 
equilibrium free energies of crystalline grains in 2p 

different orientations. 
In the computer simulation, Eq. (2) are discretized in 

space and time. The Laplacian is discretized by the 
following equation: 

where As is the grid size, j represents the first-nearest 
neighbors of site i and k represents the second-nearest 
neighbors of site i. For discretization with respect to 
time, the explicit Euler equation is used: 

t/,(f + At) = g,(t) +$ x At 

where At is the time step for integration. 

3. Motion of a grain boundary 

In the diffuse-interface field model, a grain, with an 
arbitrary orientation in space, is described by a contin- 
uous field variable q(r) and hence a grain boundary 
separating two grains can be described by two field 
variables, ql(r) and ty2(r). The energy of a flat grain 
boundary between grain 1 and 2, a,,, can be calculated 
as 

where Af0(,7i> jf2) is the excess free energy density of an 
inhomogeneous system over an homogeneous system 
with equilibrium values of qr(r) and U/~(V). For a flat 
boundary and for pi = li2 = I<, it can be easily shown 
that [19.20]. grain boundary width (I) in this model 
varies as, 

where yes is the equilibrium value of the orientation 
variable. 

It has been shown that 120,221, for the particular case 
of a circular grain embedded in another grain with the 
condition that the grain size is much larger than the 
grain boundary width (sharp grain boundary condi- 
tion), the kinetics of the circular grain follows: 

Ri - R’= 2Llit @I 

where R, is the original radius of the circular grain, R 
is the radius at time t and L, = L, = L, which gives an 
isotropic grain boundary mobility condition. 
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According to Eq. (8) and Eq. (7), the kinetics (veloc- 
ity) of a grain boundary with isotropic grain boundary 
energy is only dependent on rhe coefficients K, and Li, 
but not on A&, whereas its thickness and grain 
boundary energy vary with zi and A& Therefore, vary- 
ing Af, while keeping xi and Lj constant, will change 
the boundary energy and thickness but not its velocity. 
However, Eq. (8) was derived based on the assumption 
that the grain size is much larger than the boundary 
width [20,22], i.e., the sharp-interface limit. Meanwhile, 
in computer simulation of grain growth using a uni- 
form grid for discretizing the differential Eq. (2) the 
condition, R >> I, is usually not satisfied. Therefore, it is 
important to understand the relationship between the 
numerical simulation based on the diffuse-interface de- 
scription and its sharp-interface limit. 

To simulate the grain boundary motion, we consider 
a circular grain (qJ embedded in another grain (q2) 
(Fig. 1). We employed 200 x 200 square lattice points 
to spatially discretize the kinetic equations with peri- 
odic boundary conditions applied along both Cartesian 
coordinate axes. The discretizing grid size As is chosen 
to be 2.0 and the time step Ar is 0.25. The initial radius 
of the circular grain was chosen to have 120 grid points 
in diameter, which is much greater than the width of 
the grain boundary. We consider the case: or = x2 = 
K = 2.0 and L, = L, = L = 1.0, which give an isotropic 
grain boundary energy and isotropic grain boundary 
mobility, respectively. For the local free energy density 
function, the following initial parameters were assumed: 
a = 1 .O, j’ = 1 .O and y = 1 .O. To vary AfO, the local free 

(4 

Fig. 1. The temporal evolution of a circular grain embedded in anther 
grain. Time step = 1000 (a); 3000 (b); 5000 (c); and 7000 (d). 
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Fig. 2, The time dependence of the area of a circular grain in an 
infinite matrix. Comparing the analytical solution with simulations of 
~=0.125, 0.25, 0.5 and 1.0. 

energy density function f0 was multiplied by a coeffi- 
cient ~1. The width and energy of the grain boundary 
vary with /I while the velocity in the sharp-interface 
limit should not be affected. 

The temporal evolution of a circular grain for p = 1.0 
was shown in Fig. 1. It can be seen from Fig. 1 that the 
grain boundary is very smooth and circular at all times, 
indicating that no lattice anisotropy is introduced by 
discretizing the continuous Eq. (2). The time dependen- 
cies of grain areas for different values of ~1 are shown in 
Fig. 2. The solid line in Fig. 2 is the analytical solution 
described by Eq. (8). For all cases, the areas of the 
circular grain decrease linearly with respect to time, i.e. 
Ri - R: = kt. Decreasing 11 reduces AfO and hence in- 
creases the width of the grain boundary according to 
Eq. (7). It is shown that a circular grain with a nar- 
rower boundary (Fig. 2) shrinks more slowly than that 
with a thicker boundary, i.e. the kinetic coefficient 
increases with the boundary width to a point. k in- 
creases when ~1 decreases from 1.0 to 0.5, but remains 
constant when ~1 decreases further, e.g. from 0.25 to 
0.125. It is clear that the grain boundary position and 
velocity differ significantly from those predicted by the 
sharp boundary approximation if there are insufficient 
grid points to resolve the boundary region (At p = 1.0 
there are about five grid points in the grain boundary 
region). However, for p = 0,125, which corresponds to 
a grain boundary thickness of about ten grid points, the 
diffuse grain boundary ‘model predicts positions and 
velocities that are identical to those predicted by the 
sharp-boundary solution. Therefore, if there are enough 
grid points to resolve a diffuse boundary, the migration 
velocity of a diffuse grain boundary is exactly the same 
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as that of a sharp grain boundary, even for a very small 
grain whose size is comparable to the grain boundary 
width. 

4. Effect of grain boundary width on grain growth 

To examine the effect of grain boundary width on 
grain growth in 2-D systems, we chose a 512 x 512 cell 
with 36 orientation field variables (p = 36). It has been 
shown that a large but finite number of orientation field 
variables is adequate to simulate grain growth kinetics 
[15]. We assumed the following numerical values for the 
parameters in the kinetic equations: c! = 1.0, ,B = 1.0, 
y= 1.0 and xi=2.0 and Li= 1.0 for i= l-p. The grid 
size along both Cartesian coordinate axes was chosen 
to be 2.0 and the time step for integration, At = 0.25. 
Periodic boundary conditions were applied. The simula- 
tions were initiated by assigning small random values to 
all field variables at every grid point, e.g. - 0.001 < ~1, 
(for i) < 0.001, simulating a liquid. All kinetic data 
were obtained by averaging over several independent 
runs starting with similar initial conditions, but pro- 
duced from a random number generator with different 
seed for the orientation field variables. Two cases, 
,D = 1.0 and 0.125, were chosen to study the effect of 
grain boundary width on grain growth. 

Microstructural evolution for ,L( = 1.0 is shown in 
Fig. 3. Since the initial values for vi’s are essentially 
zero, the very early stage of the simulation corresponds 
to nucleation and growth of a crystalline phase driven 

Fig. 3. The microstructural evolution in the 512 x 512 system with 
p = 1.0 and 36 orientation variables. 
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Fig. 4. The comparison of grain growth kinetics in the systems of 
/i= 1.0 and 0.125. System size: 512 x 512, p = 36. 

by the bulk free energy change. A well defined grain 
structure is formed after a short time, about 200 time 
steps, when the bulk driving force has been consumed. 
Further microstructure evolution is driven by the excess 
free energies associated with the grain boundaries, re- 
sulting in normal grain growth. The microstructure 
evolution for ,U = 0.125 is very similar to that of ,LL = 1.0 
(shown in Fig. 3). The transformation from a liquid to 
a grain structure takes longer time because smaller p 
means less driven force for the transformation and 
there are fewer grains in the system after the transfor- 
mation, a consequence of the larger grain boundary 
width. After the transformation, there are about 3000 
grains in the ,u = 1.0 system and about 1000 grains in 
the ,U = 0.125 system. 

The area of each grain at a given time step is 
calculated from the microstructure by counting the 
number of grid points within the grain. The average 
grain area at a given time step is then obtained by 
averaging over all the grains in a system. The average 
grain areas as a function of time for the p = 0.125 and 
1.0 systems are plotted in Fig. 4. The average grain area 
increases linearly with time, indicating that the coarsen- 
ing kinetics follows the power law R:” - i?r = kt with 
the growth exponent ~72 = 2.0, which is unaffected by 
varying the grain boundary width. However, the slopes 
of the two straight lines are different, which indicates 
that the kinetics coefficient k varies as the grain 
boundary width changes from five to ten grid points. In 
this diffuse-interface field model, the grain boundary 
regions are defined as regions where the gradients Vg, 
are non zero. The curvature for a constant vi surface is 
given by the divergence of a unit normal vector to that 
surface [19,21], i.e. V. ti, where ri is the unit vector 
normal to the surface. The V. fi terms are equal to the 
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negative mean curvatures of surfaces and are implicitly 
included in the V2qj terms [19,21]. To accurately com- 
pute the V’qi and V ‘fi terms numerically, there must be 
enough grid points to describe the grain boundary 
region. From Fig. 2, it can be seen that further refine- 
ment of grain boundaries will not change coarsening 
kinetics if there are enough grid points to resolve a 
diffuse boundary. Our simulations show that if Ihere 
are more than seven grid points in grain boundary 
regions, the grain growth kinetics is almost independent 
of the grain boundary width in this model. 

The grain size distributions in ,U = 1.0 and 0.125 
systems are shown in Fig. 5 and the grain side (topolog- 
ical) distributions are compared in Fig. 6. The grain 
size distribution obtained from large scale Potts model 
simulations (E.A. Holm, private communication) is also 
included in Fig. 5. For a direct comparison, grain size 
distributions are normalized by their respective total 
areas under the curves. The grain size distributions in 
,U = 1.0 and 0.125 systems are the same and almost 
identical with that of Potts model simulations. The 
topological distributions with different grain boundary 
widths are also quite similar (Fig. 6). The small fluctua- 
tion may come from the fact that there are fewer grains 
in the ,U = 0.125 system. In both cases, a peak is at the 
five sided grain, which is consistent with Potts model 
and soap froth [IO-161. Therefore, the grain size and 
topological distributions are independent of the grain 
boundary width even though the growth exponent k 
changes as the grain boundary width varies from five to 
ten grid points. 

To quantitatively compare the effect of grain 
boundary width on distributions, the vlrth moments of 
the side distribution are defined as: 
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Fig. 5. The comparison of grain size distributions in p = 0.125 and 
il= 1 .O systems (p = 36) with Potts model simulation (E.A. Helm, 
private communication). 
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Fig. 6. The comparison of grain side distributions in systems AI = 1.0 
and 0.125. 

P,,, = 1 P(n)(n - lfl)Y 
n=2 

(9) 

where P,,, is the mth moment of the side distribution 
function p(n) and (n) the average number of grain 
sides at a certain time and the absolute width of the 
side distribution is: 

(10) 

The average number 
from this simulation is 

of grain sides (n), obtained 
six. which is independent of 

grain boundary width and time in the scaling regime. 
The moment of the side distribution is an important 
indicator of the topological characteristics of a system 
during grain growth. Moments larger than ,L{~ are much 
more sensitive to the large-n tail of the side distribution 
and to the measurement error and hence, normally they 
are only useful for qualitative analysis. The time depen- 
dence of the second moment /i12 is shown in Fig. 7. It 
can be seen that the ,Q value reaches the stable value 
2.34 ) 0.16 after a very short time in the cl= 1 .O system, 
indicating that the system has quickly reached the 
scaling regime. For the ,LL = 0.125 system, the ,u, value is 
obviously larger than that of the ,U = 1.0 system before 
3000 time steps and it reaches the stable value 2.34 2 
0.16 after the 4000 time steps. This indicates that the 
system with ,U = 0.125 approaches the scaling regime 
more slowly, which is the result of the less driving force 
in this system. It is interesting to see that the stable 
value of ,uZ is identical in these two systems even though 
the grain boundary width is doubled. Therefore, it can 
be concluded that the lattice anisotropy associated with 
discretizing continuous equations is not a factor which 
affects the distributions in this model. The stable value 
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Fig. 7. The comparison of the second moment ,N> of the side distribu- Fig. 9. The comparison of the third moment p3 of the side distribu- 
tion as the function of time for ,L( = 1.0 and 0.125 systems. tion as the function of time for ,U = 1.0 and 0.125 systems. 

of ,u~ obtained from soap froth is 1.5 + 0.2 [l l] and is 
2.4 + 0.1 for Potts model simulations with the lattice 
anisotropy [lO,ll]. It is very interesting to notice that 
the /iz value obtained from this model is closer to that 
of the Potts model than that of the soap froth. 

The absolute widths, IV, of side distributions are 
shown in Fig. 8. The dependence of the absolute width 
on time is similar to that of ,M~. The stable value of IV 
is 1.1 + 0.1 which is very close to the value of W= 
1.0 i 0.1 for Potts model and TV= 1.1 IO.3 for the 
soap froth [l I]. The absolute width of the side distribu- 
tion is much less sensitive to many-sided grains. Hence, 
these three methods predict almost identical results. 
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The higher moments, /A, and ,LQ, are plotted versus time 
in Figs. 9 and 10, respectively. It is clear that higher 
moments also reach the scaling-state values for both 
/! = 0.125 and 1.0 systems. The slable value is 3.7 i 0.9 
for ,L’~ and is 26 i 5 for pd in this model. The scaling- 
state value of ail obtained from Potts model is 5.25 + 
1.25 and is 1 .O + 0.5 observed in the soap froth [l 11. 
For the fourth moment (/L+), the stable value is 35 2 10 
from Potts model simulations and 6.0 .k 3.6 from the 
soap froth [ll]. It can be seen that both values of p, 
and p4 from this study are between those of the Potts 
model simulation and the soap froth. The larger values 
of high moments mean that many-sided grains have a 

80 i ~,=26 k 5 
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higher frequency of occurrence in a system. Therefore, 
both simulations of this model and Potts model gener- 
ate more many-sided grains than the soap froth does. 

The tendency of generating more many-sided grains 
was attributed to the lattice anisotropy associated with 
the discrete lattice in the Potts model [lo]. As the lattice 
anisotropy decreases in Potts model simulations, the 
moments of distributions approach to those of the soap 
froth [lo]. However, it has been shown that the mo- 
ments of sides distributions do not change with varying 
grain boundary width in this model and hence, the 
lattice anisotropy is not responsible for the generation 
of many-sided grains. We assert that some of many- 
sided grains come from the coalescence of neighboring 
grains of the same orientation, as only a finite number 
of orientation field variables was employed in simula- 
tions. It is the coalescence that contributes to the 
large-n tail of distributions and larger values of mo- 
ments in this model than those of the soap froth. 
Coalescence also occurs in the finite (2 state Potts 
model simulations, which gives ,u3 = 5.25 and ,u4 = 35 
11 l] as stated above. In the Potts model it is shown that 
the moments drop to p, = 1.7 and p4 = 17 when coales- 
cence is totally prevented by using an infinitely degener- 
ate system, however, lattice anisotropy was still high 
thus the moments are still not identical to those of the 
soap froth [lo]. These values are even smaller than 
those obtained from this model (F~ = 3.7 and ,~r, = 26), 
in which there is no lattice anisotropy. Therefore, in 
addition to lattice anisotropy, coalescence is responsible 
for the discrepancies of distributions obtained from 
different methods. Finally, it should be pointed out that 
the phase-field model and the Potts model are more 
similar to the grain growth process in metals and 
ceramics, in which anisotropy and coalescence exist and 
the time for diffusion across grain boundaries is short 
compared to the diffusion along boundaries. While in 
the evolution of the soap froth, diffusion across 
boundaries is slower compared to the shape adjustment 
of bubbles. 

5. Conclusions 

We have shown that the grain growth kinetics will be 
slowed if there are insufficient grid points to resolve the 
grain boundaries in this diffuse-interface field model. 
When there are more then seven grid points in grain 
boundary regions, the grain growth kinetics is indepen- 

dent of the grain boundary width and the motion of a 
diffuse grain boundary is identical to its sharp-interface 
limit. The grain size distribution and topological distri- 
bution do not change with varying grain boundary 
width and they agree well with previous Potts model 
simulations. The moments of grain side distributions 
reach stable values in the scaling regime and they are 
independent of the grain boundary width. The coales- 
cence of grains affects the topological distributions. 
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