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The kinetics of grain growth and Ostwald ripening in
Al2O3–ZrO2 two-phase composites was systematically in-
vestigated using two-dimensional (2-D) computer simula-
tions, based on a diffuse-interface field model. Using aver-
age values for the experimentally measured ratios of the
grain boundary energies to the interphase boundary energy
as the input, the predicted 2-D microstructural features
and their evolution are in excellent qualitative agreement
with experimental observations on 2-D cross sections of 3-D
Al2O3–ZrO2 two-phase composite microstructures. It was
found that the coupled grain growth in Al2O3–ZrO2 com-
posites is controlled by long-range diffusion and the aver-
age size (Rt) as a function of time (t) follows the power-
growth law, Rm

t − Rm
0 = kt with m = 3, which is independent

of the initial microstructures and volume fractions of the
two phases. The predicted variation of the kinetic coeffi-
cient (k) on the volume fraction follows a trend similar to
that experimentally measured through the entire range of
volume fractions. The scaling of grain size distributions is
observed at a given volume fraction, i.e., they are time-
invariant in the steady state. However, the characteristics
of size distributions vary with the initial microstructures
and the volume fractions. The relationship between matrix
grain size and second-phase grain size is discussed.

I. Introduction

CONTROLLING grain growth and hence the grain size is a
critical issue for the processing and application of ad-

vanced ceramics. One of the effective methods of controlling
grain growth is by developing multiphase composites or duplex
microstructures, an important example being Al2O3–ZrO2 two-
phase composite which, due to its toughening and superplastic
behaviors, has been extensively studied.1–6

A schematic two-phase polycrystalline microstructure is
shown in Fig. 1, in which there are three types of interfaces:
grain boundaries in � (�/�) with energy ���; grain boundaries
in � (�/�) with energy ���; and interphase boundaries between
� and � (�/�) with energy ���. Coarsening of such a two-
phase microstructure is driven by the reduction in the total
grain and interphase boundary energy. It involves two quite
different, but simultaneous processes: grain growth through

grain boundary migration and Ostwald ripening via long-range
diffusion. For example, in order for an �/�1 interphase bound-
ary to move (Fig. 1), the atoms in the �1 have to dissolve into
the matrix (� grains) and diffuse either through the �/� grain
boundaries connected to �1 or through the matrix if there are
limited mutual solubilities between � and � phases, and then
reprecipitate into relatively larger � phase particles (�2–�4).
The diffusion distance involved is on the order of the typical
distance between � phase particles. On the other hand, in order
for the grain boundary between �1 and �2 to move, atoms are
required to jump from one side of the boundary to another; the
diffusion distance is on the order of grain boundary width in the
� phase. In a two-phase solid, the motions of a grain boundary
and an interphase boundary are mutually constrained or inher-
ently coupled. For example, the grain boundary between �1
and �2 cannot substantially move until the �1 particle entirely
disappears. It may intuitively be expected that the slower pro-
cess, Ostwald ripening, which involves long-range diffusion,
should control the kinetics of coarsening in a two-phase solid.

There have been a few theoretical attempts to study the
effect of second-phase particles on grain growth kinetics. Most
of the theoretical models7–9 made significant assumptions and
Q-states Potts model simulations10,11 considered small and im-
mobile second-phase particles which cannot coarsen. Recently,
the thermodynamics of a two-phase microstructure, in which
the volume fractions of the two constituent phases are not
conserved, has been analyzed by Cahn,12 and the correspond-
ing kinetics of grain growth and microstructural evolution were
studied by Holm et al.13 using the Potts model. However, the
kinetics of grain growth have not been extensively investigated
for two-phase systems in which the volume fractions are con-
served. An important difference between a conserved system
and a nonconserved one is the fact that, in nonconserved sys-
tems, long-range diffusion is not involved.

Recently, the authors have developed a diffuse-interface
computer simulation model14,15 for studying the microstruc-
tural evolution in two-phase polycrystalline materials. One of
the main advantages of this model is that the complexity of
microstructural evolution and long-range diffusion in two-
phase materials can be automatically taken into account. Com-
puter simulations using this model allow one not only to moni-
tor the detailed temporal microstructure evolution during grain
growth and Ostwald ripening but also to obtain all of the in-
formation about the average grain size and size distribution of
all the phases.

The major purpose of this paper is to systematically study
the kinetics of coupled grain growth and grain size distributions
in Al2O3–ZrO2 two-phase composites by employing computer
simulations. For both single-phase grain growth and Ostwald
ripening of second-phase particles coherently embedded in a
matrix, there is strong evidence that there is a long-time scaling
regime in which the shape of the grain or particle size distri-
bution does not change with time, but the average grain size
scales with time as tn, where n is called the growth exponent.
It has been generally agreed that for grain growth in a pure
single phase, the growth exponent is 2,16,17 and for Ostwald
ripening of second-phase particles in a binary system, it is 3.18
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In this paper, we will address the fundamental question wheth-
er the microstructures scale for simultaneous grain growth and
Ostwald ripening in a two-phase solid. Based on the computer
simulation results, we will determine the grain growth expo-
nent. In addition, the factors which affect the grain growth and
grain size distributions will be discussed. Some microstructural
features predicted by the computer simulation have been pre-
viously discussed.14,15 The details of the topological evolution
and distributions in this system and other model systems is
discussed in another publication.19

II. Diffuse-Interface Field Model

The details about this model have been reported in previous
papers14,15 and hence only a brief account of the model will be
given. To describe an arbitrary two-phase polycrystalline mi-
crostructure, we define a set of continuous field variables14,15
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orientation field variables with each orientation field represent-
ing grains of a given crystallographic orientation of a given
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ously in space and assume continuous values ranging from
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where �C, ���
i , and ���

j are gradients of concentration and
orientation fields, �C, ��

i , and ��
i are the corresponding gradient

energy coefficients, and f0 is the local free energy density
which is, in this work, assumed to be14
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in which
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where C� and C� are the equilibrium compositions of � and �
phases, and Cm � (C� + C�)/2, A, B, D�, D�, ��, ��, ��, ��, and

kk

ij are phenomenological parameters. The justification of using
such a free energy model in the study of coarsening was pre-
viously discussed.14

The temporal evolution of the field variables is described by
the time-dependent Ginzburg-Landau (TDGL)20 and Cahn–
Hilliard21 equations,

d�i
��r,t�

dt
= −Li

�
�F

��i
��r,t�

�i = 1, 2, ..., p� (4a)

d�i
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�i = 1, 2, ..., q� (4b)

dC�r,t�

dt
= ��LC�� �F

�C�r,t��� (4c)

where L�
i , L�

i and LC are kinetic coefficients related to grain
boundary mobilities and atomic diffusion coefficients, t is time,
and F is the total free energy given in Eq. (2).

III. Numerical Methodology

To numerically solve the set of kinetic equations (4), one
needs to discretize them with respect to space. We discretize
the Laplacian using the following approximation:

�2� =
1

��x�2 �1

2 �
j

��j − �i� +
1

4 �
j�

��j� − �i�� (5)

where � is any function, �x is the grid size, j represents the set
of first nearest neighbors of i, and j� is the set of second nearest
neighbors of i. For discretization with respect to time, we em-
ployed the following simple Euler technique,

��t+�t� = ��t� +
d�

dt
× �t (6)

where �t is the time step for integration which is chosen small
enough to avoid numerical instability. All of the results dis-
cussed below were obtained by using �x � 2.0, �t � 0.1 to
ensure the numerical stability. The kinetic equations are dis-
cretized using 512 × 512 points with periodic boundary con-
ditions applied along both directions. The total number of ori-
entation field variables for two phases are 30.

In the Al2O3–ZrO2 systems, it was reported22,23 that the
average ratio of the grain boundary energy to the interphase
energy for the Al2O3 phase (denoted as � phase) is R� �
��

alu/���
int � 1.4, and that for the ZrO2 phase (denoted as �

phase) is R� � ��
zir/�

��
int � 0.97. We assume that both grain

boundary and interphase boundary energies are isotropic. It is
found that parameters A � 2.0, B � 9.88, C� � 0.01, C� �
0.99, D� � D� � 1.52, �� � �� � 1.23, �� � �� � 1.0,

 � 7.0, �C � 1.5, ��

i � 2.5, and ��
i � 2.0, give the correct

grain boundary to interphase boundary ratios for the Al2O3–
ZrO2 system.14

All of the kinetic data and size distributions were obtained
using 512 × 512 grid points and averaged from several inde-
pendent runs. There are more than 2700 grains at the beginning
of collecting data for calculating the statistics and there are
about 200 at the end. To generate the initial two-phase micro-
structure, a single-phase grain growth simulation was first per-
formed to obtain a fine grain structure. Grains are then ran-
domly assigned with the equilibrium composition C� or C� and
an orientation field, keeping the overall average composition
corresponding to the desired equilibrium volume fractions.

IV. Simulation Results and Discussion

(1) Effect of Volume Fraction on Coarsening Rate
The details of two-phase microstructures and their evolution

in ZrO2–Al2O3 two-phase solids have been previously dis-

Fig. 1. A schematic two-phase microstructure.
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cussed.14 Six representative simulated two-phase microstruc-
tures at six different volume fractions of the ZrO2 phase are
shown in Fig. 2. The temporal microstructural evolution in a
system with 50% ZrO2 phase is shown in Fig. 3. In these
microstructures, ZrO2 grains are bright and Al2O3 grains are
gray. The time dependencies of the average grain size in the
50% ZrO2 system with the initial microstructure generated
from a fine grain structure are shown in Fig. 4 for Al2O3 (�
phase). In this plot, the solid line is a nonlinear fit to the power
growth law Rm

t − Rm
0 � kt. According to Fig. 4, the coarsening

kinetics for the � phase follows the power law with m � 3 and
k � 4.31. Since R�  R�, it is expected that the coarsening
kinetics of � and � phase grains will be different. Indeed, it is
found that, in the � phase, the average grain size increases with
time with a power law with m � 3 and k � 3.8, which indi-

cates that the � phase (Al2O3) has a larger coarsening kinetic
coefficient k because of its higher grain boundary energy. In a
binary system, the kinetic coefficient k is proportional to the
diffusivity and interfacial energies.18 Therefore, the higher the
interfacial energies, the larger the kinetic coefficient. Our simu-
lation results agree with those theoretical predictions.

To illustrate the effect of the volume fraction on the coars-
ening kinetics of two-phase solids, the coarsening kinetics in
systems with 10% and 50% ZrO2 (�) phase are compared in
Fig. 5, in which R3 is plotted against t. The kinetic coefficient
k for the 90% Al2O3 (�) phase is 31.85, and that for the 10%
� phase is 0.785. Hence, the volume fraction has a dramatic
effect on the coarsening kinetics for both phases. The kinetic
coefficient k for the 90% � phase is about an order of magni-
tude larger than that for the 50% � phase (k � 4.31) while the

Fig. 2. Typical microstructures in Al2O3–ZrO2 systems with different volume fractions of ZrO2 phase: (a) 30%, (b) 50%, (c) 60%, (d) 70%, (e)
80%, (f) 90%. System size is 512 × 512.
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k value for the 10% � phase is 5 times smaller than the 50% �
phase. As a result, the difference in k values for � and � phases
is about 50 times. This dramatic change comes from the dif-
ferent diffusion distances involved for coarsening as the vol-
ume fraction changes. For systems with low volume fraction �,
the coarsening kinetics of � phase grains is solely controlled by
Ostwald ripening and the typical diffusion distance is about the
typical separation distance between � phase grains; the coars-
ening kinetics of the � phase depends on the fraction of its
grain boundaries that are pinned by � grains, and therefore the
volume fraction of �.

The dependence of the growth exponent m on the volume
fraction of ZrO2 (� phase), extracted from the nonlinear fits to
the kinetic data, is summarized in Fig. 6. It is obvious that, for
both phases, the growth exponent m � 3 is independent of the
volume fraction of the second phase, indicating that the coars-
ening is always controlled by the long-range diffusion process
in two-phase solids. The predicted kinetic coefficients at dif-
ferent volume fractions are compared with experimental results
in Al2O3–cubic ZrO2 (YZTA) in Fig. 7, and in the Ce-doped
Al2O3–ZrO2 (CeZTA) system in Fig. 8. In Fig. 7, all kinetic
coefficients were normalized with the experimental values for
YZTA at 50% ZrO2 by Harmer et al.,24 while in Fig. 8 they
were normalized with the experimental values for CeZTA at
40% ZrO2 from Alexander et al.25 It can be seen that the trend
of the kinetic coefficient variation with volume fraction pre-
dicted by simulations agrees very well with experimental re-
sults in both systems, even though the differences of diffusivi-
ties and mobilities between two phases are not distinguished in

Fig. 4. Time dependence of the average grain size of Al2O3 phase.
The volume fraction of ZrO2 phase is 50%. R� � 1.4, R� � 0.97. The
dots are the measured data from simulated microstructures. The solid
line is a nonlinear fit to the power-growth law Rm

t − Rm
0 � kt with three

variables m, k, and R0.

Fig. 3. Microstructural evolution in the Al2O3–50% ZrO2 system. R� � 1.4, R� � 0.97. System size is 512 × 512.
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the current simulations. Both simulations and experimental re-
sults showed that kinetic coefficients have a minimum value at
50% volume fraction, indicating the slowest grain growth ki-
netics at this volume fraction for Al2O3–ZrO2 composites. This
can be easily understood from the 50% microstructures, in
which most grain boundaries of two phases are pinned by the
other phase grains and the movement of grain boundaries is
significantly retarded. It should be pointed out that although we
can hardly make any quantitative comparisons for the kinetic
coefficients between our 2-D simulations and experimental
measurements on 3-D systems, it is interesting that very similar
trends for the variation of the kinetic coefficient with the vol-
ume fraction were obtained in simulations and experiments.

(2) Effect of Volume Fraction on Grain Size Distributions
The time dependence of grain size distributions in the 50%

ZrO2 system is shown in Fig. 9 for ZrO2 (� phase). It can be

seen that these distributions are self-similar and time-invariant,
indicating the system has reached the steady state. Figure 10
shows the size distributions of the ZrO2 phase at different time
steps in the 10% ZrO2 system. Scaling of size distributions is
also observed. However, the shapes of these distributions are
more peaked than those in the 50% system. The effects of
volume fractions on size distributions of the second phase
(ZrO2) and matrix phase (Al2O3 in this case) are shown in Figs.
11 and 12, respectively. It can be seen that the size distributions
of the ZrO2 phase become broader as the volume fraction of

Fig. 5. Effect of volume fractions on the coarsening kinetics in the
Al2O3–ZrO2 system. The volume fractions of ZrO2 phase are 10% and
50%. R� � 1.4, R� � 0.97.

Fig. 6. Effect of volume fractions on growth exponent m in Al2O3–
ZrO2 systems R� � 1.4, R� � 0.97.

Fig. 7. Effect of volume fractions on kinetic coefficient k in Al2O3–
ZrO2 systems. Comparison of simulation results with experimental
results for YZTA composite. (Adapted from M. P. Harmer et al.24)
R� � 1.4, R� � 0.97.

Fig. 8. Effect of volume fractions on kinetic coefficient k in Al2O3–
ZrO2 systems. Comparison of simulation results with experimental
results for CeZTA composite. (Adapted from K. B. Alexander.25)
R� � 1.4, R� � 0.97.
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ZrO2 phase increases from 10% to 50% while the size distri-
butions of the matrix phase (Al2O3) are not significantly af-
fected (Fig. 12). In the low volume fraction regime, second-
phase particles are distributed at grain boundaries and corners
of the matrix phase, which results in a narrow and peaked
distribution. As the volume fraction of the second phase in-
creases, grains of two phases become interconnected, which
leads to a wider distribution. These characteristics can be

clearly seen in simulated microstructures (Fig. 2). Therefore,
these results suggest that there may not be a unique size dis-
tribution in steady state for two-phase systems; the size distri-
butions are dependent on the volume fractions of the two
phases.

(3) Effect of the Initial Microstructures
All the above results for Al2O3–ZrO2 systems were obtained

from initial microstructures generated from a fine single-phase
grain structure. To study the effect of initial microstructures on
the kinetics and size distributions of a two-phase system, we
use a different method to generate the initial microstructures,
i.e., direct crystallization of both solid phases from a liquid.
Figure 13 is a comparison of the coarsening kinetics in the 50%

Fig 10. Time dependence of grain size distributions of ZrO2 phases.
The volume fractions of ZrO2 phase are 10%. R� � 1.4, R� � 0.97.
Time step � 10 000, 20 000, 30 000, 40 000, 50 000. There are about
100 ZrO2 phase grains at the 10 000 time step and 70 ZrO2 phase
grains at the 50 000 time step.

Fig 12. Effect of volume fractions on the grain size distributions of
Al2O3 phases R� � 1.4, R� � 0.97.

Fig 9. Time dependence of grain size distributions of ZrO2 phases.
The volume fractions of ZrO2 phase are 50%. R� � 1.4, R� � 0.97.
Time step � 10 000, 20 000, 30 000, 40 000, 50 000. There are about
300 ZrO2 phase grains at the 10 000 time step and 150 ZrO2 phase
grains at the 50 000 time step.

Fig 11. Effect of volume fractions on the grain size distributions of
ZrO2 phases R� � 1.4, R� � 0.97.
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ZrO2 system for the � and � phases with the initial microstruc-
ture generated from a liquid. To clarify the difference, R3 is
plotted against time steps. Under this initial condition, the av-
erage grain size increases with time following the power law
with m � 3 and the coefficient k is 2.51 for the � phase and is
1.99 for the � phase, respectively. Comparing with the results
obtained from the initial microstructures generated from a fine
grain structure (Figs. 3 and 4), it is clear that the grain growth
exponent m is independent of the initial microstructures,
whereas the kinetic coefficients k are about 2 times smaller
than those obtained with the initial microstructure generated
from a fine grain structure, in which m � 3, k � 4.31 for the
� phase and k � 3.8 for the � phase. The reason for the
retardation of grain growth kinetics is that, when the initial
two-phase structure is generated from the solidification of an
initial unstable liquid, grains of the � and � phase are alter-
nately distributed, i.e., each � grain having � grains as nearest
neighbors and vice versa. When the initial microstructure is
generated from a fine grain structure, there exist clusters of the
same phase grains. Within the clusters of the same phase
grains, grain growth occurs faster, which results in larger ki-
netic coefficients. It should be pointed out that the differences
in the kinetic coefficients k resulting from different initial mi-
crostructures are small, comparing with the influence of vol-
ume fractions on the kinetics.

The effect of the initial microstructures on the grain size
distributions is compared in Fig. 14. In this plot, the open dots
represent a typical size distribution with the initial microstruc-
ture generated from a liquid (the solid line is just a guide to
human eyes), the histogram is the size distribution with the
initial structure created from a fine grain structure with the
solid dots representing the size distribution of this initial fine
grain structure. It can be seen that size distributions from dif-
ferent initial microstructures are quite different. The size dis-
tribution of the initial structure generated from a liquid is much
sharper than that obtained from the initial microstructure gen-
erated from a fine grain structure. On the other hand, the size
distribution with the initial microstructure generated from a
fine grain structure is almost identical to the original distribu-
tion of that fine grain structure. Therefore, in two-phase sys-
tems, size distributions are also dependent on the initial micro-
structures and there are no unique size distributions for a given
volume fraction and given ratios of grain boundary energies to
the interphase boundary energy.

(4) Relationship between Matrix Grain Size and
Second-Phase Particle Size

From a microstructural control point of view, there is an
important relationship between the matrix grain size and the
size and volume fraction of the second-phase particles. From
the original work of Smith and Zener,26 it is predicted that D/r
should be proportional to 1/f, where D is the average grain size
of the matrix phase when the grain growth stops, r is the radius
of second-phase particles, and f is the volume fraction of the
second phase. Recently, Hellman and Hillert27 showed that the
D/r is proportional to 1/f1/3 for high volume fractions and a
nonrandom distribution of the second-phase particles. On the
other hand, using Monte Carlo simulations, Srolovitz et al.10

showed that the D/r is proportional to 1/f1/2 in 2-D, and the
same relationship was also obtained by Doherty et al.28 for 3-D
systems by assuming all particles distributed at grain bound-
aries.

We examine the relationship between matrix grain size and
second-phase particle size by plotting the matrix grain size
D vs. r/f1/2 in Al2O3-rich two-phase systems from our 2-D
computer simulations (Fig. 15). It is found that the relation D
� Ar/f1/2 is followed reasonably well for volume fractions less
than 30%, with the constant A values being 1.32 for Al2O3-rich
systems and 1.27 for ZrO2-rich systems. These A values are
much smaller than 3.4, which was obtained by Srolovitz et al.10

for small and immobile particles. The smaller A values mean a
smaller matrix grain size at a certain size of second-phase
particles. Therefore, the pinning effect of second-phase grains
is stronger than it is in systems with small and noncoarsening
particles. One reason responsible for the large pinning effect in
Al2O3–ZrO2 two-phase solid is that the sizes of second-phase
particles are large and it is almost impossible for grain bound-
aries to pass through these particles. When the volume fraction
of the second phase is larger than 40%, the relation D � Ar/f1/2

is not followed anymore, which may result from the fact that at
this volume fraction the second-phase grains become intercon-
nected in a two-phase microstructure. However, experimen-
tally, it was shown that the relation D � Ar/f1/3 is followed for

Fig. 13. Comparison of coarsening kinetics of the Al2O3 (�) and
ZrO2 (�) phases in the system with 50% ZrO2. The initial structure is
generated from a liquid.

Fig. 14. Effect of the initial microstructure on the steady-state grain
size distributions of Al2O3 phase in the system with 50% ZrO2. The
open dots represent the size distribution of Al2O3 with the initial
structure generated from a liquid (the solid line is a guide to the eyes);
the histogram is the size distribution of Al2O3 with the initial structure
created from a fine grain structure; the solid dots represent the size
distribution of the initial fine grain structure.
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volume fractions of the second phase less than 10% in 3-D
Al2O3–ZrO2 two-phase solids.22 Therefore, it seems that the
relationships between matrix grain size and second-phase par-
ticle size in 2-D and in 3-D systems can be very different.

V. Conclusions

The kinetics of the coupled grain growth in the Al2O3–ZrO2
two-phase composites have been studied through computer
simulations. The simulation results show that the kinetics and
microstructural evolutions are in excellent qualitative agree-
ment with experimental observations for Al2O3–ZrO2 two-
phase composites. It is found that the coupled grain growth and
Ostwald ripening in volume-conserved two-phase systems is
controlled by long-range diffusion and follows the power-
growth law Rm

t − Rm
0 � kt with m � 3, which is independent

of initial microstructures and the volume fraction of the second
phase. However, the kinetic coefficient k depends on the grain
boundary energies, the interphase boundary energy, initial mi-
crostructures, and volume fractions; among these factors, vol-
ume fraction of two phases has the most significant effect. The
dependence of kinetic coefficient on volume fraction, predicted
by the computer simulations, agrees very well with experimen-
tal measurements, at least qualitatively. Scaling of grain size
distributions is observed in all circumstances, i.e., they are
time-invariant in the steady state. However, the characteristics
of size distributions vary with the initial microstructures and
volume fractions. It is found that the relationship between ma-
trix grain size and second-phase grain size follows D � Ar/f1/2

in the 2-D simulations when the volume fraction of the second
phase is less than 30%, which is different from the experimen-
tally determined relationship, D � Ar/f1/3 in 3-D.
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