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Abstract-The topological evolution during coupled grain growth and Ostwald ripening in 
volume-conserved two-phase polycrystalline systems was studied in two dimensions (2-D), employing 
computer simulations based on a continuum diffuse-interface field model. The topological distributions 
were found to scale with time, but dependent on the ratios of grain boundary energies to the interphase 
boundary energy, the volume fractions and the initial microstructures. The correlations between 
topological class and grain size, as well as the topological correlations of grains with their neighbor grains 
were observed. The differences in topological features between volume-conserved two-phase systems and 
single-phase systems are discussed. 0 1997 Acta Metallurgica Inc. 

1. INTRODUCTION 

The fundamental features of topological evolution 
in single-phase systems have been extensively 
investigated because of their importance in under- 
standing the fundamental mechanisms of grain 
growth [l-9]. However, the topological evolution 
during coupled grain growth and Ostwald ripening 
in two-phase polycrystalline materials receives 
much less attention, partially due to the complexity 
of topological evolution in two-phase polycrys- 
talline solids. For example, while only trijunctions 
are stable in a 2-D single-phase solid, both 
quadrijunctions and trijunctions can be stable in a 
2-D two-phase solid [l&12]. The Mullins-Von 
Neumann law, which relates the change rate of the 
area to the number of sides of a grain, was found 
to be valid on the average in a single-phase system 
[13, 141, whereas there is no reason to believe this 
is still true in two-phase systems. Even for the 
simplest case, a two-phase system with exactly the 
uniform concentration (no diffusion), with isotropic 
grain boundary and interphase boundary energies, 
and with only trijunctions, the change of the area 
for an individual grain is determined by the 
number of corners, the number of unlike-phase 
neighbor grains, and the number of switches from 
one phase to the other around that grain [lo]. 
Moreover, if there are limited mutual solubilities 
between the two phases, grain growth through 
grain boundary migration and Ostwald ripening 
via long-range diffusion are expected to take place 
simultaneously. 

tTo whom all correspondence should be addressed. 

The microstructure stability in volume noncon- 
served two-phase systems has been studied by 
Holm et al. [ll]. While some common features 
may be found between conserved and noncon- 
served systems, significant differences exist [ 121. 
Recently, the authors have developed a diffuse-in- 
terface field model for simulating the microstruc- 
ture evolution in volume-conserved two-phase 
systems [15]. A significant feature of this model is 
that the microstructural complexity and long-range 
diffusion in two-phase systems can be taken into 
account automatically and simultaneously. The 
microstructural stability and the kinetics of grain 
growth in volume-conserved two-phase systems 
have been studied by employing this model [12]. It 
has been shown that the kinetics of grain growth 
in a volume-conserved two-phase system is con- 
trolled by long-range diffusion, and the average 
size (R,) as a function of time (t) follows the 
power-growth law, Ry - R,” = kt with m = 3, 
which is independent of the energetic ratios, initial 
microstructures and volume fractions of two-phases 
w1. 

The main objective of the paper is to study the 
topological evolution during the diffusion-con- 
trolled grain growth in volume-conserved two- 
phase systems. In particular, we will focus on the 
topological transformations, the grain side distri- 
butions, the correlations between the average grain 
size and the average grain edges, and the corre- 
lations of grain edges with the average edges of 
their neighbor grains, based on the temporal 
evolution of microstructures generated from the 
computer simulations. 
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2. THE DIFFUSE-INTERFACE FIELD MODEL 

The details about this model have been discussed 
previously [12, 151. To describe an arbitrary two- 
phase polycrystalline microstructure using the 
diffuse-interface theory, a set of continuous field 
variables is defined in this model, 

s;(r)&(r), , $(rM(r),?b(r), , r$r),C(r), (1) 

where r~: (i = 1,. ,p) and r,! (j = 1, . , q) are 
called orientation field variables with each represent- 
ing grains of a given crystallographic orientation of 
a given phase (denoted as a or p), Those variables 
change continuously in space and assume continuous 
values ranging from - 1 .O to 1.0. C(v) is the 
composition field which takes the value of C, within 
an CI grain and C,, within a j5 grain. 

The total free energy of a two-phase polycrystal 
system, F, is written as 

where VC, V@ and V# are gradients of concentration 
and orientation fields, IQ, KY and K! are the 
corresponding gradient energy coefficients, and 5 is 
the local free energy density which, in this work, is 
assumed to be, 

in which 

f(C) = - (A/2)(C - C,)’ + (B/4)(C - C,)” 

+ (&/4)(C - CK)” + (Ds/4)(C - C,)” 

f(C,$) = - (Y./2)(C - C,)W2 + (U4)WY 

f(C,#) = - (Yi!/2)(C - C0)‘W)’ + @0/4)(aY 

where C. and Co are the equilibrium compositions of 
tl and /I’ phases, C,,, = (CU + C,)/Z, A, B, D,, Dg, yr, 
ya, 6,) c$, and E: are phenomenological parameters. 
The parameters are chosen in such a way that fo 
has p degenerate minima with equal depth located at 

q; ,..., $)=(l,O ,...) O), 
jZYb,...,l) 

(O,l)...) 0) ,..., 
at the equilibrium concentration 

CZ, and has q degenerate minima located 
at ($?,$, q,“) = (l,O, . , 0), (0, 1, , 0), , 

(0, 0, . 1) at C‘,<. This requirement ensures that 
each point in space can only belong to a grain with 

a given orientation of a given phase. The justification 
of using such a free energy model in the study of’ 
coarsening was discussed previously [ 151. 

The energy of a planar grain boundary, r~,$, 
between an a-grain of orientation i and another 
cc-grain of orientationj may be calculated as follows, 

(5) 

wherefo($,&,C,) represents the free energy density 
minimized with respect to rip and $ at the equilibrium 
composition of cx phase C,. The grain boundary 
energy for p phase and the interphase energy between 
c( and /I grains can be calculated similarly [12, 151. 

The evolution of the field variables are described by 
the time-dependent Ginzburg-Landau (TDGL) and 
Cahn-Hilliard [ 161 equations, 

drlP(r,t) _ _ L 
6F - 

dt ‘hf(rJ)’ 
i= 1,2 ,..., p, (6a) 

drP(r,t) _ _ 
dt 

LB 6F - 
‘6$(r,t)’ 

i=l,2 )..., q, (6b) 

Kp=VLV 
{ c [s&l} 

where L:, Lp and Lc are kinetic coefficients related to 
grain boundary mobilities and atomic diffusion 
coefficients. 

In this paper, the kinetic equations for a 
concentration field and two sets of orientation 
variables were numerically solved. All the results 
discussed below were obtained by using the 
finite-difference method and by assuming Ax = 2.0, 
At = 0.1. The kinetic equations are discretized using 
256 x 256 or 512 x 512 points with periodic bound- 
ary conditions applied along both directions. The 
total number of orientation field variables for two 
phases is 30. 

For starting a computer simulation, one may either 
input a pre-defined initial two-phase microstructure 
or a liquid or disordered phase at a very high 
temperature. Because we can always normalize the 
length scale and time scale of kinetic equations with 
diffusion coefficients and boundary mobilities, we 
simply choose L,” = L[ = 1.0 (isotropic grain bound- 
ary mobility) and L, = 0.5, implying that the two 
phases have the same diffusion coefficients and 
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Fig. 1, The microstructural evolution in a system with R, = Rii = 1 .O. The volume fraction of the c( phase 
is 50%. System size is 256 x 256. 

boundary mobilities. We also assumed isotropic grain 
boundary energies for both phases and an isotropic 
interphase boundary energy between TV and p phase, 
i.e., IC: = rc; = K' and K! = K/ = K~. Furthermore, we 
assumed that the solubilities in the a and p phase are: 
C, = 0.05 and cg = 0.95. The gradient energy 
coefficients and phenomenological parameters in the 
free energy function were fitted to grain boundary 
energies, interfacial energy and their ratios to give the 
desired energetic conditions in the simulation. 

To calculate individual grain size, a cut-off value of 
orientation fields was chosen, which clearly defines 
the grain boundaries and neighbors of grains. The 
area of each grain at a given time step is directly 
calculated from the microstructure by counting the 
number of grid points within a grain and grain size 
R is obtained from the area A by assuming a circular 
shape for all grains, therefore, A = RR’. The average 
grain radius at a given time step is then obtained by 
averaging over all the grains in a system. 

3. TOPOLOGICAL EVOLUTION IN R, = R,, 
SYSTEMS 

The simplest case is R, = Rp = 1, in which the 
interphase boundary energy between a and p is equal 
to the grain boundary energies in [x and /3. In this 
case, clt(tl, a~$, c@fi and ppp trijunctions are 
thermodynamically stable and equally favored. An 
example of microstructural evolution is shown in Fig. 
1. The topological transformations during grain 
growth are similar to those in single-phase materials. 
The average sides per grain is 5.999, which is 
essentially the same as that in single phase systems. 
The topological distributions at different time steps 
are shown in Fig. 2 for both GI and b grains. From Fig. 
2. it seems that a scaling state has been reached for 
topological distributions. However, the peaks of the 
distributions are located at 6-sided grains, comparing 
to single-phase systems in which the peaks are at 
5-sided [12, 18-201. The only difference between a 
two-phase system with R, = RB = 1 and a single- 
phase system with isotropic grain boundary energies 
is the fact that the kinetics of grain growth and 
topological evolution in single-phase systems are 
driven by the boundary mean-curvatures, whereas in 

Thermodynamically, the microstructural features 
in a two-phase system can be characterized using the 
energetic ratios of grain boundary energies to the 
interphase boundary energy, R, and Rg: R, = JJ~/~.~, 
RP = yB/yaa, where y. is the grain boundary energy in 
a phase, ya is the grain boundary energy in p and yXp 
is the interphase boundary energy between CI and p. 
These energetic ratios can be related to dihedral 
angles as: 2cos[&/2] = R, and 2cos[4,/2] = Rb, 
where & is the dihedral angle formed by two c[ grains 
and a p grain, and & is the angle formed by two /J’ 
grains and an a grain. It was shown that [l&12], for 
0 I R, I J?, acta trijunctions are stable, and when 
R, > d/% ma trijunctions are unstable with respect to 
the nucleation of fi grains. Similarly, /7/3p trijunctions 
are stable for 0 5 RB I J? and are unstable with 
respect to the nucleation of a grains for RB > 6 raj? 
and a/ID trijunctions are stable under the conditions 
of 0 I R, > 2 and 0 5 RB > 2, respectively. The 
quadrijunctions @c$ will become stable for 
R,2 + R; > 4 [lo-121. 

I I I I I 1 I 
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0 2 4 6 8 10 12 14 16 

grain edges, n 

Fig. 2. The time dependence of topological distributions in 
the system with R, = RB = 1.0 for both a and p phases. The 
volume fraction of G( phase is 50%. Time step = 10000, 

20000, 30000, 40000, 50000. 
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Fig. 3. The neighbor side correlation function m(n) at 
different time steps. The solid line is a fit to the 
Aboav-Weaire law with a = 1.08 and w = 1.46. 
R, = R,z = 1.0. The volume fraction of the x phase is 50%. 

volume-conserved two-phase systems the interface 
motion is controlled by the long-range diffusion, It is 
interesting that the kinetic mechanisms alone can 
affect the shape of topological distributions. It was 
also shown that the peak of topological distributions 
may vary as neighbors of two phase grains change in 
non-conserved two-phase systems [ 111. 

In single-phase systems, a correlation function 
between the number of sides n of a grain and the 
average sides of its neighbors, m(n), is given by 
Aboav-Weaire law [2 1, 221 

6a + p m(n)=6-a+?, (7) 

where p2 is the second moment of the side distribution 
and a is a constant. To examine if a similar 
topological correlation exists in two-phase systems, 
the m(n) values calculated at different time steps for 
the system R, = Rp = 1.0 are shown in Fig. 3. It is 
clear that few-sided grains prefer to be surrounded by 
many-sided grains, and vice versa, i.e., correlation 
between grains exists in two-phase systems. It is 
found that the Aboav-Weaire law, which was 
originally proposed for single-phase grain growth, 
can describe the data very well with a = 1.08 and 
pL2 = 1.46. The pz value is consistent with that 
calculated directly from topological distributions. 

Feltham [23] predicted a linear relationship 
between the average grain radius of n-sided grains, 
(R,), with topological class, n, for grain growth in 
single-phase systems, i.e., 

CR”) = P’(n - no), (8) 

where /?’ and n, are constants. Similar correlation 
between grain size and topological class n seems to 
exist in this two-phase system. Figure 4 shows the 
relationship between topological class and average 

grain size in each topological class for the c( phase. In 
this plot, a normalized grain size (R,)/(R) is used to 
compare the results at different time steps, where (R) 
is the average grain size for all of the grains of that 
phase at a certain time step. It is shown that, on the 
average, the number of sides of a grain increases 
linearly with its size. This linear relationship is 
time-invariant and identical in both phases with 
p’ = 0.186 and n, = 0.62 in this system. 

We also studied a system with R, = Ric = 2.1 in 
which the microstructures are comprised entirely of 
quadrijunctions (Fig. 5). The topological events 
observed in this system are very different from those 
found in single-phase grain growth and those in 
two-phase systems with only trijunctions. It is 
observed that grains with two quadrijunctions and 
grains with three quadrijunctions can vanish during 
coarsening. The vanishing of a grain with two 
quadrijunctions, which is surrounded by two grains 
of the other phase separated by two interphase 
boundaries plus two grains of the same phase 
separated by two quadrijunctions, brings four grains 
(two of each phase) together, resulting in the 
disappearance of two quadrijunctions and the 
formation of a new quadrijunction. During this 
process, the two neighbor grains, which were 
separated from the vanishing grain by interphase 
boundaries, lose one side each. The vanishing of three 
quadrijunction grains results in six grains (three of 
each phase) coming together to form a hexajunction, 
which is highly unstable and quickly splits into two 
new quadrijunctions. The result is that each of the 
two adjacent grains of the other phase loses one side 
and one of the same phase grains gains one side with 
the rest of the neighbor grains remaining unchanged. 

Despite the dramatic differences in topological 
transformations between all-quadrijunction and all- 

2.5 i 
CR” >I CR> = O.lSS( n - 0.619 ) 

2 
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1 

0.5 
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Fig. 4. The correlation between the average grain size in a 
given topological class and the topological class n in the LY 
phase at different time steps. R, = Rp = 1.0. The volume 

fraction of the c( phase is 50%. 
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Fig. 5. The microstructural evolution in a system with R, = Rp = 2.1. The volume fraction of z phase is 
50%. System size is 256 x 256. 

trijunction systems, their topological distributions are 
similar. For example, the distributions scale with 
time and peaks occur at 6-sided grains (Fig. 6 
and Fig. 2) in both systems. However, the 
distributions are wider and the average number of 
grain sides is 5.92 in the all-quadrijunction system as 
a result of the existence of a significant number of 
2-sided grains. 

The correlations of grains with neighbor grains and 
the correlations of grain size with topological class, n, 
were also examined (Fig. 7 and Fig. 8). Similar to the 
all-trijunction system and single-phase grain growth, 
the Aboav-Weaire law and Feltham law describe the 
correlations quite well in the all-quadrijunction 
system. One noticeable difference is that the value of 
the second moment p(z of toplogical distributions is 
2.19, which is larger than p2 = 1.46 for the system 
with R, = Ro = 1.0. The higher value of the second 
moment p2 is consistent with the wider topological 
distributions and is a result of relative high 
frequencies of many-sided grains and two-sided 
grains [ 12, 241. 
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1 
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0 2 4 6 8 10 12 14 16 

grain edges, n 
Fig. 6. The time dependence of topological distributions in 
the system with R. = Rp = 2.1 for both a: and 1 phases. The 
volume fraction of the a phase is 50%. Time step = 10000, 

20000. 30000. 40000. 

4. TOPOLOGICAL EVOLUTION IN R, # Rb 
SYSTEMS 

A specific system, Al*O,-Zr02 two-phase com- 
posite, is chosen as an example to study the 
topological evolution for R, # Rg. In this case, grain 
boundaries in the c( phase are no longer equivalent to 
grain boundaries in /?. In A1203-Zr02, it was reported 
[25,26] that the average ratio of grain boundary 
energy to the interphase energy for the Al?O, phase 
(denoted as c( phase) is: & = a&/& = 1.4, and the 
ratio for the ZrOz phase (denoted as /? phase) is: 
Rp = cr&/c~p,8, = 0.97. In this system, R, = 1.4 < & 
RB = 0.97 < 1 and Rz + Ri = 2.9 < 4. Therefore, in 
2-D, all trijunctions are thermodynamically stable 
while no quadrijunctions are stable. 

Since the grain boundary energy of A1203 is much 
higher than that of ZrOz (R, = 1.4, RB = 0.97), 
thermodynamic equilibrium angles at the trijunctions 
formed by two a grains and a fi grain (aafi) are 
different from those formed by one a grain and two 
fl grains (a/?/?). At an a&? trijunction, the equilibrium 
angle (4.) a is given by: 2cos(&/2) = Rg, which gives 
& = 121.98”, whereas the equilibrium angle in fl at 

12 

6 

l.I...I...I...I...,...,...,.I 
2 4 6 8 10 12 14 

grain sides, n 

Fig. 7. The neighbor-side correlation function m(n) at 
different time steps. The solid line is a fit to the 
Aboav-Weaire law with a = 1.0 and ~2 = 2.19. 
R, = Rp = 2.1. The volume fraction of the OL phase is 50%. 
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microstructure features from thermodynamic predic- 
tions. First, the balance of surface tension only 
requires the balance of tangents of those curves 
meeting at a trijunction, hence, the balance can be 
accomplished by either concave curves and/or convex 
curves as long as the tangents of these curves give the 
same angle at the trijunction. Secondly, the 
topological change of this /j grain is due to the 
coarsening of the neighboring cx grains, which results 
in the shape change and the mass redistribution of 
this /I grain to accommodate the spacefilling 
requirement. The mass redistribution requires the 
diffusion of atoms along the interfaces or volume 
diffusion, which is driven by the chemical potential 
difference at boundaries with different curvatures 
within this b grain, i.e., atoms at concave boundaries 
diffuse to convex boundaries because of the shape 
adaptation. Hence, it is the local shape adjustment 
and mass redistribution that lead to the formation of 
mixed concave and convex boundaries. It should be 
noted that the area of this /I grain changes very slowly 
because the process is governed by the long distance 
diffusion or Ostwald ripening while the topological 
transformation and mass redistribution occur quite 
rapidly, and are controlled by local diffusion. 

0 2 4 6 6 10 12 14 

grain sides, n 

Fig. 8. The correlation between grain size and topological 
class n in the c( phase at different time steps. R, = RB = 2.1. 

The volume fraction of the r phase is 50%. 

trijunctions C-X$, da, is 2cos(&/2) = R, and 
C& = 91.19”. Because of this difference, an isolated 
AlsO3 (CC) grain (surrounded by Zr02 grains) will have 
convex boundaries if the number of grain edges are 
equal to or less than 6. On the other hand, an isolated 
ZrOl (fi) grain is concave until the number of grain 
edges is less than 4. These phenomena are very 
different from those in single-phase grain growth, in 
which grains with less than 6 edges are convex. 

From Fig. 9, it can be seen that isolated Zr02 
(bright) grains with 4 and more edges, in most cases, 
have concave boundaries, which is consistent with 
thermodynamic analysis. However, some isolated 
ZrOl grains have mixed concave and convex 
boundaries and the direction of curvatures can 
change during the microstructural evolution, even 
though they have more than 4 edges. This can be 
clearly seen from the evolution of the grain labeled A 
in Fig. 9. This grain initially has six concave edges 
and transforms to a 5-sided and then 4-sided grain 
with mixed concave and convex boundaries. There 
are two reasons responsible for the departure of 

Another important topological feature in this 
system is that there is a tendency to eliminate AllOI 
grain boundaries because of the higher grain 
boundary energy in A1201. One way to eliminate 
Al,Oi grain boundaries is by coarsening or grain 
growth of Al,O, grains. However. if A120, grain 
boundaries are pinned by ZrOl grains, the second 
mechanism, grain boundary switching, will occur. 
This can be seen from evolution of grains in Fig. 10 
labeled as B. In this region, an initial grain boundary 
of Alz03 grains is replaced by a grain boundary of 
ZrOz grains to reduce the free energy of the system 
during microstructural evolution. The driving force 
for this grain boundary switching is the grain 
boundary energy difference between two phases. This 
is very different from the grain boundary switching 
occurring in single-phase grain growth with isotropic 
grain boundary energies, in which the driving force is 
mean curvatures and the grain boundary between two 

t=6ooo t=12ooo t=2oooo t=3oooo 
Fig. 9. The microstructural evolution in the AlD-10% ZrOl system with R, = I .4 and RP = 0.97. System 

size is 256 x 256. 
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t=6000 I%12000 t=21000 t=30000 
Fig 10. The microstructural evolution in the AlD-20% Zr02 system with R, = 1.4 and Ro = 0.97. System 

size is 256 x 256. 

smaller grains will disappear during grain boundary 
switching. As the volume fraction of ZrOz increases, 
the Al*O, grains become increasingly isolated by Zr02 
grains. 

The topological distributions of the CI and p 
phases at different time steps are shown in Fig. 11 
and Fig. 12 for the 50% ZrOz system. Scaling 
behaviors are observed for both phases. However, 
the Al2O3 phase has a peak at the 6-sided grains 
while ZrOl phase has a peak at the 5-sided grains, 
which is quite surprising since the only difference 
between c( and /I is the energetic ratios (R, = 1.4, 
RB = 0.97). The topological distributions for the CI 
and /I phases in the 10% ZrOz system are compared 
in Fig. 13. The distributons are also time-invariant, 
but the shapes of distributions for CI and /3 phase are 
very different. It can be seen that the second phase 
(10% ZrO?) has much narrower distributions and 
the peaks have shifted to the 4-sided grain while the 
distributions for the matrix phase (90% Alz03) are 
much wider with the peaks still at the 6-sided grains 
(Fig. 13). 

0.25 

0.2 
? 
g 
$ 0.15 
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0 2 4 6 8 10 12 14 16 

grain edges, n 

Fig. Il. The time dependence of topological distributions in 
the A1203 phase. The volume fraction of Zr02 phase is 50%. 

R, = 1.4, RB = 0.97. 

The effect of volume fractions on topological 
distributions of the Zr02 phase is summarized in 
Fig. 14. It shows that, as the volume fraction of 
ZrOl increases, topological distributions become 
wider and peak frequencies are lower, accompanied 
by a shift of the peak position from 4 to 5-sided 
grains. A similar behavior is also observed at the 
Zr02-rich systems except that in the 10% A&O3 
system topological distributions have peaks at the 
3-sided grain for the A1203 phase, which shift to the 
6-sided as the volume fraction of AlsO, increases. 
Similar dependence of topological distributions on 
volume fractions were observed experimentally on 
2-D cross-sections of 3-D microstructures in the 
A1203-Zr02 two-phase composites [27]. It should be 
noted that the topology of 2-D system is not 
necessary to be equivalent to that of a 3-D 
cross-section, even though the stability criteria for 
2-D grain junction are the same as those for 3-D 
grain edge and the topology of single-phase 2-D 
systems has a strong similarity to that of cross-sec- 
tions of 3-D systems [28]. 
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Fig. 12. The time dependence of topological distributions in 
the Zr02 phase. The volume fraction of ZrO2 phase is 50%. 

R, = 1.4, RP = 0.97. 
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0 40000-Zir 

0 2 4 6 8 10 12 14 2 4 6 8 10 12 14 16 

grain edges, n grain sides, n 
Fig. 13. Comparison of topological distributions of the 
A1203 and Zr02 phase in the system with 90% AhO? and 

10% Zr02. R, = 1.4, R1, = 0.97. 

Fig. 15. The topological correlations of grains with their 
neighbor grains (function m(n)) in the 50% Zr02 system at 

different time steps. 

The topological correlations of grains with their 
neighbor grains (Aboav-Weaire law) are observed at 
all volume fractions. An example is shown in Fig. 15 
for the 50% ZrOz case. One may notice the large 
value of the second moment l2 (4.28) which comes 
directly from high frequencies of the occurrence of 
2-sided grains and many-sided grains. The average 
grain edges are 5.38 in the 10% ZrOz system and are 
5.97 in the 50% ZrOl system. 

The correlations between grain size and topological 
class n (Feltham law) were examined. Figures 16 and 
17 show the relations between topological class n and 
normalized average grain size (R,,)/(R) in each 
topological class in the 10% and 50% ZrOz systems 
at different time steps. In these two plots, the linear 
relationship (R,) = P’(n - nb) is observed for both 
phases at different volume fractions and is time- 
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Fig. 14. The effect of volume fractions on the topological 
distributions in the ZrOl phase. R, = 1.4, RB = 0.97. 
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invariant in all cases. At a certain volume fraction, 
the slopes of this relation for the two phases are quite 
similar, but the constants n, are different for the two 
phases. We found that both constants /I’ and no 
depend on the volume fractions of the second phase. 

The effects of initial microstructures on the 
topological distributions are compared in Fig. 18 for 
the CI phase and Fig. 19 for the /l phase in the 40% 
Zr02 system. In these plots, the solid lines are the 
topological distributions obtained from initial micro- 
structures generated from direct crystallization of a 
liquid, and the dashed lines represent the distri- 
butions obtained from an initially fine single-phase 
grain structure produced by a normal grain growth 
simulation and then by randomly assigning all the 
grains to either CI or fl according to the desired volume 
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Fig. 16. The correlations between average grain size in a 
topological class and the topological class n for 10% Zr02 

at different time steps. 
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Fig. 17. The correlations between average grain size in a 
topological class and the topological class n for 50% Zr02 

at different time steps. 

fractions. It can be seen that, if the initial 
microstructures are generated from a liquid, topolog- 
ical distributions are much sharper and narrower 
than those obtained from the initial structures 
generated from a fine grain structure for both phases. 
However, the peak positions of topological distri- 
butions are independent of the initial microstructures, 
which are located at the 6-sided grain for the A&O3 
phase and at the 5-sided grain for the ZrOz phase in 
all cases. Therefore, initial microstructures will affect 
the shapes of topological distributions, but not the 
peak positions of topological distributions. 

5. CONCLUSIONS 

The topological evolution in volume-conserved 
two-phase systems is studied by computer simu- 
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Fig. 18. The effects of initial microstructures on the 
topological distributions of the Al203 phase in the system 

with the 40% Zr02. 
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Fig. 19. The effects of initial microstructures on the 
topological distributions of the ZrOz phase in the system 

with the 40% ZrO*. 

lations employing a diffuse-interface field model. The 
topological features were found to depend on the 
energetic ratios, volume fractions and initial micro- 
structures, even though they scale with time in all 
cases. Unique topological transformations in two- 
phase systems are identified as compared to those in 
single-phase systems. The correlations between 
topological class and grain size as well as the 
topological correlations of grains with their neighbor 
grains were observed in all cases. The topological 
features observed in experiments, such as the 
tendency to eliminate grain boundaries of AlZOj 
phase during microstructural evolution and the shift 
of topological distribution peaks from 4-sided grain 
uto 5-sided grain for ZrOl phase with increasing 
volume fraction of the ZrOz phase, were predicted by 
the computer simulations. 
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