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Abstract-Microstructural evolution and the kinetics of grain growth in volume-conserved two-phase 
solids were investigated using two-dimensional (2-D) computer simulations based on a diffuse-interface 
field model. In this model, a two-phase microstructure is described by non-conserved field variables which 
represent crystallographic orientations of grains in each phase and by a conserved composition field 
variable which distinguishes the compositional difference between the two phases. The temporal and 
spatial evolution of these field variables were obtained through a numerical solution to the time-dependent 
Ginzburg-Landau (TDGL) equations. The effect of the ratios of grain boundary energies to interfacial 
energy on the microstructure features was systematically studied. It was found that grain growth in a 
volume-conserved two-phase solid is controlled by long-range diffusion and follows the power growth law, 
R”’ - R: = kt with m = 3 in the scaling regime for all cases studied, including the microstructures 
containing only quadrijunctions. The effects of volume fractions and initial microstructures are discussed. 
0 1997 Acta Metahugica Inc 

1. INTRODUCTION 

In two-phase (c( + fi) polycrystalline solids, there are 
three kinds of interface: grain boundaries in CI (cc/cc); 
grain boundaries in fi (/3/p); and interphase 
boundaries between x and fi (E//I) (Fig. 1). If there are 
limited mutual solubilities between the two phases, 
grain growth through grain boundary migration and 
Ostwald ripening via long-range diffusion are 
expected to take place simultaneously during 
processing and service of these materials at high 
temperatures. Important practical examples include 
the Zr02-AhOX two-phase particulate composite in 
ceramics [l-3] and the two-phase (c( + /l) titanium 
alloys in metallic systems [4, 51. Even with the 
assumption of isotropic grain boundary energies and 
isotropic interphase boundary energy, theoretical 
treatment of microstructural coarsening in such 
systems is quite complicated because of the 
topological complexity and the fact that various 
diffusion paths are possible (Fig. 1). Most of the 
existing theoretical studies have been concentrated on 
grain growth in a single phase [69] or Ostwald 
ripening in a single crystal [ 10-133, or systems with 
small and immobile second-phase particles which 
cannot coarsen [14-l 61. 

Recently, Cahn [ 171 performed a thermodynamic 
analysis for the stability of microstructures in a 2-D 
two-phase solid in which the volume fractions of the 
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two phases are not conserved, i.e. the two phases have 
the same composition, and hence long-range diffu- 
sion and Ostwald ripening are not involved. In this 
theory, the microstructural stability and features were 
analyzed based on the energetic ratios of grain 
boundary energies to the interphase boundary 
energy, R, and Rg: R, = y.hp, RP = Y~/Y~P, where yx 
is the grain boundary energy in r, yp is the grain 
boundary energy in /3 and yEi is the interphase 
boundary energy between tl and p. These energetic 
ratios can be related to the dihedral angles as: 
2 cos[&/2] = R, and 2 cos[q5,/2] = RP, where 4p is 
the dihedral angle formed by two c( grains and a /5’ 
grain, and & is the angle formed by two B grains and 
an t( grain. The relationship between microstructural 
stability and the energetic ratios is shown in Fig. 2. 
For 0 < R, < $, aaa trijunctions are stable, and 
when R, > ,,h, aaa trijunctions are unstable with 
respect to the nucleation of /l grains. Similarly, pflfl 
trijunctions are stable for 0 < RB < & and are 
unstable with respect to the nucleation of c( grains for 
RP > &, crap and apfi trijunctions are stable under 
the conditions of 0 < R, < 2 and 0 < RB < 2, 
respectively. The quadrijunctions a/lab will become 
stable for Rz + Ri > 4. 

Following Cahn’s work, Holm et al. performed 
Monte Carlo simulations on the same system, i.e. a 
two-phase solid in which the volume fractions are not 
conserved [ 181. They showed that microstructural 
features are indeed dependent on the energetic ratios 
(R, and RF) and quadrijunctions can be stable within 
a certain range of R, and R, as predicted by Cahn’s 
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thermodynamic analysis. More surprisingly, based on 
the Monte Carlo simulations, they predicted that the 
grain growth in a two-phase system with only 
quadrijunctions may be frozen [18]. However, a 
recent study showed that this might not be true [19]. 

While some common features may be found 
between conserved and nonconserved systems, 
significant differences exist. For example, if the grain 
boundary energy of one phase is lower than both the 
interphase boundary energy and the grain boundary 
energy of the other phase, the two-phase microstruc- 
ture will evolve eventually to a single phase in a 
nonconserved system [18]. This is certainly not the 
case in a conserved system. Moreover, while the grain 
growth kinetics in a nonconserved two-phase system 
is similar to that in a single-phase system [18], grain 
growth in a conserved two-phase solid is likely to be 
controlled by long-range diffusion, i.e. similar to 
Ostwald ripening. It may be emphasized that 
essentially all two-phase solids of practical import- 
ance have the volume fractions of each phase 
conserved. Therefore, the focus of this paper will be 
on microstructural evolution in two-phase solids with 
the volume fractions conserved and with long-range 
diffusion. 

Based on a diffuse-interface description [20], we 
recently developed a computer simulation model for 
studying the microstructural evolution in two-phase 
solids [21]. Earlier, a similar model has been applied 
to grain growth in single-phase systems [22-251. One 
of the main advantages of this model is that any 
arbitrary microstructure can be easily treated since 
the interfaces are not singular surfaces requiring 
imposition of moving boundary conditions, but just 
a region where the fields have high gradients. For the 
special case of a circular grain, the boundary velocity 
obtained for the diffuse interface agrees very well with 

Fig. 1. Schematic description of a two-phase microstructure; 
q:(i=l,...,p)andrl,B(j=l,...,p)areorientationfield 
variables with each orientation field representing grains of 
a given crystallographic orientation of a given phase 
(denoted as GI and fl with different compositions). Diffusion 
can occur along grain boundaries and interfaces as well as 

the crystalline lattice. 
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Fig. 2. Stability ranges of microstructural features in two 
phase systems. (Adapted from J. W. Cahn [17].) 

the analytical solution in the corresponding sharp- 
interface limit [26]. 

The main purpose of this paper is to investigate the 
stability and scaling of two-phase microstructures, 
the grain size distributions, the grain growth kinetics, 
and the dependence of grain growth kinetics on the 
volume fractions as well as on the relative values of 
grain boundary energies and the interphase boundary 
energy. The topological evolution in a two-phase 
solid under various conditions will be discussed in a 
separate publication. 

2. THE MODEL 

2.1. Description of a two-phase microstructure 

The details about this model have been discussed 
previously [21-251. To describe an arbitrary two- 
phase polycrystalline microstructure (Fig. 1) using 
the diffuse-interface theory, a set of continuous field 
variables is defined in this model: 

V;(r), @(r), . . , v;(r), dV), v!(r), . . , r,8(rh C(r) 

(1) 

where ng (i= l,... ,p) and r# Q’= l,...,q) are 
called orientation field variables with each represent- 
ing grains of a given crystallographic orientation of 
a given phase (denoted as CI or /?). The concept of the 
orientation field variables is similar to that of the 
different spins in the Monte Carlo Potts models for 
discretizing the orientation field. However, those field 
variables are continuous in space with assuming 
continuous values ranging from - 1.0 to 1.0 in this 
model. For example, a value of 1.0 for q:(r) with all 
other orientation variables 0.0 means that the 
material at position r belongs to an cc-phase grain 
with the crystallographic orientation labeled as 1. At 
the grain boundary region between two a-grains with 
orientations 1 and 2, u?(r) and q;(r) will have absolute 
values intermediate between 0.0 and 1 .O. Discretizing 
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the orientation field requires that all orientation 
variables have the equal possibility of formation, 
which is achieved in this model by constructing the 
proper free energy functional of a two-phase system 
(Section 2.3). In reality, the number of orientations in 
space is infinite. However, a large but finite number 
of orientation variables is enough to simulate the 
microstructural evolutions [21, 231. C(r) is the 
composition field which takes the value of C, within 
an N grain and Cp within a p grain. C(r) has 
intermediate values between C, and Cfi at the 
interfacial region between an c( grain and a p grain. 
Therefore, with the set of field variables, we can 
completely describe a microstructure with CI- and 
b-phase grains in different orientations, the CI--c( and 
p-/3 grain boundaries, and the M-P interphase 
boundaries (Fig. 1). 

2.2. Energetics of a two-phase system 

According to the diffuse-interface theories [20], the 
total free energy of a two-phase system, F, can be 
approximated as the sum of the free energy density 
and gradients of phase fields, i.e. 

, q,P(r)) +Gj (VW-)>’ + f: $ WI:(~))~ 
r=, 

+ f 5 (Vrf(r))* d3r 
,=I 1 

where h is the local free energy density, VC, Vn: and 
V$ are gradients of concentration and orientation 
fields, xc, KY and of are the corresponding gradient 
energy coefficients, and p and q represent the number 
of field variables for the CI and fi phases. The coupling 
terms and higher order terms of field gradients have 
been ignored in the current model. 

The energy of a planar grain boundary, r~$, 
between an CI grain of orientation i and another tl 
grain of orientation j may be calculated as follows: 

in which 

where fO(&, q I,, C,) represents the free energy 
density minimized with respect to $ and $ at the 
equilibrium composition of the LX phase C,. The 
definition of grain boundary energy [equation (3)] 
includes the concentration gradient and therefore 
automatically takes into account solute segregation 
to grain boundaries. The grain boundary energy 
between two fi grains can be calculated from the same 
equations by replacing a with p. Similarly, the 
interphase boundary energy between an tl grain with 
orientation i and a fl grain with orientationj can be 
defined [21]. 

2.3. Construction of the local free energy density 
function of a homogeneous phase 

In order to solve the kinetic equations, we need to 
construct the free energy functional, fO. It should have 
the following characteristics: (a) if the values for all 
the orientation field variables are zero, the free energy 
describes the dependence of the free energy of the 
liquid phase on composition; (b) the free energy 
density as a function of composition in a given 
cc-phase grain is obtained by minimizing the above 
free energy with respect to the orientation field 
variable corresponding to that grain, under the 
condition that all other orientation field variables are 
zero. The free energy density as a function of 
composition of a given b-phase grain may be 
obtained in a similar way. Therefore, all the 
phenomenological parameters in the free energy 
model, in principle, may be fixed using the 
information about the free energies of the liquid, solid 
CY phase and solid p phase. 

Another main requirement forf, is that it has 2p 
degenerate minima, for CI phase, with equal depth 
located at (rl;, G, , $1 = (l,O, . , Oh . , 
640, . . f , 1), (-1,O ,..., 0) ,..., (0,O ,..., -- 1) in 
p-dimension orientation space at the equilibrium 
concentration C,, and has 2q degenerate minima 
located at (VQ, r)!, . ) I$) = (1, 0, , O), . 
(0,O ,..., l),(-1,O ,..., 0) ,..., (0,O ,..., --I)for 
j? phase at C,. This requirement ensures that each 
point in space can only belong to one orientation and 
all orientation variables have equal possibility of 
formation. 

It should be emphasized that since we are not 
interested in phase transformations between cy and fi 
or between liquid and solids, and since we are only 
concerned with the case where the interphase and 
grain boundary energies are isotropic in this paper, 
the exact form of the free energy density function may 
not be very important in modeling microstructural 
evolution in a two-phase solid. The reason is that the 
driving force for grain growth is the total grain and 
interphase boundary energy. Other important para- 
meters are the diffusion coefficients and boundary 
mobilities. In other words, we assume that the values 
of the grain and interphase boundary energies 
together with the kinetic coefficients completely 
control the kinetics of microstructural evolution, 
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irrespective of the exact form of the free energy 
density functional. Therefore, we assume the 
following relatively simple free energy density 
function for the purpose of studying coarsening in a 
two-phase solid: 

in which 

f(C) = -(A/2)(C - c,)2 + (B/4)(C - CfJ4 

+ (D,/4)(C - C,)’ - (Ds/4)(C - CJ” 

f(C, r,“) = -(YG)(C - Cs)‘(rlP)’ + (&/4)(1P)4 

flC> Ir,B) = -(YsP)(C - Ca)2(1B)2 + (W4)(rl”)” 

f(vl,k, $) = ($/2)(?:)2(V;)2 

where C, and C, are the equilibrium compositions of 
CI and /I phases, C,,, = (C, + Cp)/2, and A, B, D,, Dg, 
Y.3 YB9 6., C$ and ~f;k are phenomenological 
parameters. It should be pointed out, however, that 
if our emphasis is on the thermodynamics of 
solidification of a liquid or on the effect of anisotropic 
interfacial energy on microstructural evolution, 
proper coupling terms between field variables, as 
required by the crystalline symmetries, should be 
included. 

2.4. The kinetic equations 

By defining orientation and composition field 
variables, the kinetics of coupled grain growth can be 
described by its spatial and temporal evolution. In the 
present model, the evolution kinetics of these field 
variables are described by the time-dependent 

Fig. 3. Microstructural evolution in the system with R, = Rp = 1.0. The volume fraction of c( phase is 50%. 
System size: 256 x 256. The initial structure is generated from a fine grain structure. 
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Fig. 4. Microstructural evolution in the system with R, = Ro = 0.6. The volume fraction of G( phase is 50% 
System size: 256 x 256. The initial structure is generated from a liquid. 

GinzburggLandau (TDGL) [27] and Cahn-Hilliard gradient energy coefficients can be fitted to the grain 
[28] equations: boundary energies of the LY and fi phases, as well as 

the x//I interfacial energy. The kinetic coefficients, L;, 
dv:(r, t) bF 
____ = -L: 6r;(r, t)’ i = I,& “. , 

L! and Lc, can be determined from grain boundary 
dt P (64 mobility and atomic diffusion data. 

W(r, t> _ _Lfi 

dt ‘ hP(r, f)’ 
i=l,2,...,q (6b) 

v=v (6~) 
where L:, Lr and Lc are kinetic coefficients related to 
grain boundary mobilities and atomic diffusion 
coefficients, which may be functions of local 
orientation and composition field variables, t is time, 
and F is the total free energy given in equation (2). 
The difference between kinetic equations for orien- 
tation field variables r;(r) or $(r) and concentration 
field C(r) comes from the fact that C(r) is a conserved 
field, due to the requirement of mass conservation, 
whereas the orientation fields are nonconserved. 

Once the free energy functional,f,, is obtained, the 

3. NUMERICAL SOLUTION 

To numerically solve the set of kinetic equations 
(6) one needs to discretize them with respect to space. 
The Laplacian may be discretized by the following 
equation: 

VV = & [: c (4, - 48) + _k 7 ($V - 401 (7) 
I I 

where 4 is any function, Ax is the grid size, J 
represents the set of first nearest neighbors of i, and 
j’ is the set of second nearest neighbors of i. For 
discretization with respect to time, one may use the 
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following simple Euler technique: 

4(t + At) = 4(t) + z x At 

where At is the time step for integration. 
All the results discussed below were obtained by 

using the above discretization scheme and by 
assuming Ax = 2.0, At = 0.1. The kinetic equations 
are discretized using 256 x 256 or 512 x 512 points 
with periodic boundary conditions applied along 
both directions. The total number of orientation field 
variables for two phases is 30. 

For starting a computer simulation, one may either 
input a pre-defined initial two-phase microstructure 
or generate the initial condition by assigning small 
random values to all the orientation field variables 
and the overall average composition to the compo- 
sition variable at all positions, which simulates a 
liquid or disordered phase at a very high temperature. 
Because we can always normalize the length scale and 

time scale of kinetic equations (6) with diffusion 
coefficients and boundary mobilities, so we simply 
choose L,” = L{ = 1.0 (isotropic grain r] boundary 
mobility) and Lc = 0.5, which assumes the two 
phases have the same diffusion coefficients and 
boundary mobilities. 

In this work, we assumed isotropic grain boundary 
energies for both phases and an isotropic interfacial 
energy between u and /I phase, i.e. JC~’ = Icp = xr and 
rcjl = K,B = rcfl. Furthermore, we assumed that the 
solubilities in the CI and /I phases are: C, = 0.05 and 
C, = 0.95. The gradient energy coefficients and 
phenomenological parameters in the free energy 
function [equation (5)] are fitted to grain boundary 
energies, the interfacial energy, and their ratios. To 
get good statistics, all kinetic data and size 
distributions were obtained by employing 512 x 512 
systems, in which there are more than 2700 grains 
initially and kinetic calculation is stopped at about 
200 grains. 

Fig. 5. Microstructural evolution in the system with R. = Rp = 1.2. The volume fraction of c( phase is 50%. 
System size: 256 x 256. The initial structure is generated from a liquid. 



FAN and CHEN: DIFFUSION-CONTROLLED GRAIN GROWTH 3303 

Fig. 6. Microstructural evolution in the system with R, = Ro = 1.6. The volume fraction of cI phase is 50%. 
Both quadrijunctions and trijunctions are stable. System size: 256 x 256. The initial structure is generated 

from a liquid. 

4. MICROSTRUCTURAL EVOLUTION 

4.1. R, = R,j 

In this section, we studied the case with 50% 
volume fraction of each phase and R, = Rs, i.e. the 
energetic ratios lie along the diagonal of the Rx-R,, 
plot in Fig. 2. 

The simplest case is R, = RB = 1, in which the 
interfacial energy between M and /3 is equal to the 
grain boundary energies in CL and /?. According to 
Cahn’s analysis, in this case, aaa, aa/?, a/?/l and pfip 
trijunctions are thermodynamically stable and 
equally favored. Here, aaa represents the trijunctions 
formed by three a grains and aa/? the trijunctions 
formed by two x grains and a /I grain, and so on. The 
microstructural evolution in this system is shown in 
Fig. 3. It can be seen that the microstructures contain 
only trijunctions, consistent with the thermodynamic 
analysis [17]. During microstructural evolution, grain 

growth occurs in both phases. It is observed that the 
coarsening of a cluster of same-phase grains is 
relatively fast, whereas the growth and shrinkage of 
grains isolated by grains of the other phase is much 
slower, which is controlled by long-range diffusion. 

Figure 4 is the corresponding microstructural 
evolution for R, = R, = 0.6. In this system, all 
trijunctions are energetically stable and the interfacial 
energy yVs is larger than the grain boundary energies 
?/% and ys. Therefore, the system tends to form as 
many grain boundaries as possible in order to 
minimize the total free energy of the system during 
coarsening. It can be seen that grains of the same 
phase evolve to form clusters to eliminate the X-P 
interfaces, and, as a result, grains of the same phase 
link together to maximize the grain boundary area 
and chain structures of grains of the same phase are 
formed. 

If R, = R, > 1, the system favors the formation of 
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a-/3 interfaces. Figure 5 is the microstructural 
evolution with & = RI = 1.2. In this system, instead 
of forming clusters of same-phase grains, there is a 
tendency to eliminate the grain boundaries due to 
their high energies. As a result, some elongated grains 
with more interfaces are formed during microstruc- 
tural evolution as an attempt to reduce the total grain 
boundary area. 

Microstructural evolution for R, = Rp = 1.6 is 
shown in Fig. 6. In this system, 1 < R. = R, < fi 
and R,2 + Rj = 5.12, i.e. the condition R,” + Rj 2 4 
for the stability of quadrijunctions is satisfied. Hence, 
both trijunctions and quadrijunctions c$a@ are 
energetically stable. It can be seen that a microstruc- 
ture consists of trijunctions of crcrp or ~$8 and 
quadrijunctions a$~$, and the two phases are 
mutually dispersed to minimize the high-energy grain 
boundaries. Even though the trijunctions clclcl and 
pp/3 are still thermodynamically stable in this case, 

they are seldom observed. There are two reasons for 
this. First, grains of one phase tend to be surrounded 
by grains of the other phase in the initial grain 
structure formed by crystallization of a liquid. 
Secondly, trijunctions C(GICI and fl/Ql disappear more 
rapidly than ~lcl/? and cQ?fi because of high grain 
boundary energies and the fact that their disappear- 
ance is quite similar to grain growth in a single-phase 
solid. 

In the system ,,/? < R, = RJ < 2, trijunctions ~lcl~l 
and flfi/l are thermodynamically unstable and the 
stable microstructure consists of only trijunctions 
a@, c$B and quadrijunctions a/?~$. The only 
difference between this system and the system with 
R, = Rb = 1.6 (Fig. 6) is the stability of trijunctions 
CIC(M and fl/?p. Since trijunctions CIC(C( and /?fifi are 
rarely observed in Fig. 6, microstructures obtained 
from this system are essentially similar to Fig. 6. 

For the extreme condition, R, > 2.0 and RB > 2.0, 

Fig. 7. Microstructural evolution in the system with R. = Rp = 2.1. The volume fraction of G( phase is 50%. 
Only quadrijunctions are stable. System size: 256 x 256. The initial structure is generated from a liquid. 
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Fig. 8. Microstructural evolution in the system with R, = 1.4, Rpi = 0.97. The volume fraction of r phase 
is 50%. The initial structure is generated from a fine grain structure. All07 grains (2) are gray grains and 
ZrO? (p) are bright ones. System size: 512 x 512. The initial structure is generated from a line grain 

structure. 

so-called “double” wetting will occur. Under this 
condition, no trijunctions are stable and the only 
stable surfaces are the a-/3 interfaces. The microstruc- 
tural evolution for R, = R. = 2.1 is shown in Fig. 7. 
The microstructures contain only quadrijunctions 
c#c@ and a-/3 interfaces. The angles of the 
quadrijunctions vary within a certain range, i.e. there 
is no thermodynamically fixed angle for quadrijunc- 
tions. The boundaries meeting at the quadrijunctions 
are not necessarily straight, which is assumed by the 
thermodynamic analysis [17]. Most of the interfaces 
are actually curved to fit into the quadrijunctions for 
the requirement of space filling and the balance of 
surface tensions which only require the tangents of 
those boundaries meeting at the quadrijunction 
balance each other. 

4.2. R, # R,, 
For R, # R,,, we consider a specific system, a 

A1203-ZrO, two-phase composite, as an example. It 
was reported [29] that the average ratio of grain 
boundary energy to interphase boundary energy in 
A1203 (denoted as c( phase) is R, = o,,,/o,,~ = 1.4, and 
that in ZrOz (denoted as /I phase) it is Rii = on,/ 
0 I”, = 0.97. We ignore the anisotropy in the 
interphase and grain boundary energies. To generate 
the initial two-phase microstructure, a single-phase 
grain growth simulation was performed to obtain a 
fine grain structure. Grains are then randomly 
assigned with the equilibrium composition C, or Cr 
and an orientation field, keeping the overall average 
composition corresponding to the desired equilibrium 
volume fractions. The purpose of generating the 
initial two-phase microstructure from a fine grain 
structure is to simulate the dense microstructures 
obtained from sintering of two-phase powders, as in 
A1203-Zr02. 

The temporal microstructural evolution with 50% 
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AljO (a phase) is shown in Fig. 8. In this system, 
R,=1.4<& Rg=O.9’7< 1 and R:+Ri= 
2.9 < 4. Therefore, thermodynamically, all trijunc- 
tions are stable while no quadrijunctions are stable. 
These features can be clearly seen from Fig. 8. 
Furthermore, the microstructure evolves to eliminate 
the AhO3 (a-phase) grain boundaries. This may be 
easily understood since the grain boundary energy in 
A1203 is much higher than both the grain boundary 
energy in Zr02 and the interphase boundary energy. 
As a result, AhO3 grains (gray grains) tend to be 
isolated by ZrOz grains (bright grains). 

It may be emphasized that, for R, # R,, the 
microstructural stabilities in volume-conserved sys- 
tems and nonconserved systems are quite different. 
According to Monte Carlo simulations [18], in a 
nonconserved system with R, = 1.4 and RB = 0.97, 
only /3 phase is stable and only /?/I/I trijunctions exist 
since all CI grains eventually disappeared due to their 
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Fig. 9. Time dependence of the average grain size in the 
system R, = RR = 1.0. The volume fraction of a phase is 

50%; (a) c( phase; (b) fi phase. 

Two cases, R. = RB = 1 .O and R, = RB = 2.1, are 
chosen to compare the effect of energetic conditions 
on the grain growth in two-phase solids. The time 
dependencies of the average grain size in a and p for 
R, = RB = 1.0 are shown in Fig. 9(a) and (b), 
respectively. In these plots, the dotted lines are the 
data measured from the simulated microstructures 
and the solid lines are the non-linear fits to the power 
law R;” - R; = kt. According to the non-linear fit, 
grain growth for both phases follows the power law 
with m = 3, a strong indication that the coupled grain 
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Fig. 10. Time dependence of the size distributions in the 
system R, = Ro = 1.0. The volume fraction of c( phase is 

50%; (a) c( phase; (b) /Y phase. 

high grain boundary energy. However, this is clearly 
not the case in our volume-conserved system (Fig. 8). 

5. COARSENING KINETICS AND SIZE 
DISTRIBUTIONS 

5.1. EfSect of the ratio of grain boundary energies and 
interphase boundary energy 
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Fig. 1 I. Time dependence of the average grain size of the 61 
phase in the system R, = R/j = 2.05. The volume fraction of 

a phase is 50%. 

growth is controlled by the long-range diffusion. It is 
not surprising that the kinetics coefficients k for the 
two phases are very similar since R, = R, and the 
volume fraction for each phase is 50%. 

The corresponding grain size distributions for the 
system R, = Ra = 1.0 at several different time steps 
are shown in Fig. IO(a) and (b). It can be seen that 
distributions are asymmetric and the peaks of size 
distributions for both phases are centered around the 
average size [Ioglo(R/( R)) = 0.01 position. The shape 
of size distributions is independent of time for both 
phases, indicating that this system has reached the 
dynamic steady state or scaling after 5000 time steps. 
The size distributions are almost identical for the two 
phases. 

For R, = Rli = 2.1, the time dependence of the 
average grain size in the CI phase is shown in Fig. 11. 
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Fig. 12. Time dependence of the size distributions of the c( 
phase in the system R, = RP = 2.05. The volume fraction of 

a phase is 50%. 
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Fig. 13. Coarsening kinetics of the AllO (K) phase in the 
system with R, = 1.4, Rj = 0.97. The volume fraction of LY 
phase is 50%. The initial structure is generated from a fine 

grain structure. 

As discussed above, only quadrijunctions are stable 
in this system (Fig. 7). However, the grain growth still 
follows the power growth law with m = 3. Therefore, 
in contrast to the results from Monte Carlo 
simulations [18], quadrijunctions cannot stop the 
coupled grain growth in a two-phase solid. As a 
matter of fact, the coarsening of all quadrijunction 
microstructures is also controlled by the long-range 
diffusion in volume-conserved systems. It is noted 
that the kinetic coefficient k in this system is different 
from that for R, = RP = 1.0. The only difference in 
these two systems is the energetic ratios or grain 
boundary energies and interfacial energy, which 
suggests that the kinetic coefficient k is dependent on 
the grain boundary energy and interfacial energies of 
a system. 
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Fig. 14. Comparison of the coarsening kinetics of (I and p 
phases in the system R, = 1.4, RI, = 0.97. The volume 
fraction of Y phase is 50%. The initial structure is generated 

from a liquid. 
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Fig. 15. Effect of initial microstructures on the size 
distributions of a phase in the system R, = 1.4, Rp = 0.97. 
The volume fraction of u phase is 50%. The solid line is the 
size distribution with initial structure generated from a 
liquid. The histogram is the size distribution with initial 
structure generated from a fine grain structure. Solid dots 

represent the distribution of the fine grain structure. 

Figure 12 shows the time dependence of grain size 
distributions of the tl phase for R, = RB = 2.1. Similar 
to the case R, = R, = 1.0, the scaling of microstruc- 
tures is achieved, i.e. grain size distributions are time 
invariant. Both the growth exponent and the size 
distributions of the fi phase are similar to those of the 
CI phase. It is important to notice that the shapes of 
grain size distributions in these systems are similar to 
those for R, = RB = 1 .O. This observation may lead to 
a significant conclusion that, while the coarsening 
kinetics is dependent on the energetic conditions of a 
two-phase system, grain boundary energies and 
interfacial energies may not affect the grain size 
distributions during the steady state coarsening. 

5.2. EfSect of initial microstructures 

We used two different ways to generate the initial 
microstructures: direct crystallization of both solid 
phases from a liquid and from a fine single-phase 
grain structure. We considered the case of R, = 1.4 
and RB = 0.97. The time dependence of the average 
grain size with 50% c( phase and with the initial 
microstructure generated from a fine grain structure 
is shown in Fig. 13. Grain growth also follows the 
power law with m = 3 and k = 4.3 1 for u phase. Since 
R, # Rg, it is expected that the coarsening kinetics in 
two phases will not be the same. Indeed, in the p 
phase, the average grain size increases with time 
following the power law with m = 3 and k = 3.8. 

Figure 14 is a comparison of coarsening kinetics in 
c( and /3 with the initial microstructure generated 
from a liquid. To clarify the difference, R’ is plotted 
against time steps. Under this initial condition, the 
coefficient k is 2.51 for the CI phase and 1.99 for the 
p phase, which are about two times smaller than 

those obtained with the initial microstructure 
generated from a fine grain structure (Fig. 13). The 
reason for the slowdown is that, when the initial 
two-phase structure is generated from the solidifica- 
tion of an initially unstable liquid, grains of the CI and 
fl phases are alternatively distributed, i.e. each tl 
grain having p grains as nearest neighbors and vice 
versa. While the initial microstructure is generated 
from a fine grain structure, clusters of same-phase 
grains exist (Fig. 8) in which grain growth is much 
faster, which in turn results in a larger kinetic 
coefficient. 

The effect of the initial microstructure on the grain 
size distribution is compared in Fig. 15. In this plot, 
the solid line is a typical size distribution with the 
initial microstructure generated from a liquid, the 
histogram is the size distribution with the initial 
structure created from a fine grain structure, and the 
solid dots represent the size distribution of the initial 
fine grain structure. It can be seen that size 
distributions from different initial microstructures are 
quite different. The size distribution of the initial 
structure generated from a liquid (solid line in 
Fig. 15) is similar to those for R, = R, (Figs 10 and 
11) whose initial microstructures were also generated 
from a liquid, indicating that energetic ratios do not 
affect the characteristics of the size distribution. On 
the other hand, the size distribution with the initial 
microstructure generated from a fine grain structure 
is almost identical to the original distribution of that 
fine grain structure. Therefore, in two-phase grain 
growth, size distributions are dependent on the initial 
microstructures and there is no unique size distri- 
bution for a given volume fraction and energetic 
ratios. 

5.3. Eflect of volume fractions 

The effect of volume fractions is studied by 
comparing the grain growth in a system with 90% 
A1203 and that with 50% A1203. For both cases, the 
initial microstructures were generated from a fine 
grain structure. The microstructural evolution for 
90% A1203 is shown in Fig. 16. The basic 
microstructural features are similar to those for 50% 
(Fig. 12) except that /?pfi trijunctions do not exist due 
to the small volume fraction of the /3 phase. The effect 
of volume fractions on the coarsening kinetics is 
compared in Fig. 17, in which R’ is plotted against 
t. The kinetic coefficient k for the tl phase is 31.85 and 
0.785 for the /I phase. It can be seen that the variation 
of volume fractions will dramatically change the 
coarsening kinetics of both phases. The kinetic 
coefficient k for 90% CI phase is about a magnitude 
larger than that of the 50% a-phase system (k = 4.31), 
while the k value is reduced about 5 times for the 10% 
fi phase. As a result, the difference in k values for CI 
and B phases is about 50 times. This dramatic 
variation comes from the different diffusion distances 
of the two phases during coarsening as the volume 
fraction changes. For the low-volume-fraction /l 
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phase, the coarsening kinetics is solely controlled by 
Ostwald ripening and the typical diffusion distance 
is about the typical separation distance between 
p-phase grains. However, coarsening for the high 
volume fraction of LY depends on the fraction of 
grain boundaries that are pinned by p grains and 
therefore the volume fraction of p. The influence of 
volume fractions on the grain size distributions is 
shown in Fig. 18. It can be seen that size 
distributions for both phases become more peaked 
than the original distribution of the initial fine grain 
structure and are also more peaked than that of the 
50% z phase system with the same initial micro- 
structure (Fig. 15). Therefore, the size distributions 
in the steady state may also vary as the volume 
fraction changes. However, in all circumstances, the 
mechanism of coarsening is still controlled by 
long-range diffusion and the coarsening kinetics 
follows the power growth law with m = 3, which is 
not affected by the energetic ratios, initial micro- 
structures and volume fractions. 

6. SUMMARY 

The microstructural evolutions in volume-con- 
served two-phase solids were investigated by employ- 
ing a diffuse-interface field model, in which the 
complexity of microstructural topology and long- 
range diffusion are automatically taken into account. 
It is shown that the stabilities of microstructural 
features in volume-conserved two-phase systems are 
mainly dependent on the ratios of grain boundary 
energies to interfacial energy, and the observed 
features are in agreement with previous thermody- 
namic analyses. The coupled grain growth in 
volume-conserved two-phase systems is controlled by 
long-range diffusion and follows the power growth 
law with m = 3, which is independent of the energetic 
ratios, initial microstructures and volume fractions, 
in contrast to the nonconserved systems in which 
m = 2. A two-phase microstructure containing only 
quadrijunctions can be stable under certain wetting 
conditions and it will coarsen according to the power 
law with m = 3, contrary to previous Monte Carlo 

t=6000 

Fig. 16. Microstructural evolution in the system with Rx = I .4, Rp = 0.97. The volume fraction of /I phase 
is 10%. System size: 256 x 256. The initial structure is generated from a fine grain structure. 
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Fig. 17. Effect of volume fractions on the coarsening kinetics 
in the AhO, (cc)-ZrOl (8) system. The volume fractions of 

ZrQ* (/?) phase are 10% and 50%. R, = 1.4, RB = 0.97. 

simulations. The kinetic coefficient k depends on the 
grain boundary energies, interfacial energy, initial 
microstructures and volume fractions. Among these 
factors, volume fractions of two phases have the most 
significant effect on the kinetic coefficient. In this 
study, we assumed a constant temperature. Of course, 
the kinetic coefficient k will be strongly dependent on 
the change in temperature. The scaling of grain size 
distributions is observed in all circumstances, i.e. they 
are time-invariant in the steady state. The character- 
istics of size distributions are independent of the 
energetic ratios of two-phase systems. However, they 
vary with the initial microstructures and the volume 
fractions. In this paper, the grain boundary mobilities 

o*31----l 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 

Fig. 18. Effect of volume fractions on grain size distributions 
in the system R, = 1.4, R# = 0.97. The solid line is the 
distribution of the 90% a phase. Solid dots represent the 
distribution of the 10% /I phase. The histogram is the initial 

distribution for both phases. 

and diffusivities for the two phases were assumed to 
be the same. Moreover, we did not separate the 
contributions from the grain boundary diffusion and 
lattice diffusion even though the effective lattice and 
grain boundary diffusivities can be derived from the 
kinetic equations. The effect of different diffusivities in 
the two phases and different diffusion paths on the 
grain growth in a two-phase solid will be investigated 
in the near future. 
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