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Abstract-The local kinetics and topological phenomena during normal grain growth were studied in two 
dimensions by computer simulations employing a continuum diffuse-interface field model. The 
relationships between topological class and individual grain growth kinetics were examined, and compared 
with results obtained previously from analytical theories, experimental results and Monte Carlo 
simulations. It was shown that both the grain-size and grain-shape (side) distributions are time-invariant 
and the linear relationship between the mean radii of individual grains and topological class n was 
reproduced. The moments of the shape distribution were determined, and the differences among the data 
from soap froth, Potts mode1 and the present simulation were discussed. In the limit when the grain size 
goes to zero, the average number of grain edges per grain is shown to be between 4 and 5, implying the 
direct vanishing of 4- and 5-sided grains, which seems to be consistent with recent experimental 
observations on thin films. Based on the simulation results, the conditions for the applicability of the 
familiar Mullins-Von Neumann law and the Hillert’s equation were discussed. Copyright 0 1997 Acta 
Metallurgica Inc. 

1. INTRODUCTION 

The fundamental features of normal grain growth 
have been investigated extensively because of the 
importance of the microstructure in controlling the 
physical and mechanical properties of a polycrys- 
talline material. During normal grain growth, the 
average grain size increases, driven by the reduction 
in the total grain boundary energy, and dynamical 
and topological interactions occur among individual 
grains. 

Since the 195Os, many theories have been proposed 
to predict the time dependence of average grain size 
and size distributions [l-lo]. In addition, the 
relationship between the topological requirements for 
space filling and the time dependence of average grain 
size has become one of the most studied subjects in 
normal grain growth [ 1 l-231. 

Because of the complexity of topological inter- 
actions during grain growth, it is extremely difficult 
to describe the kinetics of grain growth and 
topological interactions between grains within a 
single analytical model. Therefore, computer simu- 
lations are playing a very important role in exploring 
the details of grain growth and testing the validity of 
analytical theories. For modelling grain growth, 
many approaches have been proposed, such as the 
statistical models [24-261, vortex models [27, 281, 
boundary dynamics models [29,30], mean field 
theories [31-331, Voronoi models [34, 351 and the 
Potts model [3&39]. In spite of the different physical 
bases and approaches employed in these models, a 

common feature is that the boundaries or interfaces 
are treated as having zero thickness in these models, 
i.e. as sharp interfaces. Very recently, we developed 
a continuum diffuse-interface model for studying the 
coarsening kinetics in single-phase and multi-phase 
materials [23,40-42], in which the grain boundaries 
and interphase boundaries are treated as diffuse 
interfaces of finite thickness. One of the main features 
of the diffuse-interface model is the fact that one does 
not have to explicitly track the positions of grain 
boundaries since their locations are implicitly defined 
by the regions where the gradients of field variables 
are significant. Since the interfaces are diffuse, the 
lattice anisotropy effect can be kept to a minimum. 
Finally, in the diffuse-interface field model, it is 
straightforward to describe long-range diffusion, 
which takes place, for example, during solute 
segregation and second-phase precipitation at grain 
boundaries in a polycrystalline material, by coupling 
the kinetic equations for the orientation field 
variables with the Cahn-Hilliard non-linear diffusion 
equation for composition [43]. 

In previous papers [23,40], using the diffuse-inter- 
face field model, we have shown that the average 
grain size of a pure system evolves following the 
growth law RY - K = kt with m = 2 in the scaling 
regime, which is independent of the number of field 
variables. A simulated microstructure evolution of 
grain growth is shown in Fig. 1. The size distribution 
function plotted against log(i?/R) has asymmetric 
characteristics and is self-similar or time-invariant. 
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We also showed [23] that a log-normal distribution 
function fits into simulation data better near the 
average grain size region; however, it departs from 
simulation for small grains and large grains. Louat’s 
distribution function agrees well with simulation 
results for large and small grains; however, it predicts 
a lower distribution peak near the average size region 
1231. 

In this paper, we focus on the local kinetics for 
individual grains, especially, the relationship between 
the topological requirements and the growth kinetics 
using the continuum diffuse-interface model, and 
compare them with the predictions of analytical 
theories and results obtained from other computer 
simulations. In particular, the growth rates of 
individual grains, the dependence of the growth rates 
on the topological classes, the grain side distributions, 
as well as the interrelationships between these 
properties, are studied, based on the temporal 
evolution of microstructures generated from the 
computer simulations. 

2. DIFFUSE-INTERFACE MODEL FOR GRAIN 
GROWTH 

In the diffuse-interface field model [23,40], an 
arbitrary polycrystalline microstructure is described 
by a set of continuous field variables, 

where p is the number of possible orientations in 
spaceandqj(i=l,... , p) are called orientation field 
variables which distinguish the different orientations 
of grains and are continuous in space. Their values 
continuously vary from - 1 .O to 1 .O. In real materials, 
the number of orientations is infinite (p = co). 
However, it was shown that a finite number for p 
might be sufficient to realistically simulate grain 
growth [23]. 

Within the diffuse-interface theory [44], the total 
free energy of an inhomogeneous 
written as 

system can be 

F = .Lh(r), M-h . . . y %(r)> 

+ f: 7 (Vqi(r))* d3r (1) 
,=I 

where f0 is the local free energy density which is a 
function of field variables vi, and xi are the gradient 
energy coefficients. The origin of the grain boundary 
energy comes from the gradient energy terms (V~J~)* 
in equation (1). The smaller the gradient energy 
coefficient K,, the thinner the boundary region. If all 
the gradient energy coefficients go to zero, the 
boundary thickness becomes infinitely thin, i.e. it 
becomes a sharp interface. 

Fig. 1. Simulated microstructure evolution in 512 x 512 system with 36 orientation variables. 
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The spatial and temporal evolution of orientation 
field variables is described by the Ginzburg-Landau 
equations, 

dvi(r9 0 _ _ L 

dt 

i=l,2,...,p (2) 

where L, are the kinetic coefficients related to grain 
boundary mobility, t is time and F is the total free 
energy given in equation (1). 

To simulate grain growth kinetics, we assumed the 
following simple free energy density functional 

where CI, /I and y are phenomenological parameters. 
The main requirement for f0 in modelling grain 
growth in a pure single phase is that it has p 
degenerate minima with equal depth, &in, located at 
(Q, fl2, . . . , vp,) = (I,& . . 3 01, (0, 4 . . , O), . f . 1 

(O,O, . , 1) in p-dimensional space. It can be shown 
that, if y > /I/2, equation (3) gives 2p potential 
minima (wells) in the p-field space, which represent 
the equilibrium free energies of crystalline grains in 2p 
different orientations. 

3. NUMERICAL SIMULATION PROCEDURE 

In the computer simulation, equations (2) are 
discretized in space and time. The Laplacian is 
discretized by the following equation: 

where Ax is the grid size, j represents the first-nearest 
neighbours of site i, and k represents the second- 
nearest neighbours of site i. For discretization with 
respect to time, the explicit Euler equation is used: 

r,(t + At) = q,(t) + 2 x At (5) 

where At is the time step for integration. 
In this paper, we employed 5 12 x 512 square 

lattice points to spatially discretize the kinetic 
equations with periodic boundary conditions applied 
along both Cartesian coordinate axes. The discretiz- 
ing grid size Ax is chosen to be 2.0 and the time step 
At is 0.25. The number of orientations, p, is assumed 
to be 36, which is shown to provide a realistic 
simulation of microstructural evolution and growth 
kinetics [23]. For the local free energy density 
function, the following parameters were assumed: 
c( = 1.0, b = 1.0 and y = 1.0; K, and Li were chosen to 
be 2.0 and 1.0 for all orientations and give an 
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Fig. 2. Grain size distributions according to topological 
class (numbers in figure) of grains. The dashed line is the 

overall grain size distribution. 

isotropic grain boundary energy and isotropic grain 
boundary mobility, respectively. The computer 
simulations started from a liquid phase by assigning 
small random values, e.g. between -0.001 and 0.001, 
to all orientation variables at all grid points, and then 
allowing crystallization to occur, which generates a 
fine grain microstructure. The crystallization is 
finished after about 200 time steps. Allowing 
sufficient time for the system to reach the scaling 
state, e.g. 1000 time steps, individual grains were 
monitored for calculating their growth rates, the 
topological distributions and other topological and 
kinetic information. At time step 1000, there are more 
than 1200 grains in the system. The area of a grain, 
A, at a certain time step, is directly obtained from the 
microstructure by summing the number of grid points 
within the grain, and the grain radius, R, is calculated 
from the area through A = nR2 as an approximation. 
The average grain size at a certain time is obtained 
by averaging the grain size over all grains in the 
system. The growth rates of individual grains, dA/dt 
and dR/dt, were calculated according to dA/dt = 
[A(t + At) - A(t)]/At or dR/dt = [R(t + A.t) - R(t)]/ 
At, every 1000 time steps with At equal to 20 time 
steps. All the kinetics data presented were obtained 
by averaging over several independent simulation 
runs in an attempt to get better statistics. 

4. SIMULATION RESULTS 

4.1. Static properties and topology 

The first property studied is the dependence of the 
size distribution function p(R) on topological class. 
The frequency of grain occurrence as a function of 
grain size in different topological classes, obtained 
from the microstructure at time step 1000, is shown 
in Fig. 2 in which the dashed line represents the size 
distribution function for all the grains and the solid 



1118 DANAN FAN et al.: TOPOLOGICAL EVOLUTION IN 2-D GRAIN GROWTH 

lines are the size distributions for grains in a given 
topological class. It can be seen that the peak height 
of the size distribution for a given topological class 
increases as the number of grain sides increases from 
3 to 6, and then decreases when the topological class 
is larger than 6, whereas the width of the size 
distributions decreases as the number of grain sides 
increases. It is quite clear from Fig. 2 that the peak 
of the overall size distribution for all grains comes 
mainly from the contributions of 5-, 6- and 7-sided 
grains. As expected, few-sided grains tend to have 
smaller sizes while many-sided grains are more likely 
to have larger sizes. Moreover, smaller-sided grains 
seem to have much wider size distributions. 

To investigate the relationship between the 
grain-shape distribution and topological classes, the 
frequency of occurrence of grains with a certain 
number of sides is plotted against the number of sides 
12 at several selected time steps in Fig. 3. It appears 
that the shapes of the distribution p(n), similar to the 
size distribution function p(R), are self-similar at 
different time steps, i.e. it is time-invariant. It is also 
observed that 5-sided grains have the highest 
frequency of occurrence at all times and 6-sided 
grains are the second highest. However, the average 
number of grain sides over all grains in the system is 
very close to 6 at all times as shown in Fig. 4, which 
satisfies the requirement of space filling. The average 
number of sides over time A obtained from Fig. 4 is 
5.995. 

Another property calculated is the moment of the 
grain side distribution, which is defined as: 

m 
Pm = 2 P(n>tn - (n>jrn 

n=2 

where p,,, is the mth moment of the side distribution 
function p(n) and (n) the average number of grain 
sides at a certain time. The moment of the side 
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Fig. 3. Grain edge distributions at different time steps. In the Fig. 5. Time dependence of second moment ~2 of grain edge 
scaling region, the shape of the grain edge distribution is distribution. The solid line is the average value of ~2, 

time-invariant. (~2) = 2.33 + 0.13. 
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Fig. 4. Average number of grain sides of all grains at 
different time steps. 

distribution is an important indicator of the 
topological characteristics of a system during grain 
growth. Moments larger than pz are much more 
sensitive to the large-n tail of the side distribution and 
to the measurement error, and hence, normally they 
are only useful for qualitative analysis. The time 
dependence of the second moment of the side 
distribution pz is shown in Fig. 5. It can be seen that, 
after the initial 1000 time steps, the values of ~2 are 
almost constant as a function of time with a small 
fluctuation, which indicates that the system has 
reached the scaling state and good statistics were 
obtained for calculating the side distribution. The 
average value for ~2 is 2.33 f 0.13, which is very close 
to the Monte Carlo simulation result ~2 = 2.49 [39]. 

The correlation function between the number of 
sides n of a grain and the average sides of its 

4 

<p,> = 2.33 kO.13 
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Fig. 6. Neighbour side correlation function m(n) and its 
standard deviation at ten different time steps. The solid line 
is the data fitted into equation (11) with a = 1.0 and 

~2 = 2.34. 

neighbours, m(n), as defined by Aboav [45], has a 
form 

m(n) = 5 + i. (7) 

A more general form, as suggested by Weaire [46], is 

6a + 14 m(n)=6-at-n, 

where p2 is the second moment of the side distribution 
and a is a constant with its value close to unity. This 
equation is called the Aboav-Weaire law. The m(n) 
values and their standard deviations calculated at 
different time steps from our simulation data are 
shown in Fig. 6. It can be seen that few-sided grains 
tend to have many-sided grains as neighbours 
whereas the average number of sides for neighbour- 
ing grains around a many-sided grain is close to 6. It 
is observed that the correlation function m(n) is 
time-invariant in the scaling region and the average 
values of m(n) have an excellent fit to equation (8). 
The solid line in Fig. 6 is the fit of equation (8) with 
a = 1.0 and ~2 = 2.57. On the other hand, if the 
average data is fitted to equation (8) with two free 
parameters a and p2, the best fit is a = 1.28 and 
p2 = 2.34. It may be noted that the two curves 
generated by a = 1.0 and p2 = 2.57, and by a = 1.28 
and p2 = 2.34 do not have significant differences. This 
result seems to agree with the Monte Carlo Potts 
model simulation [39]. 

Lewis [6] showed that, for two-dimensional 
polygonal cells, the average area of an n-sided 
polygonal cell is a linear function of the cell sides n: 

(A. > = P(n - no), (9) 

where (A,) is the average area of n-sided cells at a 
given time, B and n, are constants dependent on the 
properties of the structure. This relationship is true at 

any fixed time. The results extracted from our 
simulation data are presented in Fig. 7. In Fig. 7, the 
average area of n-sided grains was normalized by the 
average area of total grains at that time step for 
comparing the results from different times. It can be 
seen that results obtained from different time steps 
agree with each other reasonably well within 
statistical errors. However, the linear relationship 
given by equation (9) seems to be followed only for 
intermediate topological classes. By averaging the 
data over different time steps and independent runs, 
it is found that for 3- and 4-sided grains the Lewis law 
predicts negative areas if the data were fitted to 
equation (9) i.e. few-sided grains have a larger area 
than the Lewis’ law predicted. For grains with 5-10 
sides, the linear relationship between average areas 
and grain sides n is held reasonably well, whereas the 
average areas for many-sides grains (n > 12) are, 
again, larger than those predicted by equation (9). 

On the other hand, Feltham [4], based on a study 
of three-dimensional grain growth, predicted a linear 
relationship between the average grain radius of 
n-sided grains and the topological classes n, i.e. 

(R, > = B’(n - n;) (10) 

where fi’ and n: are constants. This relationship is 
tested in Fig. 8 by plotting normalized grain radius 
R,/(R) as a function of topological class n for 
different time steps. A very good linear relationship 
is observed for all times. Averaging data over 
different runs and different time steps yields an 
excellent linear dependence of average radius of 
n-sides grains on the topological class n. 

4.2. The kinetics of individual grains 

One of the advantages of computer simulations is 
that the properties of a large number of individual 

,I.,,$,.,.,.. 
0 2 4 6 8 10 12 14 16 

grain sides, n 

Fig. 7. Relationship between normalized average grain area 
(A.)/(A) and topological class n at different time steps. 
The solid line is the linear fit to the average data from 

different times. 
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Fig. 8. Relationship between normalized average grain 
radius (R.)/(R) and topological class n at different time 
steps. The solid line is the linear fit to the average data from 

different times. 

grains can be monitored and hence the assumptions 
or relationships proposed by analytical theories can 
be examined. The Mullins-Von Neumann law 
requires a linear relationship between the growth 
rates of individual grains and their topological 
classes: 

$f = 7 (n - 6) (11) 

where M is the grain boundary mobility and cr is the 
grain boundary energy. This relationship was 
quantitatively examined by monitoring the growth 
rates of individual grains for different topological 
classes at various times. Figure 9 is a plot of 
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Fig. 9. Dependence of growth rate dA/dt on grain area A 
and topological class n for individual grains at time step 
t = 1000. In the figure, 3s means 3-sided grains, 4-s 4-sided 

grains, and so on. 
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Fig. 10. Relationship between average growth rate dA/dt 
and topological class n for about 4000 grains. The solid dots 
are the average growth rates in each topological class and 
the solid line is a linear fit to equation (11). The error bars 
represent the maximum and minimum growth rates 

observed in each topological class. 

individual growth rates dA/dt against the grain area 
A for different topological classes at a time step of 
1000, by examining more than 1200 grains. It can be 
seen that although most of the large grains have many 
sides and a positive growth rate (dA/dt > 0), this is 
not always true. For example, many small grains with 
7 sides have negative growth rates (dA/dt < 0), i.e. 
some 7-sided grains shrink instead of growing. It is 
also common that many-sided grains have a zero 
growth rate (dA/dt = 0) within certain time intervals. 
Similarly, although the majority of small grains have 
fewer sides than 6 and have negative growth rates, 
some 5-sided grains may have significantly larger size 
and actually grow. For 6-sided grains, their sizes are 
more concentrated at the average grain size, and both 
growth and shrinkage of 6-sided grains are observed 
even though most of them have a zero growth rate. 

The average growth rates of individual grains for 
about 4000 grains are plotted in Fig. 10 according to 
the topological class. In the plot, the solid dots are the 
average growth rates in each topological class and the 
solid line is a linear fitting to equation (11). The error 
bars represent the maximum and minimum growth 
rates observed in each topological class. It is clear 
that many-sided grains (n > 8) tend to grow and 
few-sided grains (n < 5) tend to shrink. However, 
situations are much more complicated for 5-, 6- and 
7-sided grains. Those grains can either grow or shrink 
as well as have zero growth rate depending on their 
sizes and their neighbour grains or local topology 
arrangements. The difference is that the majority of 
S-sided grains shrink and most 7-sided grains grow 
while most of the 6-sided grains have a zero growth 
rate. As a result, the average growth rate for 5-sided 
grains is negative, that for 7-sided grains is positive 
and as expected it is zero for 6-sided grains. It can be 
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seen that the Mullins-Von Neumann law is obeyed 
[equation (1 l)] by the average growth rate of the 
grains within a topological class. This relationship is 
also time-invariant and independent simulation runs 
give nearly identical results. 

Hillert [3] suggested the following relationship 
between the growth rate of an individual grain and its 
radius: 

%_k &f ( > (12) 

where R is the radius of the grain and k is a constant. 
R, is a critical radius such that grains with radii less 
than R, will shrink and those with radii larger than 
R, will grow. In two-dimensions, RL, may be equal to 
the average grain radius (R). This equation was also 
derived in two dimensions by Liicke et al. [15] based 
on first principles and topological arguments. This 
equation is quantitatively tested by plotting dR/dt vs 
(l/R - l/(R)) for individual grains, as in Fig. 11. An 
obvious feature of this plot is the large fluctuation of 
the data, especially for small size grains. The highest 
density of grains occurs at l/R - l/(R) = 0 where 
the size distribution function is maximal (R/ 
(R) = 1). There is no clear linear relationship in this 
plot. The average growth rates over 4000 grains at 
certain (l/R - l/(R)) intervals are replotted in 
Fig. 12. In this figure, the dashed line is the data 
extracted by using interval A(l/R - l/(R)) = 0.01 
for the averaging and the solid dots interval 
A(l/R - l/(R)) = 0.05. The solid line is the linear fit 
to the average data. It can be seen that the data near 
the average size region (l/R - l/(R) = 0) fit to the 
straight line quite well. As the grain size departs from 
the average size, the degree of data fluctuation 
increases. Especially when the grains become smaller 
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Fig. 11. Dependence of growth rate dR/dr on l/R - l/(R) 
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and smaller, the deviation of the growth rate from 
Hillert’s equation becomes more and more severe. 
One of the reasons is that only very few small grains 
exist at a certain time step and hence the statistics are 
poor. However, it is clear that each individual grain 
may not follow Hillert’s equation if the mean grain 
size is used as the critical size Kc,,. 

In the mean field theories, grain growth is viewed 
as a grain flux in the distribution space. Therefore, 
individual growth rates of grains in the distribution 
space may be used to study the behaviour of the grain 
evolution in distribution space. Following Srolovitz 
et al. [37], the growth rates dR/dt were normalized 
with (R) and d(R/(R))/dt was plotted against 
R/(R) in the distribution space. The growth rates 
d(R/(R))/dt for more than 4000 grains are shown in 
Fig. 13. Figure 14 is the average data with interval 
A(R/(R)) = 0.01. A large fluctuation of d(R/(R))/dt 
for individual grains is observed. However, Fig. 14 
shows that small grains (R/(R) less than 0.5) have a 
large negative d(R/(R))/dt, i.e. they rapidly shift to 
the small side of the distribution. For large grains 
(R/(R) larger than l.O), the change rates d(R/(R))/ 
dt are much smaller and a small positive value is 
obtained on the average, which indicates that large 
grains move very slowly to the large side of the 
distribution. The above results essentially agree with 
the Monte Carlo simulations except that for grains 
with R/(R) larger than 1.0 a zero change rate was 
reported in the Monte Carlo simulation [37]. 

5. DISCUSSION 

One interesting observation to be noticed in Fig. 2 
is that the shapes of size distributions for each 
topological class may not be the same and it is not 
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Fig. 13. Normalized growth rate d(R/(R))/dt in normalized 
grain size (R/(R)) space for individual grains. In this plot, 
more than 4000 grains were measured at different time steps 

and independent runs. 

necessary to have the same distribution as the total 
distribution. The asymmetric feature of the total 
distribution function mainly comes from the 5-, 6- 
and 7-sided grains, which have highest probabilities 
of occurrence and dominate the shape of the total 
distribution. For few-sided and many-sided grains, 
the distributions are more symmetric than those of 5, 
6- and ‘I-sided grains. Even though the peak of the 
size distribution for 6-sided grains is highest among 
all the topological classes, the S-sided grains have the 
highest probability of occurrence as shown in Fig. 3, 
the main reason being that S-sided grains have a 
wider size distribution than 6-sided grains. 

The present simulation (Figs 3 and 5) shows that 
the shape distribution is also time-invariant, indicat- 
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Fig. 14. Average data for normalized growth rate 
d(R/(R))/dt in normalized grain size (R/(R)) space. The 
data in Fig. 12 were averaged with interval A(R/ 

(R)) = 0.01 in this figure. 
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Fig. 15. Comparison of grain edge distributions between 
current study, Potts simulation, soap froth and experimental 

results in Al thin films [17,37, 391. 

ing that the “scaling” nature of normal grain growth 
applies both to the size distribution and to the shape 
distribution in two dimensions. This result seems to 
be consistent with the Potts model simulations and 
soap froth experiments [37, 391. The shape distri- 
butions from the present simulation, the Potts model 
simulation [39], experimental observations of soap 
froth [39] and grain growth in Al thin films [17] are 
compared in Fig. 15. It can be seen that the shapes 
of these distributions from different sources are very 
similar and all of them have a maximum at 5-sided 
grains. However, simulations based on the mean field 
theory predicted a peak at 6-sided grains [ 17,3 11. The 
ratio of the frequency of occurrence of 5-sided grains 
to that of 6-sided grains, p(5)/p(6), is 1.09 in the 
present simulation, 1.07 in the Potts model simu- 
lation, 1.05 in grain growth in metallic thin films and 
1.03 in soap froth, which are identical within the 
statistical error. However, a careful examination of 
the distributions indicates that the shape distribution 
from soap froth has significantly lower values for 
many-sided grains than those in other distributions. 
The distribution data from different sources are 
tabulated in Table 1 for a more detailed comparison. 
One reason for this difference could be the fact that, 
intrinsically, many-sided grains are not favoured in 
soap froth experiments, and the fact that large and 
many-sided bubbles are more likely to touch the 
boundary in soap froth experiments and hence are 
excluded from the measurement and statistics 
analysis [39]. Another reason could be due to the 
coalescence which occurred in the present simulation 
as well as in Monte Carlo simulations as a result of 
the finite number of grain orientations, resulting in 
the formation of many-sided grains. 

The second moment of the shape distribution, 
p2 = 2.33 f 0.13, obtained in the present simulation, 
is close to that obtained in the Monte Carlo 
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Table 1. Data of grain edge distributions from simulations and experiments 

Edges Present model 

4 

6 

8 
9 

10 
11 
12 
13 

0.0088 
0.1192 
0.2936 
0.2694 0.3050 
0.1666 0.1700 
0.0752 0.0690 
0.0385 0.0330 
0.0175 0.0080 
0.0053 
0.0038 
0.0020 

Soap froth [39] 

0.0100 
0.0910 
0.3140 

0.0050 
0.0008 
0.0003 

Metal film [17] Potts model [39] 

0.0350 
0.1400 
0.2590 
0.2460 
0.1570 
0.0820 
0.0360 
0.0200 
0.0090 
0.0020 
0.0025 

0.0250 
0.1280 
0.2710 
0.2530 
0.1610 
0.0840 
0.0390 
0.0190 
0.0080 
0.0030 

simulation (2.49) and to that measured in Al films 
(2.90). However, it is significantly higher than the 
soap froth result 1.5 + 0.3 [39]. The difference in p2 
between soap froth and Monte Carlo simulations as 
well as Al film results was originally believed to be the 
result of lattice anisotropy in the Potts model [39]. In 
the present continuum diffuse-interface model, 
however, the anisotropy due to the discretization of 
the continuum equations is extremely small if there 
are enough grid points to resolve the grain 
boundaries [23]. We checked our results by choosing 
parameters that produce grain boundaries four times 
thicker than those in the present simulation, and 
indeed we obtained almost identical values for the 
second moment. This indicates that some other 
factors other than the lattice anisotropy must 
contribute to the differences in the second moment 
obtained from different sources. We believe that the 
difference in moments is due to much lower 
frequencies of occurrence for many-sided grains in 
soap froth data than the present simulation and Potts 
simulations. Values for moments are sensitive to the 
tail of the distribution on the side of the many-sided 
grains. For example, one percent of 13-sided grains 
will contribute to ~2 as much as 0.49 and the same 
amount of 12-sided grains will contribute 0.36. To 
show how the tail of many-sided grains may influence 
the second moment, let us cut the tails of distributions 
for n > 10 and recalculate the second moments for 
the distributions from different sources. It can be seen 
in Table 2 that, after recalculation, the p2 values for 
the diffuse-interface model, Potts model and metal 
film are significantly less and agree much better with 
that in the soap froth. It is noticed in Table 1 that for 
6-sided grains soap froth data have the highest 
probability; the data from the present simulation 
have the second highest value, with the Potts model 
third, and metal film data the lowest (Fig. 15) 
whereas the p2 value increases in this order. Hence, 
the smaller the tail of the distribution for many-sided 
grains, the higher the probability of 6-sided grains, 
and the lower the second moment. It should be 

Table 2. JLI values before and after cutting the tail of distribution 

Diffuse model Soap froth Metal film Potts model 

Before 2.31 1.81 2.68 2.47 
After 1.66 1.51 1.94 1.86 

pointed out that the lattice anisotropy may also 
influence the values of moments. For example, the 
difference in second moments between the present 
model and the Potts model could be due to lattice 
anisotropy, which is small compared to the difference 
between the present model and soap froth data. 

Lewis’s law [equation (9)] is based on the 
mathematical requirement for the balance between 
the space filling and entropy, whereas polycrystal 
aggregates are regulated not only by the space filling 
but also by physical constraints [l, 41 such as the 
balance of surface tensions. Both experimental results 
[19] and Potts model simulations [37] as well as our 
present simulation (Fig. 7) demonstrated that grain 
growth in polycrystalline materials departs from the 
Lewis law. It is the physical constraints that result in 
the linear relationship between the mean radius and 
the topological class n, i.e. the Feltham law [equation 
(lo)]. Indeed, the Feltham law is reproduced by the 
present simulation (Fig. 7), the Potts model 
simulations and experiments [19,37]. The linear 
relationship is well approximated by the equation 
(R,)/(R) = 0.248(n - 2) in the present simulation, 
which is almost identical to that obtained in Potts 
model simulations. However, there are subtle 
differences between our data and soap froth data. In 
our simulation, both few-sided and many-sided 
grains have larger average areas than Lewis’s law 
predicted while in the soap froth data many-sided 
bubbles have smaller areas than Lewis’s law predicted 
[39]. Our data fit into the Feltham law very well for 
many-sided grains (Fig. 8) whereas soap froth data 
are lower than the linear prediction. This is another 
indication that there are fewer large many-sided 
grains in soap froth. 

Another property which can be extracted from 
grain areas and topological classes is the so-called 
geometric factor CI, which is the ratio of the kinetic 
coefficient k (k = c0rMa/3) in the power growth law 
(d: - d,’ = kt) to the kinetic coefficient k, (k, = TcM~/ 
3) in the Mullins-Von Neumann law [equation (1 l)]. 
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Fig. 16. Dependence of average grain edges (n) on 
normalized grain size A/(A). The individual data was 
averaged with interval A(A/(A)) = 0.3 in this plot. The 
solid line is the linear fit to the equation (n) = (n,) + a(A/ 

(A)), where a is the geometrical factor. 

Fradkov [16] showed that the geometrical factor CI 
can be expressed as 

d(n) a = WI(A >) (13) 

where (n) is the average number of grain edges for 
all grains in a given area interval A/(A). Following 
Palmer et al. [20], the dependence of the average 
number of grain sides as a function of A/(A) is 
shown in Fig. 16 with interval A@/(A)) = 0.3. The 
data were obtained by examining about 4000 grains. 
The slope of the linear fit gives a = 1.27 + 0.04 which 
is almost identical to the experimental result 
1.28 f 0.05 obtained in succinonitrile (SCN) thin 
films [20]. 

It is widely accepted in theories and analyses that 
only 3-sided grains undergo vanishing in two-dimen- 
sional grain growth, and 4- and 5-sided grains have 
to transform to 3-sided ones through, neighbour 
switching before vanishing. A rather surprising result 
in Fig. 16 is that when the average area goes to zero, 
the average number of grain sides n0 = 4.59 k 0.04. A 
very similar value has also been obtained from in situ 
observation of two-dimensional grain growth in SCN 
[22]. The value 4.59 for no indicates that the majority 
of grains undergoing vanishing are 4- and 5-sided 
grains in 2 dimensions. Indeed, in our simulations, 
many grains stay in the 4-sided class before 
transforming to a disorder region where a junction of 
four grain boundaries is formed. All these simulation 
and experimental results prove that the vanishing of 
4- and 5-sided grains is an important and common 
feature of 2-dimensional grain growth and should be 
included in theories which intend to describe 
2-dimensional grain growth. 

By time-differentiating Lewis’s law [equation (9)], 
Rivier [lo] gave a similar equation to the Mullins- 
Von Neumann law, i.e. 

d(A” > - = C,(n - 6) 
dt 

where (A,) is the average area of n-sided grains and 
CT is a constant. The data obtained from the present 
simulation are plotted in Fig. 17. Although the 
dependence of d(A)/dt on n appears to be linear, the 
n at which d(A)/dt is zero is about 4 instead of 6 as 
in equation (14). One of the reasons for this 
disagreement may be the fact that this equation 
comes purely from the mathematical requirement of 
space-filling, and surface tension constraints are not 
considered. 

The conclusion that the Mullins-Von Neumann 
law [equation (1 l)] holds on average is consistent with 
recent experimental results in SCN thin films [20] and 
in soap froth [4749]. Soap froth experiments [47,48] 
showed that the average internal angles of bubbles 
were not exactly 120”, which is assumed in the 
derivation of equation (11). The deviation of the 
internal angles from 120” in soap froth is attributed 
to the presence of plateau borders in soap froth [49], 
and it is found that the Mullins-Von Neumann law 
is obeyed by individual bubbles in a drained froth 
with extremely narrow plateau borders [50]. There- 
fore, it is clear that the deviation of the growth rate 
from the Mullins-Von Neumann law for individual 
grains is due to the fact that the equilibrium assumed 
in equation (11) at vertices cannot be simultaneously 
achieved at each vertex during grain growth. It 
should be pointed out that, in soap froth, the 
diffusion process along boundaries is much faster 
than that across boundaries, which means that the 
equilibrium at vertices can be achieved quickly and 
the curvature of a bubble wall is constant in soap 
froth. On the other hand, in the grain growth of 

2 4 6 8 10 12 14 16 

grain sides, n 

Fig. 17. Relationship between averaged growth rate 
d(A,)/dt and the topological class n. 
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polycrystalline materials and in the current model, 
the time taken to reach equilibrium at vertices is 
much longer and the curvature of a grain varies from 
place to place. As a result, much wider deviations 
from equation (11) for each topological class are 
observed in the current simulations (Fig. 10) and in 
SCN thin films [20]. 

In equation (12) the driving force for grain growth 
is assumed to depend only on the grain size. Our 
simulation results (Fig. 12) indicate that this 
assumption may be valid near the mean grain size 
region if the mean grain size is used as the critical size 
R,,. For large and small grains, deviations from this 
assumption are severe. We believe that the driving 
force for grain growth is dependent on both 
topological class and relative grain size, i.e. the 
behaviour of individual grains may be governed by a 
combination of, or competition between, the Von 
Neumann law or Hillert relationship. For example, 
many-sided grains tend to grow because they have 
concave boundaries and normally are larger than 
neighbour grains; however, the curvature and growth 
rate of each grain really depend on its size relative to 
those of neighbouring grains, and this is the reason 
for the fluctuation of growth rates (Figs 9-12). 
Similarly, few-sided grains tend to shrink due to 
convex curvature, but if a few-sided grain is relatively 
large it may not change its size within a certain time 
interval because the driving force is small. For 5-, 6- 
and 7-sided grains, their curvatures depend on their 
size and on neighbouring grains. If they are large and 
near small few-sided grains, they may have concave 
boundaries and grow; otherwise, they may shrink. 
These features can be clearly seen in Figs 9 and 10. 
However, there may not be a global critical radius %, 
which applies to each grain and it is really dependent 
on the individual grain and its neighbouring grains. 

The dependence of the growth behaviour of an 
individual grain on the topological class, grain size 
and neighbouring grains results in randomness in the 
grain growth process. The randomness comes from 
the fact that the relationship between a grain and its 
neighbour grains cannot be predicted exactly even 
though the correlation exists between grains. In 
systems of isotropic grain boundary energies, grain 
growth is always driven by the curvature effects which 
are particularly dominant for small few-sided grains 
and large many-sided grains, while randomness may 
influence the growth rates and direction of 5-, 6- and 
7-sided grains. The change rate d(A/(A))/dt in the 
distribution space (Figs 13 and 14) may not give the 
evolution direction of a grain. For example, if the 
area of a grain does not change within a given time 
interval while the average area of all grains has 
increased, a negative change rate will be obtained in 
the distribution space. This negative rate means that 
this grain moves to a smaller size group because of 
the growth of other grains and it may not be the 
evidence of grain shrinkage. In this simulation, the 
shrinkage of large many-sided grains is not observed, 

indicating the dominance of curvature effects during 
grain growth. 

6. CONCLUSIONS 

Based on the computer simulation results of grain 
growth in two dimensions using a diffuse-interface 
model, we arrive at the following conclusions: 

(1) The shape distribution p(n) is time-invariant 
and the peak is found at n = 5, consistent with 
experimental results and Potts model simulations, but 
different from the simulations based on the mean field 
theories which predicted a peak at n = 6. 

(2) The second moment of the shape distribution 
p1 = 2.33 is close to that obtained in Potts model 
simulations and metallic films. The departure of our 
data from that of soap froth is shown to be mainly 
a result of the difference in frequencies for 
many-sided grains in soap froth data and our 
simulations. The possible origins for the difference 
are discussed. 

(3) The correlation between grains is observed and 
the Aboav-Weaire law is confirmed. 

(4) Although our simulation results do not follow 
the Lewis law, the data fit to the Feltham law quite 
well. 

(5) The Mullins-Von Neumann law is found to 
hold on average, whereas Hillert’s relationship is 
obeyed near the mean grain size region if the mean 
grain size is used as the critical size R,,. Based on the 
local kinetics for individual grains and the relation- 
ship with the topological class, the factors controlling 
the behaviour of individual grains are discussed. 

(6) The randomness of growth rates for individual 
grains comes from the uncertainty of locally 
topological arrangements and the relative sizes of 
neighbouring grains. 
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