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Abstract-The kinetics of grain growth in two-dimensions (2-D) were investigated by computer 
simulations based on a continuum diffuse-interface field model. In this model, a polycrystalline 
microstructure is described by many orientation field variables whose temporal and spatial evolutions can 
be obtained by solving the time-dependent Ginzburg-Landau (TDGL) equations. It is found that the time 
dependence of average grain radius i? follows the kinetic law: & - li$’ = kt with m = 2.0 in the scaling 
regime, in agreement with most of the previous simulation and theoretical results obtained using 
sharp-interface models. It is shown that the Louat’s function provides a reasonable fit to the grain size 
distribution obtained from the simulation. In contrast to the general belief that 4- and 5-sided grains 
transform to 3-sided before their disappearance in 2-D grain growth, we found ample evidence that 4-sided 
and 5-sided grains may directly evolve to a region of disordered material, whose size is on the order of 
the grain boundary thickness and whose boundaries with neighbours are not well defined, and then 
disappear. The dependencies of grain growth kinetics on the computational cell size, the discretizing grid 
size, grain boundary width, as well as the number of field variables were critically examined. Copyright 
~0 1997 Acta Metallurgica Inc. 

1. INTRODUCTION 

Extended defects in crystals, such as grain boundaries 
in polycrystals, are always associated with positive 
excess free energies, and therefore are thermodynam- 
ically unstable. As a result, grain growth in 
polycrystals will always take place to reduce the total 
grain boundary area, and thus the total grain 
boundary energy. 

Grain growth, due to its importance in controlling 
the physical properties of a wide variety of materials, 
has been extensively investigated [l, 21. It was shown 
that, in the so-called scaling regime, a microstructure 
reaches a steady state in which only the average size 
increases while the normalized size distribution is 
independent of time [3,4]. Due to the difficulty 
of directly incorporating topological features into 
analytical theories of grain growth [5-71, there has 
been increasing interest in using computer simu- 
lations to study grain growth in single-phase 
materials. A variety of models have been proposed. 
These include boundary dynamics models [8-lo], 
vertex models [l l-131, Potts models [14-161, Voronoi 
tellselation [17, 181, and models based on mean-field 
theories [19-221. A common feature of all these 
models is that all of them describe grain boundaries 
as sharp interfaces having zero thickness. 

Very recently, we proposed a rather different model 
for grain growth, in which grain boundaries are 
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assumed to be diffuse with finite thickness [23 
this diffuse-interface model, a polycrystalline 

_ 

structure is described by many orientation field 
variables, which distinguish orientation differences of 
grains and which are continuous functions of spatial 
position and time. The total grain boundary energy 
of a microstructure is a function of the field variables 
and their gradients, analogous to the diffuse interface 
theory of Allen and Cahn [27] for antiphase domain 
boundaries (APBs) in ordered alloys. Therefore, we 
call this model a diffuse-interface field model. The 
temporal evolution of these field variables, and 
thus the microstructural evolution and grain growth 
kinetics, were described by the time-dependent 
Ginzburg-Landau (TDGL) equations. The prelimi- 
nary results based on this model have been reported 
in previous short communications in the context of 
ordering dynamics of a system with a large number 
of non-conserved order parameters [23] and of grain 
growth [24]. 

One of the main objectives of this paper, then, is 
to give a more detailed account of the model and to 
investigate carefully the dependence of obtained grain 
growth kinetics on the size of computational cells and 
the number of orientation field variables. The second 
objective is to compare the grain growth kinetics 
obtained from this diffuse-interface model with those 
obtained from other models, in particular, from the 
popular Potts model. Furthermore, it is generally 
believed that 4- and 5-sided grains transform to 
3-sided before their disappearance in 2-D grain 
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Fig. 1. A schematic microstructure described using 
orientation variables. The lines are grain boundaries. 

growth. However, recent theoretical work on 2-D 
model systems by Fradkov [28] and experimental 
work on thin films by Palmer et al. [29] indicated 
that most of the grains remain in the same 
topological class until their disappearance. Therefore, 
the third objective is to examine, within the 
diffuse-interface description, the local topological 
changes of individual grains and to determine 
whether or not 4- and 5-sided grains must transform 
to 3-sided grains before their disappearance. The final 
objective is to examine critically the effect of grain 
boundary thickness as introduced in the diffuse-inter- 
face model on the kinetics of grain boundary 
migration. 

2. THE DIFFUSE-INTERFACE FIELD MODEL 

In the diffuse-interface field model, an arbitrary 
polycrystalline microstructure is described by a set of 
continuous field variables, 

rl&), rl2(rh . . . , dr), (1) 

where vi (i=l,... ,p) are called orientation field 
variables for distinguishing different orientations of 
grains and p is the number of possible orientations. 
A schematic microstructure represented by orien- 
tation fields in 2-D is shown in Fig. 1. For example, 
within the grain labelled by vI, the value for qI is 1 
while all other vi for i # 1 is zero. Across the 
grain boundaries between the grain VI and its 
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n 

t 
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Fig. 2. The schematic profiles of two orientation variables 
across a flat grain boundary. 

neighbour grains, the value of nI changes continu- 
ously from 1 to 0. The schematic profiles of qI and 
q2 across the grain boundary between the grain ql 
and q2 are shown in Fig. 2, all other field variables 
having zero values at and around this grain 
boundary. In real materials, the number of grain 
orientations is infinite, i.e. p = co. However, only a 
finite number of p can be modelled in a computer 
simulation. Therefore, the effect of the number of 
orientation field variables on the grain growth 
kinetics must be studied. 

Similar to the treatment of APBs by Allen and 
Cahn [27], we write the total free energy of an 
inhomogeneous system in terms of all the orientation 
field variables and their gradients as: 

F = fo(qi(r), &), . . . , v,(r)) 

+ f: : (Vrli(r))2 d’r (2) 
i=l 1 

where Jo is the local free energy density which is a 
function of field variables vi, and rci are the gradient 
energy coefficients. The main requirement for A 
is that it has p degenerate minima with equal depth, 
fmm located at (Q, y12, . . . , Q) = (1, 0, . . . , 0), 
(0, 1,. . . , 01, . . , 640, . . . 3 1) in p-dimension space. 

The origin of grain boundary energy comes from 
the gradient energy terms, (VQ)~, which are non-zero 
only around the grain boundaries. According to 
Cahn and Hilliard [30], the energy bgb of a flat grain 
boundary between orientation i and j (i # j) can be 
written as: 

(?,b = 

+;@)‘+@)‘]dx. (3) 

It may be noted that the whole integrand is zero 
everywhere except at grain boundary regions. For a 
given fo, the boundary energy and thickness vary with 
xi. The smaller the rci, the thinner the boundary 
region and the smaller the boundary energy. As will 
be discussed in more detail later, the only role offo 
is to provide well-defined grain boundaries between 
different grains specified by thep degenerate potential 
wells since, according to the analysis of Allen and 
Cahn [27], in this diffuse-interface description, the 
boundary migration velocity is only proportional to 
the local mean curvature of the boundary and is 
independent of the potential function, A. 

Since the orientation field variables are non- 
conserved quantities, their local evolution rates are 
linearly proportional to the variational derivative of 
the total free energy with respect to the local 
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orientation field variable, i.e. governed by Ginzburg- (0, 1, ,O), . , (O,O, . . , l), respectively. A 
Landau equations, simple function which satisfies this requirement is 

Mrt t) _ _ L 6F 
at ’ 6rl!(‘, t) ’ 

i= 1,2 ,...,P (4) 

where L, are the relaxation coefficients, t is time, and 
F is total free energy. In the right-hand side of (4), the 
cross-terms have been assumed to be zero. The 
validity of this assumption remains to be verified. 
With p = 1, the Ginzburg-Landau equation has 
been extensively applied to modelling the dynamics 
of a quenched system with a non-conserved order 
parameter [31], to the kinetics of antiphase domain 
coarsening [27], and recently to solidification in a 
pure material [32]. 

3. MOTION BY MEAN CURVATURE 

In traditional theories of interface motion, the 
boundary velocity, V, is generally written as 

I’ = B A/J = Ba&(l, + &), (5) 

where B is mobility, Ap is the chemical potential 
difference per atom across the boundary, egb is the 
boundary energy, Q is the atomic volume, and 
(1, + &) is the mean curvature. 

As mentioned above, if we set p = 1 and substitute 
the free energy expression (2) into the kinetic 
equation (4), we obtain the equation for the evolution 
for APBs described by the long-range order 
parameter field r~, 

h(r, t) _ _ L afm -- 
at all 

Kv'?J 
1 

(6) 

By assuming that the APB width is much smaller than 
the domain size, Allen and Cahn [27] showed that the 
APB migration velocity is given by: 

v = LK(,t, + A,). (7) 

The important implication of (7) is that APB motion 
is only determined by the local mean curvature and 
is independent of the specific form of the local free 
energy density function, fo. It can be shown that 
for isotropic grain boundary energy and isotropic 
relaxation constants, a grain boundary within the 
diffuse-interface description also moves due to mean 
curvature and we obtained exactly the same equation 
for the boundary velocity as (7). 

4. CONSTRUCTION OF THE LOCAL FREE ENERGY 
DENSITY 

As pointed out in the last section, for the purpose 
of modelling grain growth in a pure system, the exact 
form of the free energy density function, fo, is not 
important for the motion of APBs and grain 
boundaries. The only requirement for f. is that it 
provides large numbers of potential wells with equal 
well depth located at (q,, Q, . . , yip) = (1, 0, . . , 0), 

where CI, /I and y are positive constants. For 
simplicity, let us assume c( = 1 and b = 1. In this case, 
it can be easily seen that each term in the first 
summation in the right-hand side of equation (8) is 
a double-well potential with the wells located at 
q, = - 1 and ?I = 1, and with a well-depth of -0.25. 
However, the first summation alone cannot satisfy 
our requirement since it will have a total number 
of 2~ minima located at the positions where each 

is either equal to 1 or - 1, such as 
$1. ;rlz, . . Q,) = (1, 1, . . , 1). Therefore, the cross 
terms were added to equation (8) as a double 
summation. With a proper choice of y, the potential 
function can satisfy our requirement. To see how to 
choose y, let us rewrite expression (8) as follows: 

Now it is quite clear that if y = /I/2, J, has infinitely 
degenerate minima for any p > 1, located at the loci 
described by 

For p = 2, these loci form a circle, for p = 3 
they form a sphere, etc. For y < p/2, fo has 2p 
minima with each qZ being either equal to 1 or 
- 1. For y > 812, f. has 2p minima located at 
(rll, rl?, . . . , b) = (1, 0, . . 9 O), (0, 1,. ? 01, > 
(0, 0, , l), (- 1, 0, . ) O), (0, - 1, . . , O), . . ) 
(0, 0, . . . , - 1). Therefore, y has to be greater than 
/I/2 in order for f. to satisfy our requirement. In 
modelling grain growth, each of the 2p minima 
represents a specific crystallographic orientation of 
grains. An example of the free energy surface with 
p = 2 and y = 1 is shown in Fig. 3 in which there are 
four minima located at (r], , Q) = (1, 0), (0, l), (- 1,O) 
and (0, - 1). 

Using the expression for f. given in (8) and then 
substituting the total free energy F (equation (2)) into 
equation (4), we obtain the kinetic equations, 

i= 1,2,. . ,p. (10) 
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q 1 =l.O 

112 = 0.0 

Fig. 3. Free energy density surface with two orientation 
variables with the cross term y = 1.0. 

5. NUMERICAL SOLUTION TO THE KINETIC 
EQUATIONS 

In order to simulate the grain growth kinetics, the 
set of kinetic equations (10) have to be solved 
numerically by discretizing them in space and time. In 
our simulation, the Laplacian is discretized by the 
following equation, 

where Ax is the discretizing grid size, j represents the 
first nearest neighbours of site i, and k represents the 
second nearest neighbours. For discretization with 
respect to time, we employed the simple explicit Euler 
equation, 

r/i(t + At) = nl(t) + 2 x At (12) 

where At is the time step for integration. For a given 
initial distribution of vi, which describes the initial 
grain structure, the temporal and spatial evolution of 
the microstructure can be obtained by numerically 
solving equation (10). A grain growth simulation can 
be started in two different ways: (1) inputting a 
pre-defined initial microstructure, or (2) generating a 
liquid phase by assigning small random values to ail 
field variables, e.g. between -0.001 and 0.001, and 
then allowing crystallization to occur, which will 
generate a fine grain microstructure. All the statistical 
information about the grain structure at a given time, 
the average growth rate, topological changes of each 
individual grains, etc. can be obtained from the 
computer generated microstructures. 

6. RESULTS AND DISCUSSION 

All the results reported in this paper are in 2-D 
systems and we assumed the following numerical 
values for the parameters in the kinetic equations: 
CI = 1.0, jI = 1.0, y = 1.0, and K, = 2.0, and L, = 1.0 
for i = 1 to p. The grid size along both Cartesian 

coordinate axes, Ax, was chosen to be 2.0, and the 
time step for integration, At = 0.25. Periodic 
boundary conditions were applied. Two different 
sizes of computational cells, 512 x 512 and 
1024 x 1024 grid points, were chosen for comparing 
the size dependence of grain growth. The initial 
condition is specified by assigning small random 
values to all field variables at every grid point, e.g. 
-0.001 < 9, (for i) < 0.001, simulating a liquid. All 
kinetic data were obtained by averaging over several 
independent runs starting with different initial 
conditions (produced from a random number 
generator with different seeds) for the orientation 
field variables. A typical simulation with 512 x 512 
grid points and 8000 time steps requires about 2 h in 
a Cray C-90. 

6.1. Microstructure evolution 

To visualize the microstructure evolution using the 
orientation field variables, the following function is 
defined: 

cp(r) = f: r!?(r). (13) 
i= 1 

Function cp(r) has the value, 1.0, within grains and 
significantly smaller values at grain boundaries. If 
these values are displayed by grey-levels with low 
and high values represented by black and white 
respectively, the bright regions will be grains and 
dark lines will be grain boundaries in a microstruc- 
ture. An example of microstructural evolution using 
a 512 x 512 cell with 36 field variables is shown in 
Fig. 4. Since the initial values for vi are essentially 
zero, the very early stage of the simulation 
corresponds to crystallization, i.e. the growth of vi 
values at different locations driven by the bulk free 
energy change. A well defined grain structure is 
formed after a short time, about 200 time steps, when 
essentially all the bulk driving force has been 
consumed. Further microstructure evolution is driven 
by the excess free energies associated with the grain 
boundaries, resulting in an increase of the overall 
microstructure scales or grain size (Fig. 4). The 
detailed topological changes of individual grains will 
be discussed later. 

6.2. Grain growth exponent 

The area of each grain at a given time step is 
directly calculated from the microstructure by 
counting the number of grid points within a grain, 
and grain size R is obtained from the area A by 
assuming a circular shape for all grains, therefore, 
A = aR*. The average grain radius at a given time 
step is then obtained by averaging over all the grains 
in a system. The initial number of grains immediately 
after crystallization is about 3000 in a 512 x 512 cell, 
and there are about 200 grains left after 10 000 time 
steps. 
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t=5000 t=8000 

Fig. 4. The microstructural evolution in the 512 x 512 system with 36 orientation variables. 

The average grain radius as a function of time 
for the 512 x 512 system is shown in Fig. 5. The 
data were then fitted to the equation I?; - & = kt 
by a multi-parameter nonlinear least-square fitting 
routine to extract growth exponent m and coefficient 
k. The data from the initial stage, about 500 to 
1000 time steps, were removed before the fitting. 
The growth exponent, m, is shown to be almost 
exactly 
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Fig. 5. The time dependence of average grain size in 
512 x 512 system with 36 orientation variables. Data 

fitted into equation i? = At” + B (solid line). 
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6.3. Grain size distribution 

The grain size distribution obtained from the 
512 x 512 system is shown in Fig. 6. There have been 
several functions proposed to describe the grain size 
distribution [2,4, 6, 71. We attempted to fit the 
grain size distribution from our simulation to two 
theoretical distributions, the log-normal function and 
the generalized Louat’s function [6, 7, 161. 
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Fig. 6. Size distribution in the 512 x 512 system compared 
with log-normal function (solid line) and Louat’s function 

(dashed line). 
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Fig. 7. The time dependence of grain size distribution in the 
512 x 512 system with 36 orientation variables. 

The log-normal distribution may be written as: 

F(x) = 1 SC exp 
- (x - xoy 

2na2 2a2 > 
(14) 

where x = log(R/R), x0 is the mean of x, and a is the 
standard deviation of the distribution. The general- 
ized Louat’s function [4, 151 has a form: 

F(x) = 2ctx exp( - fxxZ) (15) 

where tl is an adjustable parameter. The log-normal 
and generalized Louat’s distribution functions were 
fitted into simulation data by a multi-parameter 
nonlinear least-square fitting routine (Fig. 6). It 
can be seen that the log-normal distribution fits 
simulation data fairly well near the average size 
region, but there are large deviations in the small 
size and large size regions. Moreover, the log- 
normal distribution in logarithmic plot is symmetric 
with tails extending to k cc whereas the simulation 
data are asymmetric and have cut-off at the large size 
region. The Louat’s distribution function agrees 
reasonably well with simulation data in the entire 
region and an upper cut-off is obtained at about 
loglo(R/R) = 0.85. However, the maximum of 
Louat’s function is considerably lower than that of 
the simulation data even though it appears at the 
same position. While the majority of the above results 
agree with those reported from Monte Carlo 
simulations [14, 161, the upper cut-off limit is 
different. 

The time dependence of the grain size distribution 
for a 512 x 512 system with 36 field variables is 
shown in Fig. 7 for different time steps. It was found 
that the size distributions are essentially time-inde- 
pendent and self-similar after a short transient time, 
indicating that the system has reached the dynamic 
steady state or scaling region. 

It should be cautioned that our results were 
obtained from 2-D simulations. As shown in [16], 

Louat’s distribution function is a better fit to the 
grain size distribution obtained in 2-D computer 
simulations, whereas the log-normal distribution 
provides a better fit to the grain size data calculated 
from the grain volume in a 3-D simulation instead of 
from 2-D cross-sections. 

It may also be pointed out that the shape of the 
grain size distribution depends on how we bin the 
data unless the frequencies obtained from different 
bins are normalized by their respective total areas 
under the curves. Therefore, it is important to use the 
normalized grain size distribution for comparing 
results from different sources or obtained with 
different bins. 

6.4. Effect of the number of jield variables 

Since the total number of different orientations in 
a real system is infinite, whereas only a finite number 
can be simulated in a computer, it is important to 
study the effect of the number of field variables on the 
microstructural evolution and grain growth kinetics. 
We again chose a 512 x 512 cell. It was found that, 
for small p, microstructural coarsening is dominated 
by coalescence between grains with the same 
orientation. As p increases, the possibility of grain 
coalescence decreases and the coarsening is domi- 
nated by grain growth, i.e. the larger grains grow by 
consuming smaller ones. 

The time dependencies of the average grain area on 
the number of field variables are shown in Fig. 8. It 
can be seen that the mean grain areas increase linearly 
with time for all cases, implying a parabolic growth 
law. The slopes of the curves, which are proportional 
to the kinetic coefficient k, decrease as p increases. 
For high values of p, such as p = 36 and 50, the two 
curves are very close to each other. The grain growth 
exponent m and kinetic coefficient k are plotted 
against the number of field variables in Fig. 9. It is 
found (Fig. 9(a)) that the growth exponent m is equal 

0 2000 4000 6000 8000 10000 
time step t 

Fig. 8. The time dependence of average grain area in the 
512 x 512 system with different numbers of orientation 

variables. 
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Fig. 9. The dependence of growth exponent m and 
coefficient k on the number of orientation variables in the 
512 x 512 system: (a) growth exponent m; (b) coefficient k. 

to 2.0 with small statistic errors for all cases and does 
not change with p. The value of k decreases rapidly 
as a function of p at small p values (p < - 10) (Fig. 
9(b)) and it changes much slower at large p (p B 20). 
This indicates that it is possible to use a finite but 
large number of field variables to study grain growth 
kinetics. 

The influence of the number of field variables on 
grain size distributions is shown in Fig. 10, in which 
the grain size distribution for each p is plotted with 
frequency of occurrence against the logarithm of the 
normalized grain size, R/l?. The height of the peak in 
the distribution for p = 4 is clearly lower than those 
for large p, and the position of the peak for p = 4 is 
located at smaller sizes than for large p. This indicates 
that the microstructure for p = 4 contains some large 
grains due to coalescence and many small grains with 
the population dominated by small grains. At large 
p, e.g. p = 36 and p = 50, the positions of peaks in 
the distribution almost coincide with the average size 
and the shapes of distributions are asymmetric. There 
is no distinguishable difference between distributions 
for p = 36 and 50. 
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Fig. 10. The influence of the number of orientation variables 
on the grain size distributions in the 512 x 512 system. 

6.5. Efl>ct of computational cell size 

The effect of system size on grain growth kinetics 
and grain size distribution was studied by choosing 
two different sizes, 512 x 512 and 1024 x 1024 grid 
points, both with 36 field variables. For 1024 x 1024, 
the initial number of grains immediately after 
crystallization is about 10 000 compared with about 
3000 for a 512 x 512 system. In the 1024 x 1024 
system, there are about 500 grains left after If 000 
time steps. compared with about 200 after 10 000 
time steps for 512 x 512. The grain growth exponent 
and kinetic coefficient obtained in the 1024 x 1024 
system are essentially identical to those from the 
512 x 5 12 system, indicating that, with the specific 
parameters used in this work, 512 x 512 grid points 
are sufficient for obtaining the growth kinetics. The 
size distributions calculated from the two different 
systems at the same time step are compared in Fig. 
11. It can be seen that the shapes of the distributions 
are very similar. 

0.12 ~ 
0 1024 

0.10 . 
. 512 00; 

-2 -1.5 -1 -0.5 0 0.5 1 

log(_) 

Fig. 11. Comparison of grain size distributions in the 
512 x 512 and 1024 x 1024 systems (p = 36). 
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Fig. 12. In situ observation of neighbour switching and 3-sided grain annihilation. 

The grain size distributions obtained in this model 
seem to agree well with large scale Monte Carlo 
simulations [33]. It should be pointed out that an . 
upper gram size limit is observed to be near 
log@/R) = 0.85 in this work, which is close to the 
result of the large scale Monte Carlo simulation [33], 
but it is different from previous Monte Carlo 
simulation results, in which an upper limit about 
loglo(R/R) = 0.52 was reported [15]. 

6.6. Local topological changes 

Based on the behaviour of individual grains and 
the uniform boundary model, Mullins and von 
Neumann [34, 351 gave a correlation between grain 
growth kinetics and the topological class of 
individual grains: 

!$I = k,(N - 6), 

where A is the grain area, N the topological class of 
the grain, and k, is a kinetic constant. According to 
this equation, grains with sides more than six will 
grow while grains with sides less than six will shrink. 
Smith [36] pointed out that the shrinkage of a 5-sided 
grain must transform to a 4-sided and then to a 
3-sided grain before it disappears. However, recent 
experimental observation on 2-D grain growth in 
succinonitrile thin films [29] showed that 4-sided 
and 5-sided grains can directly disappear without 
transforming to 3-sided. 

Since we are only interested in the local topological 
changes of individual grains during shrinking, a 
smaller system with 128 x 128 grid points was 
employed. After 2000 time steps, at which time well 
defined grain structures were formed, some grains 
were chosen and their topological evolutions were 
monitored for every 10 time steps. We observed two 
different types of topological transformations during 

the disappearance of a grain: (1) neighbour switching, 
which occurs when the length of a grain boundary 
decreases to zero and results in the formation of 
unstable four-grain junctions, which quickly split into 
two trijunctions and a new grain boundary; (2) the 
direct vanishing of grains with N < 6. 

An example of neighbour switching and then 
vanishing of 3-sided grains is shown in Fig. 12. In this 
figure, two small grains with four and five sides 
(labelled as A and B) are shrinking. When the 
boundary length between these two grains reduces to 
zero, a neighbour switching event occurs and the two 
grains decrease their topological class by 1 while two 
larger neighbour grains increase by one. The resulting 
3-sided grain later disappears and a trijunction is 
formed, while the two larger grains retain their own 
topological classes. It should be pointed out that 
vanishing of 3-sided grains is rarely observed during 
microstructural evolution, especially in the later 
stage of grain growth. This result is consistent with 
experimental observations in SCN [29]. The local 
topology change for grains with N > 6 can be very 
complicated because more than one neighbour grain 
may disappear within a short time. In this example, 
the large grain (labelled as C) changed its topological 
class from 8 to 9, and from 9 to 10, and then jumped 
back to 8 due to the vanishing of two small grains at 
the same time. 

Figure 13 is another example showing rather 
different characteristics in the local topological 
changes of a grain. It can be seen in Fig. 13 that a 
4-sided grain stays in its topological class until it 
disappears. As a result, a four-grain junction is 
formed and it quickly splits into two trijunctions 
because of its instability. It is interesting to notice 
that the formation of this four-grain junction is not 
due to neighbour switching but, instead, the direct 
vanishing of a 4-sided grain. It was also observed that 
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Fig. 13. In situ observation of 4-sided grain annihilation 

an elongated 4-sided grain can undergo vanishing 
directly when its width decreases to zero. In this case, 
no four-grain junction will form after its vanishing. 
From the careful examinations of the simulation 
results, it seems that the direct vanishing of 4-sided 
grains is quite common. Actually it is a dominant 
mechanism rather than an exception during grain 
growth, especially during late stages of grain growth. 
It is found that before 4-sided grains directly 
disappear, they become a disordered region whose 
width is of the order of the grain boundary width and 
whose boundaries with neighbouring grains are not 
well defined. 

In addition to 4-sided grains, we also examined the 
topological changes of some 5-sided grains (Fig. 14). 
Similar to the 4-sided, 5-sided grains can directly 
vanish without losing sides. However, no five-grain 
junctions were observed. For example. the 5-sided 
grain in Fig. 14 directly disappears forming three 
trijunctions while two neighbouring grains lose one 
side each. Again, before this grain disappears, it 
transforms to a region of disordered material. It 
should be emphasized that, in this computer 
simulation, the majority of 5-sided grains vanish 
through changing topological class to 4-sided by 
neighbour switching. 

Fig. 14. In situ observation of 5-sided grain annihilation. 
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In summary, we observed four different kinds of 
topological events during the disappearance of a 
grain: direct vanishing of 3-sided grains, 4-sided 
grains, and 5-sided grains, and neighbour switching. 
Neighbour switching and direct vanishing of 4-sided 
grains occur most often, especially in late stages 
of grain growth. Direct vanishing of a 4-sided grain 
may result in either a four-grain junction or a grain 
boundary between two neighbouring grains. Five- 
grain junctions are never observed in the simulation. 
The most probable explanation for this phenomenon 
is that the balance of surface tension among the 
neighbour grains prohibits the formation of five-grain 
junctions because of the asymmetric feature. Most of 
these phenomena seem to agree with experimental 
observations of grain growth in SCN thin-films [29]. 
However, it should be noted that these 2-D 
topological features may not be observed in a 
cross-section of 3-D samples because the local 
topology equilibrium requirements are different for 
2-D and 3-D. It should also be pointed out that in the 
diffuse-interface field model, when the size of a grain 
becomes comparable with the grain boundary width, 
the grain is not well defined any more. Essentially, a 
region of disordered material is formed, whose size is 
comparable with the grain boundary width, immedi- 
ately before a grain completely disappears. We argue 
that this should also be the case in real systems in 
which grain boundaries have a finite width and we 
claim that sharp-interface models are inappropriate 
for describing grains with sizes close to the boundary 
width. 

7. ASSESSMENT OF THE MODEL 

All previous models on grain growth are based on 
the sharp-interface description of grain boundaries 
although, as a matter of fact, the Potts model at finite 
temperatures produces rough or diffuse interfaces. 
There are several advantages of the diffuse-interface 
model over traditional sharp-interface models in 
modelling grain growth. One of the main advantages 
is the fact that one does not have to track explicitly 
the positions of grain boundaries since locations of 
grain boundaries are implicitly defined by the regions 
where the gradients of field variables are not zero. 
Secondly, in the diffuse-interface field model, it is 
straightforward to describe long-range diffusion- 
which takes place, for example, during solute 
segregation and second-phase precipitation at grain 
boundaries in a polycrystalline material-by coupling 
the kinetic equations for the orientation field 
variables with the Cahn-Hilliard diffusion equation 
for composition [25,26], whereas it is very difficult to 
incorporate long-range diffusion in sharp-interface 
models. The lattice anisotropy effect which exists in 
the Potts model is almost non-existent if there are 
enough grid points to resolve the grain boundaries. 

Like all other models, there are problems 
associated with the diffuse-interface field model. For 

example, although grain boundaries in real materials 
have a finite thickness (a few lattice parameters in 
very pure metals to a few hundred angstroms in 
ceramics), this thickness is much smaller than the 
typical grain size (a few micrometres) studied 
experimentally except in nanocrystalline materials. 
Therefore, we have to deal with two quite different 
length scales if we want to apply the model to grain 
growth kinetics in polycrystalline materials with grain 
sizes on the order of micrometres. 

The problem with two very different length scales 
is not associated with the diffuse-interface formu- 
lation itself, but with the numerical computation. For 
example, if we employ five grid points to resolve a 
grain boundary of width about 20 A, a grain size of 
1 pm will require about 250 grid points across the 
diameter. In order to obtain the grain growth 
kinetics, we will need at least several thousand, to 
tens of thousands, of grains for good statistics, which 
translates to a number of grid points of the order 
of 100 billion, which is impossible to handle with 
today’s supercomputers. However, we claim that 
this is not a very serious problem for most of our 
purposes in studying grain growth and this problem 
is non-existent for nanocrystalline materials. 

First of all, many analytical theories and computer 
simulations, including our present work, show 
evidence that the microstructure scales, i.e. after a 
microstructure reaches the scaling region, the average 
grain size as a function of time can be described by 
a time exponent while the grain size distribution is 
independent of time. The important implication of 
scaling is that we can use the information that we 
obtained from microstructures with much smaller 
scales to predict the microstructure features with a 
much larger scale which occur at a later time. This 
means we do not have to model microstructures with 
larger length scales as long as the microstructures 
obtained from the computer simulation are already in 
the scaling region. 

Secondly, for the purpose of modelling grain 
growth, we can view the migration of a diffuse grain 
boundary as an approximation to that of a sharp 
grain boundary. The validity of this argument is 
illustrated in Fig. 15 in which the radius of a circular 
grain with several different boundary thicknesses is 
plotted together with the analytical solution as a 
function of time. The analytical solution was 
obtained from the analytical expression (7) which 
assumes the grain size is much larger than the 
boundary thickness, and others were obtained from 
the numerical solution using two orientation field 
variables with different boundary widths. As can be 
seen from the plots, the agreement between the 
analytical solution and data of curve 1 (0.25s) is 
surprisingly good, even in the region that the grain 
size is very small, which implies that the motion of a 
diffuse grain boundary is an excellent approximation 
to that of a sharp boundary. However, as discussed 
by many others in the context of the phase-field 
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Fig. 15. The time dependence of the radius of a circular 
grain in an infinite matrix. Comparing the analytical 
solution (equation (7)) with simulations of different 
boundary widths obtained by multiplying the local free 
energy density function, fo, with different coefficients 0.25, 
0.5, 1.0 and 2.0, while keeping the gradient coefficient K 

constant. 

model for solidification [32], in order to have a good 
agreement between the diffuse-interface computation 
and analytical solution in the sharp-interface limit, a 
sufficient number of grid points is necessary for 
resolving the grain boundary thickness. For example, 
by changing the well depth in the local free energy 
function, we can change the grain boundary thickness 
with respect to the grid size (Fig. 1.5). On the other 
hand, according to equation (7), changing the well 
depth should not alter the boundary migration 
velocity. Figure 15 shows that the boundary should 
be sufficiently wide in the simulation, or there should 
be enough grid points across the boundary, in order 
for the boundary velocity not to depend on the well 
depth in the free energy function. However, it may be 
noted that although some deviations in the kinetic 
coefficients k may be introduced compared with the 
analytical solution, if not enough grid points are used 
to resolve the boundaries, the radius of the circular 
domain still varies parabolically as a function of time. 
The grain growth kinetics discussed above were 
obtained using the set of parameters which corre- 
spond to curve 4 (2.Qf) in Fig. 15 in order to obtain 
a large number of grains and good statistics, and 
therefore, some deviations in the kinetic coefficients 
k are introduced simply because of not enough grid 
points to resolve the grain boundary thickness. 
Nevertheless, this difference will not change the main 
conclusions of our discussion. 

8. CONCLUSIONS 

We have demonstrated that the diffuse-interface 
field model is a very powerful alternative to 

sharp-interface models for studying grain growth. 
The grain growth exponent m is 2 and independent 
of the number of field variables, whereas the kinetic 
coefficient depends on the number of field variables 

although it varies slowly for numbers of field 
variables greater than about 10. The grain size 
distribution obtained in our 2-D simulation is shown 
to fit reasonably well to the Louat’s function but not 
as well to the log-normal distribution. Using a 
particular example of a circular grain, it is found that, 
with a sufficient number of grid points to resolve a 
grain boundary in the simulation, the boundary 
migration velocity is very close to that predicted by 
the analytical solution obtained assuming the 
boundary thickness is much smaller than the grain 
size, and independent of the particular free energy 
density function employed in the numerical solution. 
Contrary to the general belief that 4- and Ssided 
grains have to transform to 3-sided before their 
disappearance in 2-D grain growth, we found 
evidence that 4-sided and 5-sided grains may 
transform to a disordered region and directly vanish. 
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