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Computer Simulation of Twin Formation during the Displacive ¢ — ¢
Phase Transformation in the Zirconia-Yttria System

Danan Fan" and Long-Qing Chen’

Department of Materials Science and Engineering, The Pennsylvania State University,

The kinetics of the displacive cubic-to-tetragonal (¢ — ')
phase transformation and the evolution of twin structure of
Y,0,-ZrO, systems were investigated by employing the
time-dependent Ginzburg-Landau equations, in which the
displacive modes were described by nonconserved order
parameters. The original elasticity theory of Khachaturyan,
in a sharp-interface description for an arbitrary distribu-
tion of second-phase precipitates in a matrix, was reformu-
lated in the spirit of the diffuse interface theory of Cahn
and Hilliard for interphase boundaries. The influence of
thermodynamic conditions, clamped or stress-free, on
microstructure evolution was studied. Our computer simu-
lation showed that, even though the thermodynamic equi-
librium is the single domain under a stress-free condition,
the twin structure can form during a Kinetic path of the
phase transformation, and it is the clamped condition which
results in the formation of stable twins.

I. Introduction

XTENSIVE research has been devoted in the last decade to

the development of ZrO,-based ceramics,' because of the
considerable potential of these ceramics in structural applica-
tions. Many experimental results and thermodynamic modeling
of the cubic (¢) — tetragonal (¢) transformation in Y,0,~ZrO,
systems have been reported.'” It has been shown that, if a
c-phase at a high temperature is rapidly quenched to the low-
temperature two-phase (¢ + ) region of the phase diagram,
precipitation of the z-phase is preceded by a diffusionless phase
transformation, resulting in the formation of an intermediate ¢’
single phase. A characteristic feature of the ¢'-phase is that it
has the same composition as the original c-phase. Microstruc-
turally, it is characterized by the presence of antiphase-domain
boundaries (APBs)® within a single orientation domain and
twins formed by different orientation variants.*

In a ¢ — ¢ transformation, the number of different orientation
variants dictated by the crystal symmetry is three, with the
tetragonal axes along the crystallographic directions [100],
[010], and [001] of the parent cubic phase. Thermodynamically,
the existence of more than one orientation variant provides a
configurational freedom to reduce the total elastic energy aris-
ing from a crystal lattice misfit at the ¢/t phase boundaries and
at the boundaries between different -phase orientation variants.
In the case of a two-phase mixture of c¢- and #-phases, twin-
related “sandwiches” of different orientation domains of the
t-phase can be organized into plates in such a way that they
eliminate the volume-dependent part of the elastic energy and
the resulting elastic energy is only proportional to the interfacial
area. If the transformation product is a ¢ single phase, the final
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equilibrium state depends on the stress conditions. For example,
when a single-crystal c-phase with free surfaces transforms to a
single ¢-phase, the equilibrium state is expected to be a single-
domain ¢-phase. However, if a c-phase cannot change its vol-
ume during a transformation, e.g., a c-phase grain constrained
in a polycrystalline assembly, it can be shown that the equilib-
rium state under this clamped condition is the twin structure
composed of different orientation variants of the #-phase.

While it is possible to predict the final equilibrium state
under a specified condition using thermodynamics, the detailed
temporal evolution of microstructures during the entire process
of a ¢ — ¢ transformation can only be elucidated by a kinetic
computer simulation.

The earliest discussion of the elastic strain energy effect on
microstructures in a kinetics context is that due to Cahn for
spinodal decomposition.” Recently, there have been extensive
computer simulation studies on the strain-induced morphologi-
cal transformations for the simple case of decomposition of a
cubic phase into two cubic phases with different compositions
using the continuum TDGL model,® microscopic diffusion
equations,”® and boundary integral equations.”'° The shape evo-
lution of a single tetragonal precipitate in a cubic matrix was
investigated by using the continuum model"' and boundary
integral equations.'” The kinetics of tweed and twin formation
during a disorder—order transition (cubic — tetragonal) in sub-
stitutional solution'® and in interstitial solutions (tetragonal —
orthorhombic)'*'* were studied using microscopic models.

In this paper, we report our computer simulation studies of
the temporal and spatial evolution of microstructures during
the displacive ¢ — t' transformation in the Y,0,~ZrO, system
by using the continuum time-dependent Ginzburg—Landau
(TDGL) kinetic model."" In particular, we investigated the tem-
poral microstructure evolution during a ¢ — ¢ transformation
under different thermodynamic conditions, stress-free or
clamped. In order to incorporate the elastic energy into the
continuum TDGL model, the original sharp-interface linear
elasticity theory of Khachaturyan'®'” was rederived using the
diffuse interface theory of Cahn and Hilliard'® and Allen and
Cahn.” The effect of elastic energy on the phase diagram is
briefly discussed. The detailed kinetics of decomposition of the
¢’ phase into a two-phase mixture of equilibrium c- and #-phases
will be discussed in a future publication.

II. The TDGL Model

In order to describe a structural transformation with symme-
try changes, it is necessary to introduce order parameter ficlds
or phase-fields, m,(r) (i = 1,2, 3, ..., v, where v is the number
of different orientation domains of the product phase dictated
by the crystallographic relationship of the product and parent
phases), to characterize the symmetry difference between the
parent and product phases. Physically, these field variables
describe the amplitudes of displacive modes in the case of a
displacive transformation. For a mixture of two phases with
different compositions, a continuous field of composition, ¢(r),
also needs to be defined. The temporal and spatial evolution
of these order parameter fields and composition fields toward
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equilibrium in a quenched system may be described by
the Ginzburg-Landau (Allen-Cahn)"** and Cahn—Hilliard"
equations:

am,(rp) oF

o1 - D) i=1,...,v (1a)
de(r,t) , OF
oMV (1)

in which L and M are kinetic coefficients which characterize the
interphase interface mobility and atomic diffusivity, and F is
the total free energy expressed in the unit of k,7, where kg is
the Boltzmann constant and T is the temperature.

In a structural transformation, the total nonequilibrium free
energy F is the sum of the “chemical” free energy F. and the
strain energy E. The chemical free energy is associated with the
finite-range interatomic interaction and, according to the diffuse
interface theory by Cahn and Hilliard,'® it can be written as

F‘C = j[%alv(lz + %B(‘Z lV'T],P) +f(ca'ﬂ1a”ﬂz---7"ﬂv)}dv
i=1

@

where o and B are gradient energy coefficients for concentra-
tion and order parameters, respectively, and f is the local free
energy density, which is a function of composition and order
parameter fields.

III. Diffuse Interface Formulation of Khachaturyan’s
Elasticity Theory

An expression for strain energy induced by an arbitary distri-
bution of coherent second-phase particles was developed by
Khachaturyan et al.'®'" and has been successfully applied to
different phase transformations.”®'" In that expression, a sharp
interface between a second-phase particle and matrix was
assumed and the distribution of second-phase particles was
described by the so-called shape function,

1 inside a second-phase particle of kind p

6,(r) = {0

It is schematically shown in Fig. 1(a) as a step function in one
dimension. It has the properties

otherwise

6,(r)6,(r) = 6,(r) 3)

6,6, =0 p7*q 4
and

for)dv =1V, )

where V, is the total volume of second-phase particles of kind p.
The local stress-free transformation strain is given by

€0r) = 3 ANE(p) ©)

p=1

However, if 6(r) is a continuous field, the relations (3), @),
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Fig. 1. Schematic shape function in one dimension. (a) Sharp inter-
face; (b) local order parameter field with a diffuse interface.
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and (5) do not hold anymore. For example, during a ¢ — ¢ phase
transformation, the local stress-free transformation strain 82- (r)
is related to a continuous field through

q
enr) = ) e5(p)m,(r) @)

p=1
where €)(p) and m,(r) are the proportionality constants and
local order parameter field for a particular variant p, respec-
tively. For comparison with the sharp-interface description, the
local order parameter field is schematically shown in Fig. 1(b)

in one dimension.

We assume that the c-phase and /-phase have the same elastic
moduli. If elastic displacements were not allowed during a
phase transformation, there would be an elastic energy increase
given by

E, = %J)\,;/-ME%(F)SE,(I‘) dv
1 : 3
_ EJ’AU“[ Z Sg(p)nlf(r)][ ZISEI(Q)TIE(I‘)] dv

1 3
= 5f)\ijkzpzlgg'(P)ggl(p)’ﬂf}(r) dv ®)
where X, is the elastic modulus tensor, the integration being
taken over the system volume v. The cross terms, M, (r)Mi(r),
are not zero only at boundaries between orientation domains
p and ¢, and therefore are neglected in Eq. (8).

The elastic energy can be partially relaxed by introducing
elastic strains. Following Khachaturyan,'” the total relaxation
energy FE .., has the form

Ex = Jli_o-?j(r)gij(r) + ‘;‘)\Uuai]‘(r)ekz(r)] dv 9

where gg(r) =3 o (p)m,(r) and a%(p) = Nyuep(p). The elas-
tic strain field, £,(r), can be written as the sum of homogeneous

and heterogeneous strains:

1

el(r) = §; + de,(r) (10)
where the homogeneous strain € is defined so that
[, (rydv=0 11)

The strain €, corresponds to the uniform macroscopic strain
which determines the macroscopic shape deformation of a crys-
tal. The heterogeneous strain d¢,(r) does not produce any mac-
roscopic effect.”” Therefore, the total relaxation energy can also
be separated into a sum of two terms: E"m and E™, where E"™
is the relaxation of elastic energy related to the homogeneous
strain and E™ is the relaxation of elastic energy related to
heterogeneous strain. Substituting (10) into (9) and using the
condition (11) yield

3 1%
EPom = _J z O'S-(P)'ﬂ;(r) dV—E—:j + —2_}\ijklgijgkl (12a)
p=1

p=
v

3 1
Ehet — J'[ — z (yj.}(p)nf,(r)ﬁs,j + E)\Uklﬁeifﬁskl] dv (12b)
p=1

A system reaches mechanical equilibrium when the relax-

ation energies (12a@) and (12b) are minimized with respect to the
homogeneous strain and local displacements, respectively, i.e.,

aErelux _

F (13)
aE‘rela\x _
D 0 (14)

where the displacement, u,(r) is related to heterogeneous strain
byﬂ
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1{ou, du;
dg, = 3 ar +

The relaxation energies corresponding to the equilibrium
homogeneous strain and equilibrium local displacements are
given by

as)

13 3
Erom = _ﬁz Z Uklgz/(P)Sk/(CI)f'ﬂ (r) d3rf’r| ") dr
(16)
EM = *“p 2 1[(2 ) n; ‘](p)Q,k(n)O'u(Q)n]
{n, ()} {n, ()} W)

where k is a wave-vector, n; = k,/k is the ith component of a

unit vector parallel to k, €),(n) is a Green function matrix'’

reciprocal to ' = \;,n;n,, and
{1k = [ (r) exp(—ik-r) d*r (18)

{n,(r)*}% is the complex conjugate of {m,(r)*},. The singular

branching point k = 0 is excluded from the integration in

Eq. (17).

Therefore, the total elastic energy is given by

E=E, + E" + E™ (19)

IV. Model for the Y,0,~ZrO, System

The ¢ — ¢’ phase transformation in Y,0,~Zr0, is treated as
a first-order transition. The local specific chemical free energy
at a given temperature is approximated by the free energy
polynomial:

1 1 3
flenime,ms) = 5A(c — e+ 7B — CQ(ZT}?)
i=1
() s Ll e
4 Ié,l'rlz 6 l;,]”f]i

+U<Z”r] )+V(Zn nj—f—”q)
=] i#=jFk
+ Wninin3) (20)

where A, B, D, G, U, V, and W are positive constants, and ¢, is
determined by the equilibrium composition of the cubic phase
and ¢, is a constant beyond which the cubic phase is unstable. It
is emphasized that our main interest is in the dynamics of a
quenched system well below the phase transformation tempera-
ture. The exact form of the free energy function is not important
as long as it has the cubic symmetry. The most important
requirement is that it provides the proper phase diagram. There-
fore, this free energy function can be viewed as an approxima-
tion to the actual free energies of ¢- and r-phases.

Equation (20) defines a hypersurface of the chemical free
energy in a 4-dimensional phase space formed by ¢ and the
three order parameters m,. By minimizing the free energy with
respect to a given order parameter ), at a given ¢, and under the
condition that all other order parameters are zero, we can
express the order parameter as a function of composition ¢ and
hence express the free energy as a function of ¢ only. In
Eq. (20), constants are chosen to provide the free-energy topol-
ogy required for the Y,0,—ZrO, system in the two-phase region.
In this work those constants are chosen as A = 2.0, B = 1.1,
D=0.1,G=15,U=2.0,and V=W = 1.0, which provide
equilibrium compositions c,,, = 0.024 and ¢, = 0.081 close to
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the equilibrium compositions of Y,0,~ZrO, at 1500°C."* The
free energies for the c- and #-phases are shown in Fig. 2.
For the ¢ — ¢’ phase transformation, €(p) can be written as

E 0 e, 0 0
eg()=] 0 €, 0 [[e2=]0 &, 0 [,
0 0 ¢ 0 0 ¢
[0 0 0]
e3)=|0 €, 0 1
0 0 g
where €7, = (a, — aJ)la,, €% = (¢, — a)la,. a, is the lattice

parameter of ¢-ZrO,, and a, and c, are the lattice parameters
of +-Zr0,.

V. Computer Simulation Results

Because of the extensive computation involved in a three-
dimensional (3D) kinetic study, we employed a two dimen-
sional (2D) system which can be viewed as the projection from
3D system. In this case, v = 2 in previous equations and )(r)
is a plain strain. In the computer simulation, the kinetic equa-
tions are discretized by using a 256 X 256 grid with periodic
boundary conditions along both directions.

The experimental data for the elastic constants of Y,0,~ZrO,
are given as ¢;; = 3.94 X 10" Pa, ¢, = 0.91 X 10" Pa, and
44 = 0.56 X 10" Pa in Ref. 21; and lattice parameters, a, =
5.128 A, a, = 5.090 A, and ¢, =5.180 A, are chosen from Ref.
1. All the energies involved in the numerical calculation are
measured in units of kT ~ 2 X 10® J/m®. Reduced time ¢* is
used in the simulation, which is defined as ¢+ =
t/to, to = (LkyT)7".

The overall average composition, ¢, is chosen to be 0.056
(mole fraction). The initial condition is a homogeneous c-phase
in which all values for the order parameter fields are zero. The
cubic phase is then quenched to a temperature below the abso-
lute instability line of the c-phase with respect to the transfor-
mation to the ¢’ -phase, usually referred to as the T-line. In order
to initiate the kinetics, however, random perturbations to the
order parameters fields are introduced. Since our main interest
is the diffusionless transformation from a single c-phase to a
single #'-phase, we only solved the kinetic equations for the
order parameter fields while keeping the composition homoge-
neous. Since we do not have the information about the antiphase
domain boundary energy in the #'-phase, we rather arbitrarily
assumed the gradient coefficient 8 in Eq. (3) to be 3.0.
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: : ic-phase /
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\

TN L |

-0.02 ‘
0 0.02 0.04 006 0.08 0.1

0.12
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Fig. 2. Specific free-energy vs composition curves for both the cubic
and tetragonal phases calculated according to Eq. (20) with A = 2.0,

B=11,D=01,6G=15U=20,and W=V = 1.0.




772 Journal of the American Ceramic Society—Fan and Chen

(@) (b)

Vol. 78,No. 3

() (d)

Fig. 3. (a—d) Temporal evolution of m,(r) orientation field during a phase transformation with the total elastic energy £ = E; + EM™ + E™. (a—d)
correspond to * = 0.2,0.4, 1.0, and 3.0, respectively (see text for the definition of #*).

(1) The Stress-Free Condition

The elastic strain energy under the stress-free condition con-
tains both the homogeneous and heterogeneous strain relax-
ation. This means the macroscopic shape deformation of a
crystal will occur during transformation and the crystal is
stress-free on its surface. The morphological evolution from
the initial ¢-phase to the 7'-phase and subsequent t'-domain
coarsening is shown in Fig. 3. In the figure, the “gray levels”
represent different magnitudes of one order parameter of the
two orientation variants. A completely white color represents
the highest square value of that order parameter, and a com-
pletely dark means that the order parameter is about zero. This
representation corresponds to dark-field transmission electron
micrographs using a reflection from one of the orientation
variants.

Figure 3(a—d) is the temporal evolution of m,(r) field. From
Figs. 3(a) and (b) it can be seen that the initial stage of transfor-
mation consists of growth of two order parameters at different
locations as well as an increase in the domain size. The two
orientation domains preferentially align along {11} planes,
forming the so-called “tweed” structure. This tweed structure
coarsens and develops into a twin structure (Fig. 3(c)) as time
increases, with the amount of one orientation variant signifi-
cantly more than the other. This twin structure is unstable and
finally the m,(r) orientation variant will disappear (Fig. 3(d)).
As a result, a single domain of m,(r) with antiphase domain
boundaries is formed.

(2) The Clamped Condition

Under the clamped condition, the homogeneous strain relax-
ation is prohibited and hence the E™™ term is excluded from
total elastic energy in the calculation. Since the elastic energy
term, E,, depends only on the relative volume fraction of the
tetragonal phase, i.e., it is configurationally independent, we

(b)

may also ignore the E, term. The morphology evolution after
excluding E, and E™™ from the total elastic energy is shown in
Fig. 4. By comparing Fig. 4 with Fig. 3, the structure similarity
is obvious. It turns out that both m,(r) and m,(r) variants are
stable, and a stable twin structure is formed after excluding E,
and E'™ from the total elastic energy (Fig. 4(d)). The final
microstructure contains both orientation domains comprising
the twins with the twin boundary being the (1 1) plane. Many
antiphase domain boundaries exist within the domains. The
microstructure shown in Fig. 4(d) agrees well with the twin
microstructure observed in the Y,0,~ZrO, system (Fig. 5).*

VI. Discussion

From the above computer simulation results, it is clear that
the morphological evolution during a ¢ — ¢ transformation
follows

¢ — tweed — twin — single domain variant

for a stress-free state, whereas for a clamped condition the
evolution sequence is

¢ — tweed — twin

To understand the different sequence of morphological evo-
lution under different conditions, let us consider different terms
contributing to the elastic energy. From definition it can be seen
that E, increases with the increase of volume fraction of
¢ -phase during the ¢ — ¢’ transition and is almost a constant
after the transformation. This term increases the total free
energy of the system during the phase transformation and can
significantly shift the equilibrium phase diagram. As a result,
the two-phase region of the phase diagram is suppressed. How-
ever, it has little effect on the morphology evolution.

(d)

Fig. 4. (a—d) Temporal evolution of m,(r) orientation field during a phase transformation with the total elastic energy E = E™. (a—d) correspond to

* = 0.2, 1.0, 2.0, and 4.0, respectively.
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Fig.5 Twin structure in as-quenched ZrO,—4 mol% Y,0; alloy (cour-
tesy of M. Doi and T. Miyazaki, see Ref. 4).

The homogeneous strain relaxation energy £E™™ is dependent
on the uniform macroscopic strain €, that determines the mac-
roscopic shape deformation of the crystal produced by internal
stress due to the second phase. Since this term is approximately
proportional to the square of volume fraction of second-phase
particles, it makes the phase diagram depend on the volume
fraction of second phases. It is intuitively obvious that if the
internal strains can be relaxed by shape deformation of the
whole system, a single domain has the minimum elastic energy.
Hence, it is the E™™ term that favors the formation of a single
domain. However, if a system is clamped, the homogeneous
strain relaxation is not allowed. The final equilibrium structure
is then a twin structure made up of different orientation
variants.

The heterogeneous relaxation energy £ is dependent on the
heterogeneous strain 8¢,(r) which is related to local displace-
ments and does not atfect the macroscopic crystal shape.
Hence, this term determines the local morphologies of micro-
structures to minimize the internal strain energy. It is this term
which favors the formation of tweed and twin structure during
the c—t' phase transformation.

When a system relaxes to equilibrium, the total nonequilib-
rium free energy F (F = F_ + E) always decreases with simula-
tion time, whereas the elastic energy behaves differently. The
dependence of the total elastic energy on the simulation time is
shown in Fig. 6. It can be seen that, in the stress-free state,
the elastic energy increases during the transformation, then
decreases because of the formation of tweed and twin structure,
and finally it is reduced to zero for a single domain. Since we
include only the heterogeneous strain relaxation term for the
elastic energy in the clamped case, the total elastic energy
decreases continuously because the elastic relaxation is a spon-

0.04 T 1
= 0.02 | N
i A
= _
= OF
>
=11)
o
g 002 | -
m
=
£ -004 |- -
S
o
006 |- _
B
-0.08 : e
0 2 4 6 8 10 12
t*

Fig. 6. The time dependence of elastic energy during a phase trans-
formation. Curve A: E = E, + E™™ + E™ for the stress-free case;
curve B: E = E™ for the clamped case; ¢* is reduced time.
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taneous process. This result is consistent with the previous
analysis. If the F| term was included in the clamped case, the
total elastic energy would also increase initially and then later
decrease to a certain value due to the heterogeneous strain
relaxation.

VII. Summary

The temporal microstructure evolution during the displacive
cubic-to-tetragonal (¢ — t') phase transformation was success-
fully modeled by employing the time-dependent Ginzburg—
Landau equations. The influence of thermodynamic conditions,
clamped or stress-free, on microstructure evolution is discussed
by analyzing various terms in Khachaturyan’s elastic theory for
arbitrary distribution of second-phase precipitates reformulated
in terms of the diffuse interface theory. Our computer simula-
tion shows that, in the stress-free state, a cubic phase transforms
to a single-domain #'-phase through intermediate tweed and
twin structures, whereas in the clamped condition, the twin
structure is stable.
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