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Abstract. 3-dimensional phase-field model is developed to describe the cubic to tetragonal
martensitic phase transformation in thin film attached to a substrate. Elastic solutions are derived
for both elastically anisotropic and isotropic thin films with arbitrary domain structures, subject to
the mixed stress-free and constraint boundary conditions. Nucleation process as well as final
domain structure strongly depends on the substrate constraint. Lower undercooling results in less
volume fraction of martensite, finer domain structure and longer nucleation period.

Introduction

Martensitic transformation (MT) takes place in many engineering materials. The properties of
transforming materials are strongly affected by the generated martensitic phase in both bulk and
thin film materials under constraint {1]. Interest in the martensitic transformation in constrained thin
films has increased recently due to growing applications of ferroelectric, ferromagnetic materials
and shape memory alloys. In the martensitic transformation, the crystal lattice mismatch between
parent phase and martensitic phase produces the strain energy that is the most important factor
responsible for all specific features of the martensitic transformation such as martensitic
morphology, transformation hysteresis, thermoelastic equilibrium and shape memory effect [2].
Phase-field models provide a convenient basis for the numerical solution of complicated pattern
evolution of transforming phases because all the governing equations are written as unified ones in
the whole space of system. Phase-field model has been successfully applied to the prediction of
martensitic microstructure evolution in bulk materials [1,2,3] and ferroelectric materials in thin film
[4]. In this work, 3-dimensional phase-field model is developed to provide a realistic simulation of
cubic to tetragonal martensitic transformation in thin film elastically constrained by a substrate. The
effect of substrate constraint and undercooling on the final microstructure and transformation
kinetics is studied.

Phase-field model of cubic to tetragonal martensitic transformation

The simulation of cubic to tetragonal MT with phase-field approach requires phase fields of three
Iro parameters, M,,M,,M;. The temporal evolution of phase field is described by the time-
dependent Ginzburg-Landau kinetic equation:
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where 7 is the position vector, F is total free energy of a system, L, is the phase-field
mobility, &,(7,7) is the thermal noise term, B, is the gradient energy coefficient, and M, is a

derivative of elastic energy density function with respect to lro parameters. The total free energy of
a system consists of bulk chemical free energy, interface energy, elastic energy, free energy by
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applied field and so on. The interface energy is related to B,V°n,. The chemical free energy

density, f, is approximated by Landau-type fourth-order polynomial consisting of the cubic
symmetry invariants of the lro parameters {2],
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where  f,(,,M,.1,)" = £,(n,.,M,.1,)/|Af]. |Af] is the transformation driving force defined as
|Af | = | Jo(M.0,0)— £, (0,0,0)I , which is the difference between the free energy minimum and the
free energy of parent phase, M, is the equilibrium value of the Iro parameter in the martensite
phase, and A/, A;, A, are the dimensionless parameters. Equation (2) provides a local minimum at
N, =N, =M; =0 corresponding to the metastable parent phase and global minima at
N =Ne>MN2=M3=0, My=Mp, N, =M;=0, N;=m,, M, =M, =0 cormresponding to three
orientation variants of the stable martensitic phases.

To describe the elastic energy caused by a local evolution of microstructure, the stress-free strain

needs to be defined. The stress-free strain caused by the change of crystal lattice parameter from
cubic to tetragonal lattice is characterized by,
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where, & =(a—a))/a,, €,=(c—a)lfa., a, ¢ are the crystal lattice parameters of the

¢
tetragonal stress-free martensitic phase, and a_ is the crystal lattice parameter of the cubic parent

phase.
In the linear elasticity, the stress 6 is related to the elastic strain by the Hooke’s law:
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where €,(r) is the total strain measured with respect to a reference lattice. The total strain can
be separated into homogeneous and heterogeneous strains [5]:

€;(F) =%, +58U(7) o)
where the heterogeneous strain, 58,7 (7), is defined so that
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The homaogeneous strain is the uniform macroscopic strain characterizing the macroscopic shape
and volume change associated with the total strain. The strain and displacement relationship gives
the following equation:
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where u,(7) denotes the ith component of displacement.
The mechanical equilibrium equations with respect to elastic displacements are expressed as
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where r; is the jth component of 7. The stress-free boundary condition at the top surface of a
film is given by

0!'3 x;=h/ = 0 (9)
where k, is the film thickness along z direction. Since the elastic perturbation resulted from the

heterogeneous strain disappears in the substrate far from the film-substrate interface, the following
condition is used to describe the constraint of the substrate

w| _, =0 (10)

where h, is the distance from the film-substrate interface into the substrate, beyond which the

elastic deformation is ignored.
To solve Egs. (8)-(10), two elastic solutions are superposed[4]. First solution is from
Khachaturyan’s microelasticity theory[5] within 0<x; <h; and second one is from the elastic

solution in an infinite plate of thickness h, +h, , satisfying the two boundary conditions.

Consequently, the elastic energy in the constrained thin film can be calculated from Egs. (4), (5)
and (7).
The dimensionless form of Eq. (1) becomes
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where r"=r/ly, ¢ =tL|Af| and B =P, /((Ax)* | Af ), where [, is the grid spacing.
Taking a Foutier-transform of both sides of Eq. (11) gives
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where g" is the magnitude of ', M,(g°.7°), M, (g") and & (g",r") are the Fourier

transforms of m,(F "), M, (F") and &;(F ,1"), respectively. The above equation can be
efficiently solved using a semi-implicit method [6],
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where E'(g",1") = Ar"E] (g*,t*)/(1+ B,.(g*)zAt*) and At is the time step for integration.

Simulation procedure

In the computer simulations, 128x128x32 discrete grid points are used, and periodic boundary
conditions are applied along x, and x, axes. The dimensionless grid spacing in real space is
chosen to be Ax /l,=Ax,/l,=10 and Ax,/l,=0.5 and At" is chosen to be 0.01. The
transformation strains used in this study are those of Fe-31%Ni alloy with g =0.1322 and
€, =—0.1994 [7]. The elastic constants of the Fe-31%Ni alloy are reported as c¢,, =1.404x10"' Pa
and ¢, =0.84x10"" Pa [8]. The dimensionless parameters A, A; and A] in the chemical free
energy equation are chosen to be 0.1, 1.65 and 0.8, respectively. The gradient energy coefficient
B is chosen to be 0.5. The Gaussian random noise is applied for the time period of " =2.0 to

simulate the nucleation of martensitic phase. To investigate the effect of undercooling on the
martensitic microstructure evolution, a dimensionless ratio between elastic energy and chemical
energy, (,is introduced [2].
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Results and discussion

The effect of substrate constraint on microstructure has been investigated with the Fe-31%Ni
material and { =10. Figure 1 shows the change of microstructure according to different mismatch
strains between film and substrate. The microstructure and volume fraction of each domain are
strongly dependent on the mismatch strain. When the mismatch strain is zero, the martensitic phase
consists of 50% m, and 50% 1, domains. The two domains in Fig. 1(a) are alternating {110}
twin-related orientation variants and form polytwinned plates. As the mismatch strain become more
tensile, 1, domain become more favorable and the volume fraction of 1, domain increases up to
31% and 75% of total martensitic phase as shown in Fig. 1(b) and (c), respectively.
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Fig. 1 Microstructures obtained at various substrate constraints with the transformation strain of
the Fe-31%Ni material and { =10.
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Figure 2 shows an initial microstructure evolution of martensitic transformation on top surface
without mismatch strain. Dark and bright fields correspond to 1, and m, domains, respectively.
From the very early stage of nucleation, dark and bright fields coexist like a nucleation pair to
accommodate strain energy. Since the elastic energy plays an important role in martensitic
transformation, complex nuclei is more favorable in terms of strain accommodation. The single
variant nucleus would create a long-range stress field with a large strain energy proportional to the
nucleus volume [2].

(@ t" =10 ® r'=20 © (=25
Fig. 2 Initial microstructure evolution of martensitic transformation on top surface without
mismatch strain.

Figures 3 and 4 show the change of domain volume fractions versus time when €=0.0 and
£=0.04, respectively. The kinetic curves with zero mismatch strain show the simultaneous
development of m, and mn, domains after a nucleation period (Fig. 3). When £=0.04, the
kinetic curves show that m, and 7, domains develop after m, domain forms first (Fig. 4). In
both cases, once the transformation starts after the nucleation, the transformation is completed in a
short time period. The nucleation period become longer as { increases, because the increased {
means lower undercooling and increased elastic energy compared to the chemical energy. Low
undercooling ({ =15) results in less volume fraction of martensitic phase, and finer microstructures
due to the increased elastic energy effect.
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Fig. 3 Change of domain volume fractions versus time without mismatch strain
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Fig. 4 Change of domain volume fractions versus time with & =0.04

Conclusion

A 3-D phase-field model for the cubic to tetragonal martensitic transformation is developed to
predict the evolution of martensitic microstructure in thin film elastically constrained by substrate.
The microstructure strongly depends on the substraint constraint represented by mismatch strain.
With the transformation strain of Fe-31%Ni material, the martensitic phase in the film consists of
polytwinned plates formed by alternating {l10} twin-related n, and m, variants under zero

mismatch strain, and the fraction of m, increases as the mismatch strain becomes tensile. Strain

accommodation starts from the nucleation process by forming complex nuclei of 1, and n,
under zero mismatch strain. The increase in ¢, which means low undercooling, results in less
martensitic volume fraction, finer domain morphology and longer nucleation period.

Acknowledgement. Authors are grateful for the financial support for this research by the National
Research Laboratory Project through the Ministry of Science and Technology and by the US
National Science Foundation under grant number DMR-01-22638.

References

[1] A.Artemev, Y.Wang and A.G.Khachaturyan: Acta Mater., Vol. 48 (2000), p.2503.

[2] A.Artemeyv, Y.Jin and A.G.Khachaturyan: Acta Mater., Vol. 49 (2001), p.1165.

[3] YM.Jin, A.Artemev and A.G.Khachaturyan: Acta Mater., Vol. 49 (2001), p.2309.

[4] Y.L.Li, S.Y.Hu, Z.K.Liu and L.Q.Chen: Acta Mater., Vol. 50 (2002), p.395.

[5] A.G.Khachaturyan: Theory of Structural Transformations in Solids, John Wiley and Sons, New
York, (1983).

[6] L.Q.Chen and J.Shen: Comput. Phys. Commun., Vol. 108 (1998), p.147.

[7] J.E.Breedis and C.M.Wayman: Trans. Metall. Soc. AIME, Vol. 224 (1962), p.1128.

[8] G.Hausch and H.Warlimont: Acta Metall., Vol. 21 (1973), p.401.



