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Abstract

The morphological evolution during spinodal decomposition of a binary alloy thin film elastically constrained by a
substrate is studied. Elastic solutions, derived for elastically anisotropic thin films subject to the mixed stress-free and
constraint boundary conditions, are employed in a three-dimensional phase-field model. The Cahn–Hilliard diffusion
equation for a thin film boundary condition is solved using a semi-implicit Fourier-spectral method. The effect of
composition, coherency strain, film thickness and substrate constraint on the microstructure evolution was studied.
Numerical simulations show that in the absence of coherency strain and substrate constraint, the morphology of decom-
posed phases depends on the film thickness and the composition. For a certain range of compositions, phase separation
with coherency strain in an elastically anisotropic film shows the behavior of surface-directed spinodal decomposition
driven by the elastic energy effect. Similar to bulk systems, the negative elastic anisotropy in the cubic alloy results
in the alignment of phases along�1 0 0� elastically soft directions.
 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Spinodal decomposition takes place through
spontaneous amplification of compositional fluc-
tuations when a quenched homogeneous phase
annealed within a miscibility gap becomes unstable
with respect to phase separation into two phases
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with different compositions. Since new phases
form by a continuous process, interfaces between
the two phases remain coherent during phase sep-
aration[1]. Formation of coherent microstructures
generates elastic strain energy whose magnitude
depends on the degree of lattice mismatch, the
elastic properties of each phase, and the spatial dis-
tributions of coherent domains[2]. Since Cahn first
introduced the elastic energy contribution to spino-
dal decomposition[3], there have been many stud-
ies on the thermodynamics of coherent systems
[2,4–22]. There have been a number of theoretical
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studies on the spinodal phase separation in con-
fined geometries such as thin films or plates [23–
25]. It was shown that the growth of A-rich and
B-rich domains and their morphology in a confined
binary system is distinctly modified compared to
those in the bulk [26]. Most of the existing studies
are, however, on confined fluid systems or in solid
thin films in which the elastic energy is ignored.
In this work, we consider a thin solid film con-
strained by a much thicker substrate. The average
lattice mismatch and/or the difference in thermal
expansion coefficients between the film and the
substrate causes strain energy in addition to the
coherency strain energy due to compositional
inhomogeneity in the film. A uniform substrate
constraint from the average lattice mismatch may
change the equilibrium volume fractions of decom-
posed phases. A periodic substrate constraint from
highly ordered arrays of misfit dislocations in the
substrate may control the wavelength of spinodal
decomposition in a thin film [27]. A patterned sub-
strate can significantly affect spinodally decom-
posed two-phase microstructures and may provide
monolayers of periodic nanostructures from an
initially homogeneous alloy [28]. As the film thick-
ness increases, dislocations form at the
film/substrate interface to reduce the strain energy.
The local stress field near interfacial dislocations
may affect the decomposition kinetics, hence the
morphology [29]. If the film thickness is compara-
ble to the substrate thickness so that the substrate
is compliant to the stressed thin film, the substrate
affects the stress state in the film through both the
average misfit strain and the bending stiffness of
the layered system [30].

The presence of the surface and interface breaks
translational and rotational symmetry. As a result,
a given component may prefer to occupy the sur-
face or interface sites to produce low
surface/interface energy, resulting in the so-called
surface-directed spinodal decomposition [31]. In
this mechanism, an enriched surface layer of the
preferred component is followed by an adjacent
depletion layer, and the spinodal wave will grow
with a dominant wave vector directed normal to
the surface. Several recent simulations have
reported both the development of alternating layers
of the phases lying parallel to the surface as well

as the formation of rows of particles parallel to the
surface, taking into account the dependence of the
surface energy on composition [32–34]. Tempera-
ture history of the system, for example, cooling
from the outside surface, may also cause the sur-
face-directed spinodal decomposition [35]. We will
show that the coherency strain energy in a thin film
can cause the spinodal decomposition of surface-
directed characteristics.

Phase separation in a thin solid film should con-
sider both the effect of the strain energy due to
compositional self-strain and substrate constraint,
and the effect of the surface/interface energy. In
this paper, we extend the phase-field approach
using the Cahn–Hillard-type diffusion equation to
describe a three-dimensional morphological evol-
ution during a spinodal decomposition and coars-
ening in a thin film attached to a substrate at con-
stant temperature. The phase-field approach
provides a convenient basis for the numerical sol-
ution of complicated pattern evolution of trans-
forming phases. There is no a priori assumption for
the evolution. In our model, the film is assumed to
be a binary (AB) alloy with two equilibrium
phases. We assume the diffusion only occurs in the
film, the substrate is sufficiently thick compared to
the film thickness, and the interface is coherent.
Elastic solutions are derived for the elastically
anisotropic thin films subject to the mixed stress-
free and constraint boundary conditions. These thin
film boundary conditions have been successfully
applied to the phase-field simulation of the forma-
tion of martensitic domains [36–38]. Elastic sol-
utions from thin film boundary conditions are
employed in a three-dimensional phase-field
model. We study the dependence of morphological
evolution on the coherency strain, elastic ani-
sotropy, thin film thickness and the composition.
The surface and interface contributions to the total
free energy are not included, which would modify
the thermodynamics near the surface [26] and
appear as part of the boundary conditions at the
surface and interface. The effect of surface and
interface contributions will be studied in the
sequels to this paper. We also would like to point
out another important assumption that the surface
and interface are essentially flat only allowing elas-
tic displacements. This assumption prevents the
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morphological changes due to the surface energy
driven evolution near the surface region, e.g. the
formation of triple junctions between the surfaces
of α and β phases and the α/β interphase boundary
with the junction angles determined by the surface
and interphase boundary energies. Therefore, it is
important to stress that the relaxation of this
assumption may significantly change the morpho-
logies predicted in this work and will be studied
in our future work. On the other hand, this assump-
tion allows us to isolate the effect of the stress-free
surface and constrained interface on the morpho-
logical development without the complexity of sur-
face-energy driven morphological changes.
Finally, the film is assumed to be elastically homo-
geneous and has the same elastic modulus as the
substrate. As a result, the effect of the substrate
constraint on the film morphology is significant
only near the surface where the stress is zero and
near the interface where it is constrained by the
substrate. Due to this homogeneous modulus
approximation, the substrate constraint has no
effect on the two-phase morphology inside the film
just like in a three-dimensional bulk system the
applied stress or strain has no effect on the mor-
phology if the modulus is homogeneous.

2. Phase-field model

2.1. Kinetic evolution equation

To describe the temporal evolution of a compo-
sition field, we employ the Cahn–Hilliard dif-
fusion equation,

∂X
∂t

� �·�M��dFdX�� (1)

where X is the composition of species 2 (mole or
atom fraction), F is the total free energy of a sys-
tem. If we assume that the atomic mobilities of
species 1 and 2 are equal, the mobility, M, is given
by [39]

M �
DX(1�X)

kBT
(2)

where D is the diffusion coefficient, kB is the

Boltzmann constant and T is the temperature. The
mobility is further simplified by assuming that the
factor X(1�X) is a constant given by X0(1�X0)
where X0 is the overall composition.

Because the total free energy in Eq. (1) includes
the bulk chemical free energy, interfacial energy
and elastic energy, we have

∂X
∂t

� �·�DX0(1�X0)
kBT

��df(X)
dx

�a�2X � mel�� (3)

where f is the bulk chemical free energy density,
a is the gradient energy coefficient which is related
to the interfacial energy, and mel is the elastic
potential which is the derivative of the elastic
energy with respect to the composition.

Using reduced variables we have the dimen-
sionless form of the kinetic equation:

∂X(r⇀∗,t∗)
∂t∗

� (�∗)2�df∗(X)
dX

�a∗(�∗)2X � m∗
el� (4)

where r∗ = r / l0, t∗ = DtX0(1�X0) / l2
0, �∗ = l20�,

f∗ = f / (kBT), a∗ = a / (kBTl2
0) and m∗

el = mel / (kBT),
where l0 is the grid spacing.

Considering a model system, the chemical free
energy density, f, is described by a double-well
potential with minima at equilibrium compositions
of ± 1.0:

f∗(X) � �
1
2
X2 �

1
4

X4 (5)

2.2. Elastic energy in constrained films

If we assume that the variation of the stress-free
lattice parameter, a, with composition is linear, i.e.
it obeys the Vegard’s law, the local stress-free
strain caused by compositional inhomogeneity is
given by [39]

e0ij( r⇀) � e0dX( r⇀)dij (6)

where e0 = (1 /a)(da / dX) is the compositional
expansion coefficient of the lattice parameter and
dij is the Kronecker–Delta function.

In the linear elasticity, the stress sij is related to
the elastic strain by the Hooke’s law:

sij � cijkl(ekl(r⇀)�e0kl( r⇀)) (7)
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where cijkl is the elastic stiffness which gives the
crystal elastic constants and ekl( r⇀) is the total strain
measured with respect to a reference lattice. The
effect of composition on the elastic constants is
neglected. The total strain can be separated into
homogeneous and heterogeneous strains [2]:

eij( r⇀) � ēij � deij( r⇀) (8)

where the heterogeneous strain, deij(r⇀), is defined
so that

�
V

deij( r⇀)d3r � 0 (9)

The homogeneous strain is the uniform macro-
scopic strain characterizing the macroscopic shape
and volume change associated with the total strain.
The strain and displacement relationship gives the
following equation:

deij( r⇀) �
1
2�∂ui( r⇀)

∂rj

�
∂uj(r⇀)

∂ri
� (10)

where ui( r⇀) denotes the ith component of displace-
ment.

The mechanical equilibrium equations with
respect to elastic displacements are expressed as

∂sij

∂rj

� 0 (11)

where rj is the jth component of r⇀. The stress-free
boundary condition at the top surface of a film is
given by

si3|x3=hf
� 0 (12)

where hf is the film thickness along x3 direction as
shown in Fig. 1. Since the elastic perturbation
resulted from the heterogeneous strain disappears
in the substrate far from the film–substrate inter-
face, the following condition is used to describe
the constraint of the substrate

ui|x3=�hs
� 0 (13)

where hs is the distance from the film–substrate
interface into the sufficiently thick substrate,
beyond which the elastic deformation is ignored
(see Fig. 1).

Fig. 1. Schematic illustration of a thin film coherently con-
strained by a substrate.

To solve Eqs. (11)–(13), two elastic solutions
are superposed [37]. First solution is from Khach-
aturyan’s microelasticity theory [2] within 0 � x3

� hf and second one is from the elastic solution
in an infinite plate of thickness hf + hs, satisfying
the two boundary conditions. Consequently, the
elastic energy in the constrained thin film can be
calculated from Eqs. (7), (8) and (10).

2.3. Three-dimensional simulation of spinodal
decomposition

Taking Fourier-transform of Eq. (4), we have the
temporal evolution of the composition wave ampli-
tude, X(g⇀∗,t∗),

∂X(g⇀∗,t∗)
∂t∗

� �(g∗)2��df∗(X)
dX �

g
⇀∗

(14)

� a∗(g∗)2X(g⇀∗,t∗) � m∗
el(g⇀∗)�

where g∗ is the magnitude of g⇀∗, a vector in the
Fourier space, X(g⇀∗,t∗), (df∗(X) /dX)g

⇀∗ and
m∗

el(g⇀∗) are the Fourier transforms of X( r⇀∗,t∗),
(df∗(X) /dX) r

⇀∗, and m∗
el( r⇀∗), respectively. The

above equation can be efficiently solved using a
semi-implicit method [39,40]. More precisely,

Xn+1( g⇀∗) � (15)

(4Xn( g⇀∗)�Xn�1( g⇀∗)) /3�(2 /3)�t∗(g∗)2[2(m∗( g⇀∗))n�(m∗( g⇀∗))n�1]
1 � (2 /3)�t∗a∗(g∗)4
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where m∗ = df∗(X) /dX + m∗
el and �t∗ is the time

step for integration.
For time discretization, a second-order backward

difference scheme is applied. For spatial discretiz-
ation, a Fourier-spectral method is used in x1 and
x2 direction, and since the zero-flux boundary con-
ditions at film surface and film/substrate interface
cannot be satisfied by a Fourier expansion, a
second-order finite difference method with Fast
Fourier Transform (FFT) is used in the x3 direction.

In the computer simulation, 128 × 128 × 48 dis-
crete grid points are used where hf = 32l0, and per-
iodic boundary conditions are applied along x1 and
x2 axes. The dimensionless grid spacing in real
space is chosen to be �x1 / l0 = �x2 / l0 = �x3 / l0 =
1.0 and �t∗ is chosen to be 0.05. The dimen-
sionless gradient energy coefficient, a∗, is chosen
to be 0.6. The interface energy between decom-
posed phases is assumed to be isotropic. The overall
reduced composition used in this study is an off-
critical composition of �0.3. A small compositional
fluctuation is applied to initiate the decomposition
process by the random number generation at the
initial stage. The elastic constants used for the film
are C11 = 375, C12 = 125, C44 = 125 for an isotropic
cubic material, and C11 = 375, C12 = 250, C44 =
125 for an anisotropic cubic material, all in units
of NVkBT where NV is the number of atoms per unit
volume. Same elastic constants are used for the sub-
strate. Note that the anisotropy given by (C11�
C12�2C44) /C44 is negative. The film is assumed to
be coherent with the substrate and has the same
elastic constants as the substrate.

3. Results and discussion

A typical temporal evolution of the phases dur-
ing the spinodal decomposition in bulk AB binary
alloy system is shown in Fig. 2. In this case 64
× 64 × 64 grid points are used. The solid region
corresponds to the higher concentration (B-rich)
and transparent region corresponds to the lower
concentration (A-rich). A small compositional
fluctuation leads to a spontaneous phase separation,
producing a three-dimensionally interconnected
microstructure as shown in the figure.

The local stress field in the thin film is caused
by the local compositional inhomogeneity with

Fig. 2. Temporal evolution of the phases during the spinodal
decomposition in bulk AB binary alloy system.

coherent interfaces between decomposed phases. If
we assume the atomic sizes of A and B atoms in
the film are same and there is no elastic constraint
of the film by the substrate, the spinodal decompo-
sition is driven by the bulk chemical free energy
and the interface energy without the elastic energy.
Fig. 3 shows the temporal evolution of the phases
during the spinodal decomposition in the thin film
without the elastic energy. The solid region corre-
sponds to the higher concentration (B-rich) and the
bottom plate is the substrate. The decomposition
occurs homogeneously throughout the film from
the initial stage. From the three-dimensional obser-
vation, B-rich phases are interconnected randomly,
i.e. without any preferred direction of intercon-
nection or layer formation. Columnar shape is
observed near the film/substrate interface and
film surface.

Columnar morphology results from the finite
film thickness and the zero-flux boundary con-
dition at the film/substrate interface and film sur-
face. As the film thickness become thinner (see
Fig. 4), the three-dimensional diffusional process
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Fig. 3. Temporal evolution of the phases during the spinodal decomposition in thin film without the elastic energy.

Fig. 4. The phase morphology in thin films without the elastic energy at various film thickness of (a) hf / l0 = 8, (b) hf / l0 = 16, (c)
hf / l0 = 32 and (d) hf / l0 = 64.
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becomes approximately two-dimensional along x1

and x2 directions. Fig. 4(a) shows a fully columnar
morphology in a very thin film with hf / l0 = 8. It
has little morphological change along x3 direction.
As the film thickness increases, the morphology
becomes more three-dimensional and intercon-
nected. In a thicker film with hf / l0 = 64, Fig. 4(d)
shows a microstructure similar to that of bulk
material shown in Fig. 2.

When the film thickness is given as hf / l0 = 8,
the composition determines whether the micro-
structure becomes isolated columnar or intercon-
nected. The overall reduced composition was
decreased to �0.5 and increased to 0.0 from the
original composition of �0.3 in order to show the
effect of composition on the decomposed mor-
phology. The overall composition determines the
equilibrium volume fraction. Fig. 5(a) and (b)
show the microstructure evolution with the overall
composition of �0.5. Throughout the decompo-
sition process, B-rich phase regions are isolated
because of a low volume fraction. The volume
fraction of the B-rich phase in Fig. 5(b) is 0.20 and
the shape is cylindrical to reduce interface energy.
When the overall composition was increased to
0.0, as shown in Fig. 6(a) and (b), the decompo-
sition proceeds with the finely interconnected
three-dimensional structure first and then leads to
the interconnected columnar structure during
coarsening. Volume fractions of both B-rich and
A-rich phases are 0.45 and the fraction of the inter-
face region amounts to 0.10 due to the assumption
of diffuse interface in this model.

Fig. 7 shows the temporal evolution of the
phases during the spinodal decomposition of an

Fig. 5. Microstructure evolution with the overall reduced composition of �0.5 at (a) t∗ = 30 and (b) t∗ = 200.

elastically isotropic material of which the compo-
sitional expansion coefficient of the lattice para-
meter is 0.02. The positive compositional expan-
sion coefficient means the size of B atom is larger
than that of A atom. The initial decomposition
starts at the film surface where it is easier to relieve
the local stress field accompanied by the decompo-
sition. Compared to Fig. 3, decomposed phases
have a slight tendency to align parallel to the
x1x2 plane due to the initial layer formation at the
film surface.

Fig. 8 shows the temporal evolution of the
phases during the spinodal decomposition of an
elastically anisotropic material of which the com-
positional expansion coefficient of the lattice para-
meter is 0.02. From the early stage decomposition
at the film surface, decomposed phases have a
tendency to align along �1 0 0� directions. For a
cubic alloy with negative elastic anisotropy, �1 0 0�
directions are elastically soft directions, and mor-
phological alignment along those directions results
in a decrease in the elastic energy [40]. As the B-
rich domain coarsens, the morphology not only
shows a strong �1 0 0� alignment in the x1x2 plane,
but also shows a layered structure along x3 direc-
tion. The B-rich phase seldom interconnects each
other along x3 direction at the composition of �0.3
and the film thickness of hf / l0 = 32. The increase
in the composition provides morphological align-
ment along all three directions. Layered structure
along x3 direction cannot be observed at the com-
position of 0.0. If the composition decreases below
�0.3, the number of B-rich layers in the layered
structure reduces due to the decrease in the volume
fraction of B-rich phase.
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Fig. 6. Microstructure evolution with the overall reduced composition of 0.0 at (a) t∗ = 30 and (b) t∗ = 200.

Fig. 7. Temporal evolution of the phases during the spinodal decomposition in an elastically isotropic film.

The pictures of spinodally phase-separated
microstructures presented in Figs. 7 and 8 do not
take into account the local displacements. As a
result of compositional fluctuation with different
atomic sizes, an initially atomically flat surface is
expected to become rough. The surface topology
change due to the phase separation can be determ-
ined from the elastic solutions for a given phase-
separated microstructure. Fig. 9 shows an example
of the displacements along the x3 direction on the
surface for the two-phase structure shown in Fig.

8(d). As expected from the larger size of B atom,
the displacements within B-rich phase regions are
positive whereas those within A-rich regions are
negative, ranging from maximum 0.8349 to mini-
mum �0.7625.

The formation of layered structure in Fig. 8 can
be effectively observed in a two-dimensional x1x3

section with increasing the time as shown in Fig.
10. The bright and dark regions correspond to the
B-rich and A-rich regions, respectively. The B-rich
region forms at the film surface first and the A-
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Fig. 8. Temporal evolution of the phases during the spinodal decomposition in an elastically anisotropic film.

Fig. 9. Displacement pattern of the x3 component on the sur-
face.

rich region forms next to the surface layer where
B component is depleted. The B-rich region cannot
form right beneath the surface layer because the
compressive stress field overlaps. The layer for-
ming process propagates gradually with time from
the film surface to the film/substrate interface.
With forming the layered structure, the alternating

compressive and tensile stress fields develop with-
out causing a macroscopic displacement in the x1

or x2 direction. The phase separation procedure
observed in Fig. 10 can be thought as a kind of
surface-directed spinodal decomposition, driven by
the elastic effect. Instead of an initial surface layer
formed by a preferred component to reduce the sur-
face energy in usual surface-directed spinodal
decomposition [31], the surface, where the strain
energy barrier is lowest, is favored for the initial
phase separation. The difference between two dif-
ferent mechanisms lies in their morphology of sur-
face layer. The surface-directed spinodal decompo-
sition driven by the surface energy effect will
produce a wholly planar layer of one phase that is
favorable in terms of surface energy reduction at
the film surface, in the early stage of phase separ-
ation [32,34]. The spinodal wave vector is more
one-dimensional compared to that in the surface-
directed spinodal decomposition driven by the
elastic effect.

Fig. 11(a) and (b) show profiles of averaged
compositions over x1x2 plane with respect to the
position along x3 direction from the film/substrate
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Fig. 10. Sequential formation of the layered structure observed in the x1x3 section at (a) t∗ = 4.0, (b) t∗ = 6.5, (c) t∗ = 8.5 and (d)
t∗ = 11.5.

Fig. 11. Profiles of averaged compositions over x1x2 plane with respect to the position along x3 direction from the film/substrate
interface to the film surface at (a) t∗ = 10 and (b) t∗ = 200.

interface to the film surface. When t∗ = 10 in Fig.
11(a), the coherency strain energy causes compo-
sitional fluctuations at the film surface first and the
compositions near the film/substrate interface are
still homogeneous in the elastically isotropic and
anisotropic materials. As to the film without elastic
energy, the compositional fluctuation exists
throughout the film thickness. When t∗ = 200 in
Fig. 11(b), all composition profiles fluctuate.
Especially the elastically anisotropic material
shows largest fluctuation along x3 direction for-
ming layered structure. The coherency strain

energy and elastic anisotropy increase the tendency
of the layer formation.

The volume fraction change of the B-rich phase
is drawn in Fig. 12 as a function of time in order
to show the effect of coherency strain energy on
the decomposition kinetics and decomposed vol-
ume fractions. Without elastic energy, the film
decomposes abruptly at the initial stage right after
the initial compositional fluctuation. The strain
energy in elastically isotropic and anisotropic
materials obviously retards the decomposition pro-
cess. The elastically anisotropic material decom-
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Fig. 12. Volume fraction change of the B-rich phase with
respect to the time.

poses slightly faster than the isotropic material
because the elastic anisotropy provides �1 0 0�
directions that have low strain energy. The slow
decomposition kinetics in the film with the coher-
ency strain energy is due to the decrease in the
driving force of spinodal decomposition as it was
pointed out long time ago by Cahn [41]. We con-
sider a one-dimensional elastic deformation of a
film constrained by a rigid substrate. The free
energy increase due to coherency strain energy is
given by

�f∗ �
1
2

E∗[e0(X�X0)]2 (16)

where E∗ is a dimensionless Young’s modulus of
the film, and e0 is the compositional expansion
coefficient of the lattice parameter. Adding Eq.
(16) to the chemical free energy density gives

f∗(X) � �
1
2

X2 �
1
4
X4 �

1
2

E∗e20(X�X0)2 (17)

Eq. (17) is plotted in Fig. 13 with various amounts
of compositional mismatch, e0. The overall compo-
sition X0 is the critical composition, i.e. X0 = 0. A
typical value of E∗ is taken as 250. As the e0
increases, the driving force for the spinodal
decomposition decreases due to the increased

Fig. 13. Change of the free energy function with respect to
the amount of compositional mismatch, e0.

coherency strain energy and the spinodal region
between the circles in each curve reduces. The
second derivative of the free energy density
becomes zero at the circles where X =
±√(1�E∗e20) /3. If the e0 is larger than 1 /√E∗, the
system is outside of the miscibility gap (e0 =
0.07 in the figure). The decrease in the driving
force of the spinodal decomposition with coher-
ency strain energy makes the decomposition kin-
etics slower than that without strain energy.

Fig. 14 shows the morphology change caused by
reducing hs for an elastically anisotropic material.
The reduction of hs indicates an increased hardness
of the substrate material. Note that hs / l0 = 10 in
Fig. 8. The hs is decreased as hs / l0 = 5 in Fig. 14(a)
and hs / l0 = 1 in Fig. 14(b). As the hs decreases,
one B-rich layer close to the film/substrate inter-
face becomes entirely a B-rich plane, while the B-
rich phase region in the other layer shrinks at the
film surface. A strong constraint by the hard sub-
strate in Fig. 14(b) makes the concentration distri-
bution uniform near the film/substrate interface.

4. Conclusions

A three-dimensional phase-field model is
employed to study the morphological evolution
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Fig. 14. Morphology change in the elastically anisotropic film caused by the hs decrease: (a) hs / l0 = 5 and (b) hs / l0 = 1.

during spinodal decomposition in a binary alloy
thin film elastically constrained by a substrate.
Without coherency strain, the compositional fluc-
tuation simultaneously occurs in the whole film
from the initial stage of the spinodal decompo-
sition. The morphology of decomposed phases
depends on the film thickness and the composition.
The tendency of forming isolated columnar struc-
ture is enhanced as the film thickness decreases and
the composition becomes more off-critical within
the unstable part of the miscibility gap. When the
coherency strain is introduced, the phase separation
follows the mechanism of surface-directed spino-
dal decomposition, driven by the elastic energy
effect, within a certain range of the composition.
The resultant microstructure in an elastically aniso-
tropic film is alternately aligned layer structure par-
allel to the film surface along the x3 direction. Due
to the negative elastic anisotropy in the cubic alloy,
decomposed phases align along elastically soft
�1 0 0� directions to reduce the elastic energy. The
increased substrate hardness affects the mor-
phology. The coherency strain energy in elastically
isotropic and anisotropic materials delays the kin-
etic process of the spinodal decomposition due to
reduced driving force for the decomposition.
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