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Abstract 

The kinetics of spinodal decomposition and morphological evolution near a crystalline surface (an edge in two dimensions) were 
investigated by microscopic master equations in both the point and pair approximations and a second-neighbor interaction model 
in a two-dimensional model system. It is shown that, in the presence of a surface, spinodal decomposition initially involves surface 
segregation, followed by anisotropic decomposition in the near-surface region, with subsequent isotropic decomposition in the bulk. 
It is demonstrated that, due to segregation, a surface spinodal decomposition may take place for alloys whose overall average 
compositions are outside the bulk spinodal. It is found that the presence of a surface results in a dominant concentration wave, 
which produces interesting transient morphological patterns such as distorted hexagonal precipitate lattices for relatively low-volume 
fractions and straight stripes at high-volume fractions in the near-surface region. The effect of pair correlations on the kinetics of 
spinodal decomposition and morphologies was studied. 

Keywords: Computer simulations; Low index single crystal surfaces; Models of non-equilibrium phenomena; Non-equilibrium 
thermodynamics and statistical mechanics; Surface segregation; Surface thermodynamics 

1. Introduction 

The kinetics of spinodal  decomposi t ion  and 
accompanying  morphologica l  evolution are well 
unders tood  in bulk crystalline solids. In  the 
absence of elastic stress and interracial energy 
anisotropy,  spinodal decomposi t ion is manifested 
by the growth of  concentra t ion waves with wave 
numbers  a round  zero, resulting in an isotropic 
interconnected morpho logy  for the critical (c = 0.5, 
or close to critical) composi t ion  and spherical 
second-phase particles embedded in a matrix for 
off-critical composit ions.  However,  this is a correct 
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picture only for bulk systems in which the effect of 
surfaces due to finite size can be ignored. As the 
size of  a system decreases, for example, down to 
the nanoscale,  as in nano-crystall ine particles and 
nanoscale or  atomic-scale thin films, it is expected 
that  the surface becomes increasingly impor tant  in 
bo th  the structural and phase t ransformat ion beha- 
viors. Thermodynamical ly ,  the contr ibut ion from 
the surface and interfacial energy to the total free 
energy in such systems may become comparable  
to the bulk free energy and hence, cannot  be 
ignored. As a result, the phase stability and phase 
diagram of a nanoscale system could be dramati-  
cally different f rom the corresponding macroscopic  
ones [1 ] .  Kinetically, the presence of a surface 
results in a difference in the growth of  concen- 
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tration waves perpendicular and parallel to the 
surface due to the breaking of translational 
symmetries perpendicular to the surface. Therefore, 
it is expected that the morphological pattern for- 
mation will be quite different near a free surface 
from that in the bulk. Depending on the relative 
size of particles or thickness of thin films to the 
typical spinodal wavelength, the two-phase mor- 
phology of a nanoscale particle or thin film can be 
dominated by the presence of a surface. Indeed, it 
was found experimentally that the presence of a 
free surface led to the development of a dominant 
concentration wave with the wave vector perpen- 
dicular to the surface during spinodal decomposi- 
tion of a polymer film [2]. 

There have been many theoretical investigations 
and numerical simulations of surface segregation 
and phase transitions near a surface in the last two 
decades [3-12]. Most of the recent works on the 
kinetics of spinodal decomposition near a surface 
employed the continuum Cahn-Hilliard-type of 
equations [9-12]. Microscopic kinetic models of 
the thermodynamics of surface segregation and 
phase transitions in the surface region usually treat 
a system with a surface inhomogeneous only per- 
pendicular to the surface [7,8]. By including a free 
energy contribution from the surface in the Cahn- 
Hilliard equation, the dominant concentration 
wave perpendicular to the surface as observed 
experimentally was predicted in a number of 
numerical simulations [9-12]. Morphologically, 
the presence of a surface results in a morphology 
with long stripes parallel to the surface during 
spinodal decomposition. 

In this paper, we apply a microscopic model, 
the cluster activation method [13], derived from 
microscopic master equations [14]. We do not 
make the assumption that atom flux is linearly 
proportional to the thermodynamic driving force, 
as in the Cahn-Hilliard equation [ 15]. Therefore, 
it can be applied to highly non-equilibrium pro- 
cesses which take place in systems far from equilib- 
rium. The free energy function does not explicitly 
enter the kinetic equations. Due to the microscopic 
nature of the model, it can be applied to both 
ordering and spinodal decomposition with a sur- 
face. Moreover, in this model, the structural state 
of a system is described by multiparticle-distribu- 

tion functions or cluster probabilities. As a result, 
the effect of high order correlations on the kinetics 
of spinodal decomposition can be studied. At the 
same level of approximation, the equilibrium states 
derived from the cluster activation method corre- 
spond to those calculated by the equilibrium clus- 
ter variation method 1-16] which is being widely 
used in the equilibrium phase diagram calculations. 

Although, in principle, Monte Carlo may be 
applied to the same problem studied in this paper, 
there are a number of reasons why we chose the 
kinetic equation approach instead of Monte Carlo. 
First of all, the probability distribution functions 
generated by the kinetic equations are averages 
over a time-dependent non-equilibrium ensemble, 
whereas in Monte Carlo a series of snapshots of 
instantaneous atomic configurations along the sim- 
ulated Markov chain are produced. Therefore, a 
certain averaging procedure has to be designed in 
the Monte Carlo technique in order to obtain the 
information about local composition or local 
order. Secondly, while the time scale is clearly 
defined in the microscopic master equations, it is 
rather difficult to relate the Monte Carlo time 
steps to real time. Finally, in most cases simulations 
based on kinetic equations are computationally 
more efficient than Monte Carlo. This is also the 
main reason that most of the equilibrium phase 
diagram calculations in alloys were performed 
using the cluster variation method instead of 
Monte Carlo. The main disadvantage of the micro- 
scopic kinetic equations is the fact that equations 
become increasingly tedious when increasingly 
higher order correlations are included, whereas in 
Monte Carlo essentially all correlations are 
automatically included. 

The main purpose of this work is to study the 
kinetics of spinodal decomposition as well as the 
morphologies near a crystalline surface at various 
conditions. For this purpose, we employed a two- 
dimensional square lattice with a second-neighbor 
interaction model, and in this case a surface is in 
fact an edge. A free surface is treated as a simple 
termination of a bulk crystal and the effect of 
lattice relaxation is not considered. As will be 
shown below, the presence of  a surface results in a 
wide variety of interesting spinodal morphologies, 
some of which have not been predicted previously. 
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The effect of pair correlations, composition, as well 
as the bond energies between atoms on the 
spinodal decomposition kinetics and morphologies 
will be discussed. 

2. The model 

2.1. Probability distribution functions 

In general, the structural state of an alloy with 
two kinds of atoms A and B can be described by 
a set of multiparticle distribution functions, 
Pal ..... a,(rl . . . . .  r,,t), which are the joint probabili- 
ties of atoms, al . . . . .  a, (a = A or B), occupying 
lattice positions rl . . . .  , r, simultaneously at time t. 
A complete description of a structural state 
requires the knowledge of all the distribution func- 
tions. For a binary system with N lattices, the 
number of independent distribution functions is 
2 N -  1 which is a huge number for any practical 
system. In practice, therefore, we have to resort to 
approximations in order to make the number of 
distribution functions tractable. The simplest 
approximation is, of course, the single-site point 
approximation in which the structural state is 
described by the single-site occupation probabili- 
ties, PA(r) or PB(r). A single-site approximation 
together with a first-neighbor interaction model is 
exactly the classical Bragg-William model in the 
thermodynamics of solid solutions. The next level 
of approximation is the pair approximation in 
which the structural state of an alloy is described 
by the point and pair distribution functions. The 
thermodynamic model employing a pair approxi- 
mation and a nearest-neighbor interaction model 
corresponds to the Bethe approximation. As we 
move to higher level approximations, the formula- 
tion becomes increasingly tedious and complicated 
as the number of distribution functions increases 
exponentially. In the current work, we employ 
both point and pair approximations, and with 
both first- and second-neighbor pairwise 
interactions. 

A consistent description of a thermodynamic 
state requires that all the distribution functions 
satisfy the normalization condition. In the pair 
approximation, the normalization conditions for 

P,(r) and P~l,,~(rl,r2) are given by 

2 P,(r) = 1, 

L,,~2(rl,r2) = P~l(r,), 
~2 

E P~l,~2(rl,r2)= P~2(r2) • (1) 

Therefore, the distribution functions are not inde- 
pendent. Among them, we can choose an indepen- 
dent set, e.g., PA(r) and PAA(rl,r2). All other points 
and pair variables may be obtained from this 
independent set according to the normalization 
condition (1). 

2.2. Kinetic equations 

Since our main interest is in the kinetics of phase 
transformations in general and spinodal decompo- 
sition in particular near a surface, all the distribu- 
tion functions are time-dependent, evolving from 
values corresponding to non-equilibrium states 
towards equilibrium. To describe the change of 
distribution functions as a function of time and 
therefore the kinetics of spinodal decomposition, 
we have to assume an atomic diffision mechanism. 
In this paper, we assume the simple direct exchange 
mechanism although the vacancy mechanism is 
more realistic for alloy systems and although the 
vacancy mechanism can be treated in this model 
[14,17]. As we employ a second-neighbor inter- 
action model, the relevant distribution functions 
are point, first-neighbor pair and second-neighbor 
pair distribution functions which completely char- 
acterize the structural states in the pair approxima- 
tion. We also assume an isothermal environment 
although the model can easily deal with non- 
isothermal cases. Because of the normalization 
conditions, we only need to solve the kinetic equa- 
tions describing the independent distribution 
functions. 

To write down the kinetic equations, we consider 
a pair of exchange sites at r and a nearest-neighbor 
site, r + 6, and a set {x} of nearby influence sites 
which can affect the exchange reaction. If we have 
an A atom at r, a B atom at r + 6, and a set of 
atoms {X} at {x}, we use RAB({X}) to represent 
the rate at which the AB pair exchanges under the 
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influence of the set of neighboring atoms {X}. 
Similarly, RBA({X}) is the rate at which a BA pair 
will exchange under the same environment when 
a B atom is at r, and an A atom is at r + 8. Then 
the rates of change of PA(r) and PAA(rl,r2) are 
given by 

dPA(r) 
d ~  - ~ ~ PaAtx}(r,r + 8, {x})RBA({X}) 

6 {x} 

- ~ ~ PAB{X~(r,r + 6, {xI)RA,({X}),  
6 {x}  

dPAA(rl,r2) 
dt 

6 # r  I - - r  2 {X} 

X (r 1,r2,r 2 + 8, {x})RBA({X}) 

tJ~r2--r  I {X} 

x (r 1,r2,r 1 + 8, {x})RBA({X}) 

- Z Z PAABtX} 
6 # r l - - r  2 {X} 

X (rl,r2,r 2 

t~3~r2--rl {X} 

+ 6, {x})RAB({X}) 

PAAB{X} 

(2) 

X (r 1,r2,r 1 + 6, {x})RAB({X}) , (3) 

where Za denotes the summation over all the 
nearest-neighbor sites, r + 8, of r. In Eqs. (2) and 
(3), P~I.~2 ....... (rl,r 2 . . . . .  r,) represents the joint 
probability of cq,~2 . . . . .  ~, occupying r 1,r2 . . . . .  r, 
simultaneously. For example, PAB~X~(r,r + 8, {X}) is 
the probability of finding an A atom at r, a B atom 
at r + 8, and the set {X} of atoms at the neighbor- 
ing sites {x} simultaneously. 
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Fig. 1. A 3-point linear cluster. 

tion by 

P,x,,2.,3(1,2,3) = P,x.,2(1,2) x P,2.,3(2,3)/p,2(2 ). 

Therefore, in the first- and second-neighbor pair 
approximation of a square lattice, 

PAB~X~(r,r + 6, {X}) 

= [PAB(r,r + 8)PxlA(Xl,r)PAx3(r, x3)P.x.(r + 8,x4) 

x PBX6(r + 8,x6)PxsB(Xs,r -1- 8)Px9A(x9,r) 

x PA~:(r, x2)PAMr, x4)PB~3(r + 8,x~) 

x Pax~(r + 8,xs)Px7B(X7,r d- 8)PxsA(Xs,r ) 

X PX9B(X9,r "~- 8)PXloA(Xlo,r)] 

X [(PA(r))V(pB(r + 6)) 7] - 2, (4) 

where x~. . .  Xao are the individual sites in the set 
of neighboring sites around the A-B pair at r and 
r + 6, and )(1 . . . .  , Xao are the types of atoms occu- 
pying those sites as shown in Fig. 2. In Eq. (4), the 
correlations for the pairs which are not directly 
connected to the interchanging pair have been 
neglected as a further approximation. Our numeri- 
cal simulation indicates this additional approxima- 
tion does not significantly affect the kinetics of 
ordering and phase separation. 

2.3. Superposition approximation 

In order to carry out the summations in the 
right-hand side of Eqs.(2) and (3), we need to 
express the joint probability distributions, 
PAB~X)(r,r+b,{x}), etc., in terms of independent 
point and pair distribution functions. For this 
purpose, we invoke the superposition approxima- 
tion. To briefly explain the superposition approxi- 
mation, let us take a look at a three-point cluster 
(Fig. 1). If the only known information is the point 
and nearest-neighbor pair distribution functions, 
we can approximate the triplet distribution func- 

O O 0 0 0 C  

0 C 
O ® G © @ O  
0 0 0 0 0 0  

Fig. 2. Schematic illustration of the exchanging pair (A-B) and 
the influencing lattice sets (1-10) around the pair. 
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2.4. Rate constant 

The reaction rate constant in Eqs. (2) and (3) is 
calculated according to [ 13,14] 

RAB({X}) = v exp { U + 1/2AE~ 

where U is the average activation energy for AB 
exchange, v is the vibrational frequency associated 
with the AB exchange, and AE is the energy 
differences before and after an atom exchange and 
schematically shown in Fig. 3. Since 
v exp( -  U/ks T) occurs in all configurations, it can 
be combined with the time, t, in the kinetic equa- 
tions to give a dimensionless time, t*, 

t* = tv exp(-U/kBT). (6) 

2.5. Numerical solutions to the kinetic equations 

In order to solve the kinetic equations numeri- 
cally, first one needs to construct a supercell con- 
taining a certain number of lattice sites. Then 
initial values for the point and pair distribution 
functions are assigned at each lattice site. For 
example, for a completely homogeneous disordered 
state quenched from an infinite temperature, one 
may set 

PA(r) = CA + ((r), (7) 

PAA(rl,r2) = PA(rl)PA(r2), (8) 

where ((r) are small random perturbations to the 
average composition CA at lattice site r. All other 
points and pair distribution functions are obtained 

Potential Energy 

BA AB 
I 1 

Fig. 3. Illustration of the activation energy for the A-B 
exchanging process. 

from the normalization conditions given in Eq. (1). 
Based on the initial values for the point and pair 
distribution functions as well as the A-A, B-B and 
A-B bond energies and temperature, the rates of 
change for the point and pair variables are calcu- 
lated according to the right-hand sides of the 
kinetic Eqs. (2) and (3). Finally, the equations are 
integrated using, e.g., the explicit Euler's method, 

dPA(r,t) 
PA(r,t + At) = Pg(r,t) + - -  At, (9) 

dt 

dPAA(rl,r2,t) 
PAA(rl,r2,t + At) = PAA(rl,rE,t) + dt At, 

where At is the time step for integration. All the 
information about ordering and phase separation 
such as local composition, local long-range order, 
short-range order, antiphase domain or composi- 
tion domain size can be obtained from the spatial 
point and pair distribution functions at a given 
time t. 

3. Results and discussions 

3.1. The model system 

We work with a two-dimensional square lattice 
with two free surfaces. Periodic boundary condi- 
tions are applied parallel to the surface. The direc- 
tion normal to the surface is treated as a simple 
termination of the bulk. For example, the A-B pair 
interchange in Fig. 4a is influenced by only five 
nearest-neighbor and six second-nearest-neighbor 
bonds and the A-B pair interchange in Fig. 4b is 
influenced by four first-nearest-neighbor and four 
second-nearest-neighbor bonds, as compared to 

[]  Surface 

0 0 
0 0 
O O O 0 0  

[]  Surface 

D O 0 0 0 0  
 00000 

Fig. 4. Schematic illustration of the effect of a surface on the 
exchanging pair (A-B). (a) The exchange pair normal to the 
surface; (b) the exchange pair parallel to the surface. 
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Fig. 2 which shows that an A-B pair interchange 
in the bulk is affected by six first-nearest-neighbor 
and eight second-nearest-neighbor bonds. Other- 
wise, the kinetic equations describing the diff- 
usional process in the surface region are exactly 
the same as those describing the bulk. The bond 
energies are chosen to be 

V I A  = 0, V1B = 0, V1B = 0.3,  

= 0 ,  = 0 ,  = 0 . 2 ,  

where the superscripts 1 and 2 denote first- and 
second-neighbor interactions. Therefore, the effec- 
tive interaction energies are given by 

21 = VIA + V~B -- 2VIB = --0.6, 

~:2 = V2A -~- V2B - -  2 V2B = - -  0.4. 

The use of a second-neighbor interaction model 
reduces the interfacial energy anisotropy compared 
to a first-neighbor interaction model. 

The bulk phase diagram and spinodal curves in 
both the point and pair approximations and for 
the second-neighbor interaction model are shown 
in Fig. 5. The phase boundary and spinodal curve 
for the square lattice in the pair approximation is 
calculated from the following free energy function: 

F = 2 ~  1 1+2~"  ' 2 2 VijPij gijPij + k~ T 
i j  i j  

× (2  ~ P~j ln(P~j) + 2 ~ij Pi~ln(P2iJ) 

- 7 ~, P,. ln(P~)), (10) 

where i and j represent A or B atoms, Pi, P~j, p2j 
are point, first-neighbor pair and second-neighbor 
pair distribution functions, respectively. As dis- 
cussed earlier, we can choose PA, P~A, and P]A as 
independent variables and all other distribution 
functions can be derived from them. Then, by 
minimizing the free energy, F, with respect to P~,A 
and p2A, we can express P1 A and P2 A as a function 
of PA. For a system with phase separation, PA can 
be replaced by the mole fraction of A, CA. Therefore, 
the phase boundary and spinodal curve can be 

1.00 
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c 

Fig. 5. The bulk phase diagram and spinodal curves in the 
point and pair approximations with a second-neighbor inter- 
action model. 

calculated from the following two conditions, 

= =#A--#B, 0C 2 - 0 ,  
Cot cfl 

where flA and #B are equilibrium chemical poten- 
tials for components A and B within the two-phase 
field at a given temperature, c~ and ct~ are two 
equilibrium compositions at the phase boundary 
(in the examples discussed in this paper, cp = 
1 -c~). 

The calculation of phase boundary and spinodal 
curves in the single-site point approximation is less 
obvious since the equilibrium state derived from 
the kinetic Eq. (2) in the point approximation is 
different from those derived from the traditional 
Bragg-William mean-field free energy model, 

F = ½[Zle 1 + z2e2]c  2 

+kaT[cAln(CA)+(1--CA)ln(1 --CA)], (11) 

where zl and z2 are the number of nearest- and 
second-nearest neighbors. However, according to 
Refs. [ 13 ] and [ 18 ], the equilibrium states derived 
from Eq. (2) can be quite well approximated by 
the following free energy expression: 

F = ½ [ ( z  I --  1)el + z2•2]c 2 

+kBT[CAln(CA)+(1 -- CA) ln(1 -- CA)]. (12) 

Therefore, the phase boundary and spinodal curves 
for the point approximation in Fig. 5 are calculated 
using expression (12). 
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In the following, simulation results on phase 
separation near a surface are described for both 
the point and pair approximations. The composi- 
tions studied in this paper are shown in Fig. 5 with 
small circles. The temporal evolution of morpholo- 
gies is described by the time-dependent single-site 
probability function PA(r,t), which is equivalent to 
the local composition in systems exhibiting phase 
separation. 

3.2. Off-critical compositions 

The temporal morphological evolutions for com- 
position c = 0.08, 0.15, 0.25 and 0.35 in the point 
approximation are shown in Figs. 6-9, respectively. 

A common feature to all compositions is that 
the initial stage involves segregation of solute 
atoms into the surface region, which results in the 
development of a concentration wave perpendicu- 
lar to the surface. This concentration wave grad- 
ually propagates into the bulk as the annealing 
time increases. As an illustration, the average com- 
position in a given layer parallel to the surface is 
plotted as a function of layer position in Fig. 10 
for the alloy with composition 0.35. In order to 
see more clearly the development and prorogation 
of the concentration wave, the composition profiles 
at different time steps were shifted with respect to 
each other. The time step for each composition 
profile is labeled near a given curve. It appears 
that a dominant composition wave perpendicular 

t ime=6000 time=8000 time=30000 

Fig. 6. Morphological pattern formation during surface segre- 
gation and spinodal decomposition in an alloy with composition 
0.08 and with 128 x 64 unit cells in the point approximation. 

to the surface is present during spinodal decompo- 
sition, irrespective of whether or not a material is 
crystalline or liquid such as polymer melt [2]. It 
should be emphasized that, in general, a direct 
comparison between spinodal decomposition near 
a crystalline surface and that near a liquid surface 
may be misleading since the hydrodynamic mode 
may have a very important effect on spinodal 
morphology and rate of domain coarsening in a 
liquid, as shown in Ref. [ 12], whereas in crystalline 
materials atomic diffusion only takes place among 
crystal lattice sites, and the interfacial energy 
anisotropy or the elastic strain may dominate the 
spinodal morphology [ 19]. 

It is interesting to notice that for all composi- 
tions it is always the solute atoms which segregate 
to the surface or to the near-surface region during 
the initial stage of spinodal decomposition. This is 
true for both the first- and second-neighbor inter- 
action models. However, the solute-rich layer may 
disappear during coarsening. For example, for 
composition c = 0.35, the surface layer is initially 
enriched with solute atoms, but later is depleted 
during coarsening (Fig. 11). 

As shown in Figs. 6-9, the morphologies of 
spinodal decomposition for the three different com- 
positions are quite different. For composition 0.08, 
it is actually outside the spinodal region in the 
bulk phase diagram for both the point and pair 
approximations. However, as the composition near 
the surface increases during segregation, the surface 
region eventually becomes unstable with respect 
to spinodal decomposition. Therefore, the particles 
in the surface layer are a result of pure surface 
spinodal decomposition. Such surface phase trans- 
itions have been observed experimentally [20] and 
predicted using microscopic theories [21] and 
Monte Carlo simulations [22] even in systems 
that the bulk composition is outside the miscibility 
gap. For compositions 0.15 and 0.25, initial segre- 
gation and the sequential appearance of rows of 
precipitate particles parallel to the surface result 
in the formation of distorted hexagonal precipitate 
lattices. Prolonged coarsening destroyed the regu- 
lar alignment of precipitate particles. Finally, for 
composition 0.35 initial spinodal decomposition 
results in long stripes parallel to the surface near 
the surface region, whereas in the center region, 
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! I 
time=2000 time=3000 time--4000 time=4500 

time=5000 time=6000 time=6500 time=8000 

Fig. 7. Morphological pattern formation during surface segregation and spinodal decomposition in an alloy with composition 0.15 
and with 128 × 128 unit cells in the point approximation. 

i 

time=300 time=500 time=600 time=700 

time= 1000 time=2000 time=4000 time=10000 

Fig. 8. Morphological pattern formation during surface segregation and spinodal decomposition of an alloy with composition 0.25 
and with 128 x 128 unit cells in the point approximation. 

the morphology is similar to that observed in the 
bulk. Most of the stripes eventually break into 
particles after long coarsening. One may also notice 
that the time to develop a two-phase morphology 
decreases as the composition increases, a result of 
the increasing driving force for decomposition. 

3.3. Critical composition 

The morphological evolution for the critical 
composition c = 0.5 is shown in Fig. 12. In Fig. 12, 
the A-A and B-B bond energies are the same, i.e., 
V~,A = V~B, ViA = V~B. No dominant composition 
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time=50 time=100 time=150 time=200 

time=500 time=1000 time=1500 time=3000 time=5000 

Fig. 9. Morphological pattern formation during surface segregation and spinodal decomposition of an alloy with composition 0.35 
and with 128 x 64 unit cells in the point approximation. 
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Fig. 10. The average composition in a given layer parallel to 
the surface plotted as a function of layer number at different 
simulation times for the alloy with composition 0.35. 
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Fig. 11. The temporal changes of the average composition on 
the first and second layer near the surface for the alloy with 
composition 0.35. 

wave developed parallel to the surface (compared  
to off-critical composi t ions  discussed above  for 
which a dominan t  compos i t ion  wave developed 
even a l though the A-A and B - B  bond  energies are 
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time-lOO time=150 time=200 time=250 time=300 time=500 

Fig. 12. Morphological pattern formation during surface segregation and spinodal decomposition of an alloy with composition 0.5 
in the point approximation. 128 x 64 unit cells and the A-A and B-B bond energies are the same. 

the same). Morphologically there are no stripes 
near the surface region during the spinodal decom- 
position and they are very similar to bulk spinodal 
decomposition at the critical composition. This 
is easily understandable: as both the composition 
and the bond energies are the same for A and B 
atoms, there is no preference for either A or B 
atoms to occupy the surface region. However, 
when the A-A and B-B bond energies are different, 
a dominant spinodal wave developed parallel to 
the surface, resulting in long stripes near the surface 
region (Fig. 13). 

3.4. Effect o f  pair correlations 

The morphological evolution during spinodal 
decomposition in the pair approximation is shown 
in Fig. 14 for composition c = 0.25. By comparing 
Fig. 8 and Fig. 14, one may notice remarkable 
similarities between morphologies obtained from 
the point and pair approximations. However, there 
are two significant differences between the point 
and pair approximations. First, the incubation time 
for the pair approximation is at least an order of 

i 

magnitude longer than that for the point approxi- 
mation; the incubation time is defined as the 
duration of time before any significant composition 
decomposition takes place. Second, the morpho- 
logical scale in the pair approximation is much 
coarser than that in the point approximation if we 
compare them right after decomposition before 
any significant coarsening takes place. The main 
reason for these differences is related to the relax- 
ation kinetics of pair correlations. As one of the 
authors has shown [23],  in bulk systems the 
relaxation of pair correlations is extremely fast 
compared to long-range order kinetics and spino- 
dal decomposition kinetics. The relaxation of pair 
correlations (short-range order) results in a signifi- 
cant decrease in the total free energy (more than 
half the total free energy decrease from the initially 
single-phase state to the two-phase decomposed 
state). As a result, the driving force for the develop- 
ment of composition modulation is significantly 
reduced, resulting in a much longer incubation 
time in the pair approximation and a much coarser 
scale in the decomposed microstructures before 
any significant coarsening occurs. 

time=100 time=150 time=200 time=250 time=300 time=500 

Fig. 13. Morphological evolution for an alloy with composition 0.5 in the point approximation. 128 x 64 unit cells and the A-A and 
B-B bond energies are different. 
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time=2000 time--4000 time=6000 time=8000 

time= 10000 time= 12000 time= 16000 time=20000 

Fig. 14. Morphological evolution during surface spinodal decomposition for an alloy with composition 0.25 and with 128 × 128 unit 
cells in the pair approximation. 

4. Conclnsion 

A microscopic kinetic model is developed for 
studying diffusional processes such as kinetics of 
surface segregation, segregation profiles, segre- 
gation-induced surface phase transformations, 
ordering and spinodal decomposition near a sur- 
face. The kinetics of spinodal decomposition and 
morphological evolution near a surface were inves- 
tigated in both the point and pair approximations. 
It is shown that the initial stage of spinodal decom- 
position during aging of a single homogeneous 
phase within a two-phase miscibility gap is surface 
segregation. As a result, phase decomposition near 
the surface region develops much earlier than that 
in the corresponding bulk. It is demonstrated that 
the presence of a surface leads to the development 
of a concentration wave with the wave vector 
normal to the surface. This wave gradually propa- 
gates into the bulk, resulting in very interesting 
morphological patterns such as straight stripes 
parallel to the surface and precipitation lattices. 
Most of the straight stripes and precipitation lat- 
tices are destroyed during coarsening. It is also 
shown that the relaxation of pair correlations 
significantly delayed the development of spinodal 

decomposition as compared to that in the point 
approximation. 
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