Stripe domain structure in epitaxial (001) BiFeO3 thin films on orthorhombic TbScO3 substrate

C. M. Folkman, S. H. Baek, H. W. Jang, C. B. Eom, C. T. Nelson et al.

Applied Physics

Letters

Citation: Appl. Phys. Lett. **94**, 251911 (2009); doi: 10.1063/1.3152009 View online: http://dx.doi.org/10.1063/1.3152009 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v94/i25 Published by the American Institute of Physics.

Related Articles

Ferroelectricity in yttrium-doped hafnium oxide J. Appl. Phys. 110, 114113 (2011) Effect of strain and deadlayer on the polarization switching of ferroelectric thin film J. Appl. Phys. 110, 114111 (2011)

X-ray nanodiffraction of tilted domains in a poled epitaxial BiFeO3 thin film Appl. Phys. Lett. 99, 232903 (2011)

Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT) AIP Advances 1, 042169 (2011)

Piezoresponse force microscopy of domains and walls in multiferroic HoMnO3 Appl. Phys. Lett. 99, 232901 (2011)

Additional information on Appl. Phys. Lett.

Journal Homepage: http://apl.aip.org/ Journal Information: http://apl.aip.org/about/about_the_journal Top downloads: http://apl.aip.org/features/most_downloaded Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

AIPAdvai

Submit Now

Explore AIP's new

Article-level metrics

• Join the conversation!

Rate & comment on articles

now available

open-access journal

Stripe domain structure in epitaxial (001) BiFeO₃ thin films on orthorhombic TbScO₃ substrate

C. M. Folkman,¹ S. H. Baek,¹ H. W. Jang,¹ C. B. Eom,^{1,a)} C. T. Nelson,² X. Q. Pan,² Y. L. Li,^{3,b)} L. Q. Chen,³ A. Kumar,³ V. Gopalan,³ and S. K. Streiffer⁴ ¹Department of Material Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA ²Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA ³Department of Material Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA ⁴Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 8 February 2009; accepted 9 May 2009; published online 26 June 2009)

We have analyzed the ferroelastic and ferroelectric domain structure of high crystalline quality (001) BiFeO₃ films on orthorhombic (110) TbScO₃ substrates. Two domains were present in stripes separated by (010) vertical boundaries, with spontaneous polarizations in adjacent domains rotated by 109°. The striped morphology was caused by nucleation of only two *ferroelastic* domains on the low symmetry GdFeO₃-type substrate. Domain engineering through substrate symmetry is an important finding for rhombohedral ferroelectric epitaxial thin films. The stripe pattern with vertical walls may be useful for extracting domain wall contributions to magnetism and electrical transport properties of BiFeO₃ materials. © 2009 American Institute of Physics. [DOI: 10.1063/1.3152009]

Epitaxial thin films of the rhombohedral multiferroic bismuth ferrite (BiFeO₃) have been considered for lead free ferroelectric random access memories because of high remnant polarization (approximately 100 μ C/cm² along the [111] direction) and for spin valve devices that rely on room temperature magnetoelectric coupling between the polariza-tion and antiferromagnetism.^{1,2} So far, most epitaxial structures have consisted of BiFeO₃ deposited on SrRuO₃ conducting oxide electrodes on SrTiO₃ single crystals or Si with a $SrTiO_3$ template.^{3,4} Typically, the orientation and vicinality of the SrTiO₃ determines the structural properties of the BiFeO₃ film including orientation and domain structure.^{5,6} Although strong epitaxial effects have been realized for BiFeO₃ overlayers on cubic SrTiO₃ substrates, few reports address domain configurations on other types of substrates. To obtain a more general description of epitaxial induced changes from bulk BiFeO3, experimental investigation of more than one type of underlying substrate and electrical boundary condition are required.

In this letter, we report the domain structure of high crystalline quality epitaxial (001) pseudorhombohedral BiFeO₃ films grown on orthorhombic $(110)_o$ TbScO₃ single crystal substrates (subscripts *o* and *p* denote orthorhombic and pseudocubic indexes, respectively). The approximate relationship between pseudocubic and orthorhombic indices is shown at the bottom of Fig. 1. TbScO₃ was chosen because of its very close lattice match with BiFeO₃ (<-0.3%). Before deposition of the films, the TbScO₃ substrates were annealed at 1100 °C for 3 h in O₂ resulting in atomically flat surfaces with unit cell high steps. Multiple BiFeO₃ films with thickness between 200 and 800 nm were deposited by off-axis radio frequency magnetron sputtering at 690 °C.³ The

fact the growth temperature is below the paraelectric to *ferroelectric* transition temperature ($T_c \sim 840$ °C) strongly influences the final *ferroelastic* domain structure. Specifically, films on (001) cubic substrates may have up to four *ferroelastic* domains,⁷ however, the domains in BiFeO₃ on orthorhombic TbScO₃ were highly aligned, with the presence of only two *ferroelastic* domain variants. In this letter, we focus on BiFeO₃ films that exhibited *vertical domain walls* (VDWs) between adjacent domains (other domain wall configurations will be reported separately). The origin of this domain pattern anisotropy is the accommodation of only two specific BiFeO₃ spontaneous shear distortions by nonequal in-plane lattice parameters of the orthorhombic substrate.

The *ferroelastic* domain structure was characterized with atomic force microscopy (AFM) and transmission electron microscopy (TEM). Figure 2(a) is an AFM image of a BiFeO₃ film on TbScO₃ substrate showing a corrugated sur-

FIG. 1. (Color online) The 3D schematic indicating the as-grown *ferroelastic* and *ferroelectric* domain structure of the film. P_s is represented by red arrows for two domain variants r_1 and r_4 and shaded area represents $(010)_p$ domain wall. The domains are tilted oppositely by $\pm \omega$. The substrate is represented with an orientation matched monoclinic unit cell. All angular distortions are exaggerated for clarity. Beneath are approximately collinear orthorhombic and pseudocubic coordinates systems.

^{a)}Author to whom correspondence should be addressed. Electronic mail: eom@engr.wisc.edu.

^{b)}Currently at Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory.

FIG. 2. (Color online) AFM topography (a) of a BiFeO₃ film on $TbScO_3$ substrate and a dark field TEM cross section (b) of the BiFeO₃ film on $TbScO_3$ substrate. A high resolution image is shown of a vertical domain boundary (c) (marked with arrows).

face topography where the direction traversing peak to valley is $[010]_p || [001]_o$. Cross-sectional TEM revealed that the corrugated surface morphology was due to the underlying domain structure. Figure 2(b) is a dark field TEM image of a BiFeO₃ overlayer on TbScO₃ substrate where the in-plane direction is $[010]_p || [001]_o$. Vertical lines are clearly observed at a spacing ~80 nm and are intersections of $(010)_p || (001)_o$ type VDWs with the $(100)_p$ cross-sectional plane. High resolution TEM shows coherency across the boundary near one vertical wall indicated by arrows in Fig. 2(c). Combining TEM and AFM observations suggests the presence of only two *ferroelastic* domains (instead of the four observed on cubic substrates).⁷ These *ferroelastic* domains are labeled r_1/r_4 as shown on either side of the VDW in Fig. 2(c).

Next, the crystallography of this stripe domain pattern was investigated with high-resolution x-ray reciprocal space mapping (RSM), obtained on a four-circle Cu $K\alpha$ x-ray diffractometer equipped with a four-bounce monochromator. Since well-defined crystallographic tilting of the constituent domains are associated with VDWs,^{7,8} RSMs or rocking curves of any $00L_p$ reflection at two in-plane orientations of the sample (i.e., $\varphi = 0^{\circ}$ and $\varphi = 90^{\circ}$) distinguish the morphology of the VDWs by particular splittings of the diffraction peaks from the domains. Specifically, three possible situations exist: splitting is observed only as a rotation about $[100]_p \parallel [1\overline{10}]_o$ (stripe- $(100)_p$ VDWs), or splitting is in both directions (mixed VDWs). Experimentally, only the out-ofplane BiFeO₃ 002_p reflection shown in Fig. 3(b) ($\varphi = 90^{\circ}$) exhibited peak splitting and no splitting was observed in Fig.

FIG. 3. (Color online) Detailed RSM maps near the TbScO₃ 220_o and BiFeO₃ 002_p reflections at two orthogonal in-plane sample orientations [$\varphi = 0^{\circ}$ (a) and $\varphi = 90^{\circ}$ (b)]. The angle ω is a measure of domain tilting due to domain wall coherency. Below are two {113}_p off-axis RSMs measured at $\varphi = 45^{\circ}$ (c) and at $\varphi = 135^{\circ}$ (d).

3(a) $(\varphi=0^\circ)$. Therefore, rotation and localized domain tilting was about $[100]_p$ corroborating the $(010)_p$ VDW geometry, consisting of only a single domain pair. The strength of the tilting was $\omega=-0.5^\circ$ and $+0.5^\circ$ for r_1 and r_4 the domains, respectively.

The domain structure, lattice parameters and symmetry of the BiFeO₃ on TbScO₃ were examined with off-axis RSM. Figures 3(c) and 3(d) are the RSM data from the two accessible $\{113\}_p$ reflections ($\varphi = 45^\circ$ and $\varphi = 135^\circ$, respectively) in the asymmetric Bragg-Brentano geometry. Each RSM contains reflections from the substrate and film, with calibration to the substrate. The high crystalline quality of the BiFeO₃ film leads to clear peak separation. This allowed the *fer*roelastic domain pattern and unit cell geometry to be fit by a simulated diffraction pattern. Results matched the r_1 and r_4 ferroelastic domain variants observed with TEM. The symmetry matched the bulk pseudorhombohedral with $\alpha_r = 89.4 \pm 0.1^{\circ}.^{9.10}$ The average pseudorhombohedral inplane lattice parameter was slightly strained -0.24% to 3.955 ± 0.01 Å and the out-of-plane lattice parameter was elongated to 3.973 ± 0.005 Å consistent with a small compressive in-plane stress (bulk BiFeO₃=3.964 Å).^{9,10}

The fact that the measured spontaneous rhombohedral distortion of BiFeO₃ (90°- α_r =0.6° ±0.1°) matches well with the measured tilting angle (+ ω =0.5° ±0.1°) of the domain pattern in Fig. 3, suggests that the VDWs have little or no distortion within our detection limits, which matches well with the result from high resolution TEM [Fig. 2(c)].

Using the above structural data in conjunction with outof-plane piezoresponse force microscopy (PFM) measurements, a three-dimensional arrangement of the r_1 and r_4 *ferroelectric* domains was constructed (Fig. 1). PFM mea-

FIG. 4. (Color online) Phase field simulation of BiFeO₃ on TbScO₃ exhibiting the same stripe- $(010)_p$ vertical domain walls observed experimentally.

sured out-of-plane polarization (not shown). Two states were observed having up (+) and down (-) components of the spontaneous polarization (P_s) . When additionally assuming P_s is coincident with the long axis of the *ferroelastic* unit cell, two ferroelectric domains with polarization directions 109° rotated can be defined. Figure 1 schematically represents a *ferroelectric* domain structure that is consistent with our RSM and PFM measurements. This alternating polarization points to an absence of a net charge at the substrate and air interfaces of the BiFeO₃ film.⁴

Since low substrate symmetry is known to strongly influence other epitaxial systems,¹¹ its affect on the BiFeO₃ stripe-(010) VDW morphology was investigated. Instead of an orthorhombic unit cell, the TbScO₃ substrate was defined by a simplified monoclinic unit cell (calculated from the bulk orthorhombic),^{12,13} where a_p =3.9530 Å, b_p =3.9574 Å, c_p =3.9530 Å, and β =87.24° (see Fig. 1). Therefore, the $(110)_o$ TbScO₃ surface is rectangular with b_p (along $[001]_o$) about 0.1% longer than a_p (along [110]_o). However, measuring the effect of this anisotropy with respect to in-plane lattice parameters is beyond the limits of our RSM measurements.

To circumvent this problem, the experimental *ferroelec*tric domain pattern (Fig. 1) was compared to a phase field simulated *ferroelectric* pattern for a BiFeO₃ film on a rectangular insulting surface.^{14,15} As previously established,⁸ there is no critical thickness for spontaneous rhombohedral shear strain making it unlikely that a fully commensurate BiFeO₃ film on the orthorhombic substrate is possible. Furthermore, for BiFeO3 on TbScO3, the strain relaxation should be anisotropic where the simulation included a high level of strain relaxation (ε_{11} =-0.001) for the highest misfit direction along a_p and a low level of strain relaxation (ε_{22} =-0.010) for the lowest misfit direction along b_p . This is the same as the experimental situation where the smallest lattice misfit and hence the largest residual strain are expected along $[010]_p \parallel [001]_o$. The result of the simulation is depicted in Fig. 4 where two *ferroelastic* domains (r_1/r_4) are present. Additionally, the *ferroelectric* domain morphology mimics the experimental result with stripe- $(010)_p$ VDWs where the domains are labeled r_1^{-p} and r_4^{+p} consistent with previous notation. Therefore, the low in-plane symmetry of the orthorhombic substrate drives an anisotropic ferroelastic domain pattern. Within this *ferroelastic* framework, vertical domain walls are generated to neutralize the net charging effects present with nonvertical boundaries."

Appl. Phys. Lett. 94, 251911 (2009)

sisting of stripe domains separated by $(010)_p$ VDWs. X-ray analysis showed that the two domains were oppositely tilted $(\pm \omega)$ due to coherency of the vertical domain walls. RSM determined that the BiFeO₃ symmetry is rhombohedral and that the formation of the two *ferroelastic* domains in the stripe pattern was driven by the rectangular $(110)_{a}$ surface of the TbScO₃ substrate common to all GdFeO₃-type crystal structures. Besides utilizing the periodic VDW geometry, this finding is important for understanding the influence of substrate symmetry on domain patterns and growth of rhombohedral ferroelectrics such as BiFeO₃ and high Zr content $Pb(Zr_xTi_{1-x})O_3.$

This work was supported by ONR under Grant No. N00014-07-1-0215, the National Science Foundation under Grant No. ECCS-0708759, and a David and Lucile Packard Fellowship (C.B.E.). Work at the University of Michigan was supported by the U.S. Department of Energy, Office of Basic Energy Science under Contract No. DMR-0820404, 0507146, and 0908718. Work at Pennsylvania State University was supported by NSF DE-AC02-06CH11367Work at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11367.

- ¹H. Bea, M. Bibes, F. Ott, B. Dupe, X. H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, and A. Barthelemy, Phys. Rev. Lett. 100, 017204(2008)
- ²J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003). ³R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, F. Zavaliche, S. Y. Yang,
- R. Ramesh, Y. B. Chen, X. Q. Pan, X. Ke, M. S. Rzchowski, and S. K. Streiffer, Appl. Phys. Lett. 88, 242904 (2006).
- ⁴J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, Appl. Phys. Lett. 92, 142908 (2008).
- ⁵Y. H. Chu, M. P. Cruz, C. H. Yang, L. W. Martin, P. L. Yang, J. X. Zhang, K. Lee, P. Yu, L. Q. Chen and R. Ramesh, Adv. Mater. (Weinheim, Ger.) 19, 2662 (2007).
- ⁶H. W. Jang, D. O. S.-H. Baek, C. M. Folkman, R. R. Das, P. Shafer, Y. Chen, C. T. Nelson, X. Q. Pan, R. Ramesh, and C. B. Eom, Adv. Mater. (Weinheim, Ger.) 21, 817 (2009).
- ⁷S. K. Streiffer, C. B. Parker, A. E. Romanov, M. J. Lefevre, L. Zhao, J. S. Speck, W. Pompe, C. M. Foster, and G. R. Bai, J. Appl. Phys. 83, 2742 (1998).
- ⁸A. E. Romanov, M. J. Lefevre, J. S. Speck, W. Pompe, S. K. Streiffer, and C. M. Foster, J. Appl. Phys. 83, 2754 (1998).
- ⁹F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci. 46, 698 (1990)
- ¹⁰Pseudorhombohedral description of bulk BiFeO₃: $2 \sin(A_r/2) = \tan(\alpha_r/2)$ and $a_p = A_L \sec(\alpha_r/2)/2$, where (A_r, A_L) and (α_r, a_p) are rhombohedral angle and lattice parameter of the bulk rhombohedral and pseudorhombohedral unit cells, respectively.
- ¹¹M. D. Biegalski, D. D. Fong, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, T. Heeg, J. Schubert, W. Tian, C. T. Nelson, X. Q. Pan, M. E. Hawley, M. Bernhagen, P. Reiche, R. Uecker, S. Trolier-McKinstry, and D. G. Schlom, J. Appl. Phys. 104, 114109 (2008).
- ¹²Monoclinic pseudocubic unit cell description of REScO₃ substrates (RE =rare earth) $a_p = c_p = \sqrt{(a_o^2 + b_o^2)/2}$, $b_p = c_o/2$. $\alpha = \gamma = 90^\circ$ and $\tan(\beta/2)$ $=a_o/b_o$.
- ¹³B. Velickov, V. Kahlenberg, R. Bertram, and R. Uecker, Acta Crystallogr., Sect. E: Struct. Rep. Online 64, I79 (2008).

In conclusion, the domain structure of $(001)_p$ BiFeO₃ on orthorhombic $(110)_{o}$ TbScO₃ was determined for films con-

- 14J. X. Zhang, Y. L. Li, S. Choudhury, L. Q. Chen, Y. H. Chu, F. Zavaliche, M. P. Cruz, R. Ramesh, and Q. X. Jia, J. Appl. Phys. 103, 094111 (2008).
- ¹⁵Y. L. Li, S. Y. Hu, and L. Q. Chen, J. Appl. Phys. 97, 034112 (2005).