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Effect of second-phase particle morphology on grain growth kinetics
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Abstract

Second-phase particles are often employed to inhibit grain growth in polycrystalline metals and ceramics. In this work, we studied the
effect of second-phase particle morphology on the effectiveness of inhibiting grain boundary migration using the phase-field method. We
employed a multi-order parameter phase-field model in combination with an efficient memory allocation strategy which allows large-
scale and coalescence-free grain growth simulations. We analyzed the dependence of pinning forces on the particle size and shape,
and performed computer simulations of grain growth in the presence of second-phase particles with different sizes and varying aspect
ratios. We also discuss the relationship between the pinned grain size and size distributions.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Incorporating second-phase particles is one of the most
effective ways to slow or freeze grain growth of polycrystal-
line materials [1–3]. Second-phase particles act as obstacles
to the motion of grain boundaries and thus retard grain
growth. Due to their importance in the processing and appli-
cation of various engineering materials, grain growth in the
presence of second-phase particles has been a subject of great
interest for many decades [1–5]. Our current understanding
of grain growth with second-phase particles relies largely
on the 60-year-old Zener theory [6,7] for predicting the effect
of second-phase particles on grain growth kinetics. In his the-
ory, Zener assumed that second-phase particles were spher-
ical, mono-sized, and randomly distributed, and they did not
coarsen. Most of these assumptions and approximations
remain in all subsequent attempts [2,5] to improve upon
the Zener theory. Furthermore, as in the original Zener the-
ory, essentially all existing studies focus on the effects of the
volume fraction and average size of second-phase particles
on the final pinned size of the matrix grains. In reality, the
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morphology of second-phase particles can be rather compli-
cated, ranging from spherical to plate-like and needle-
shaped [4,8]. As pointed out by Nes et al. [5], the morphology
of second-phase particles significantly affects the magnitude
of pinning forces acting on a moving grain boundary. There-
fore, the main objective of this work is to examine the effect of
different morphologies of second-phase particles in slowing
down the grain growth of matrix grains or in reducing the
final pinned grain size.

We employed the phase-field method to simulate grain
growth kinetics in the presence of second-phase particles.
Although there have been many attempts to model the
Zener pinning process using various computational
approaches such as the Monte Carlo Potts model [9–11],
vertex method [12] and finite element [13], the role of the
morphology or size distribution of the second-phase parti-
cles has not been extensively investigated. Similar to a
number of existing phase-field simulations [14–16]), we
treat the second-phase particles as inert particles, i.e. they
do not coarsen although modeling the grain growth in
the presence of evolving second-phase particles is possible.
In practice, the size of second-phase particles is not
uniform, and hence we will also discuss the effect of particle
size distribution.
rights reserved.
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2. Simulation details

2.1. Phase-field model for grain growth with second-phase

particles

Following the original grain growth model, we describe
a grain structure using a set of order parameters (g1,g2, . . .,

gP), each of which contains the information about the spa-
tial distribution of grains of a given orientation. Assuming
that the total number of the order parameter is P, to distin-
guish the two types of grains in a two-phase microstruc-
ture, we simply evolve only Q (Q < P) number of order
parameters. These parameters represent the matrix grains
while the remaining order parameters (Q � P) describing
the inert second-phase particles remain static.

The grain boundary migration, and thus the evolution
of the matrix grains, is described by the solutions to the
time-dependent Ginzburg–Landau equations for each
evolving order parameter,
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where Li are constants related to grain boundary mobility.
F is the total free energy of a grain structure in terms of all
order parameters and their gradients,
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where f is the local free energy density as a function of order
parameters gi, and ji are the gradient energy coefficients. The
function f is constructed in such a way that it has an infinite
number of degenerate minima with equal potential well
depth compared to the state with all order parameters equal
to zero. In practice, any finite system of a grain structure can
be represented by a finite set of order parameters. We choose
a free energy whose minima are located at (g1, g2, . . ., gP = (1,
0, . . ., 0), (0, 1, . . ., 0), . . . (0, 0, . . ., 1)).

We adopt the original free energy model proposed by
Yang and Chen [17] for the single-phase grain growth:
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where a, b and c are phenomenological parameters. The
free energy has 2P minima representing 2P different orien-
tations of the grains since one order parameter has two
equivalent values (gi = ± 1). Plugging Eqs. (2) and (3) into
the evolution Eq. (1), we have
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2.2. Numerical algorithms

Numerical solutions of the kinetic Eqs. (4) and (5) yield
the order parameter fields as a function of time and thus
the temporal grain structure evolution. One of the draw-
backs in the original implementation [17] of the grain
growth model is the difficulty in avoiding the coalescence
of grains during grain growth. Although using a large num-
ber of order parameters will decrease the frequency of coa-
lescence, it is at the expense of increasing the
computational time. Krill and Chen [18] made the first
attempt to reduce or eliminate the coalescence while keep-
ing the number of order parameters small by proposing a
dynamic order parameter reassignment algorithm. More
recently, a number of more efficient approaches have been
proposed for coalescence-free grain growth simulations
using the multi-order parameter phase-field model. For
example, Vedantam and Patnaik [19] developed an active
parameter tracking (ATP) method to reduce not only com-
putational time but also memory while keeping the number
of equations to be solved at a given time and location
small. A similar idea was proposed by Gruber et al. based
on the sparse data structure [20] and by Vanherpe et al.
using the so-called ‘‘bounding box algorithm” [21]. A sim-
ilar strategy of active parameter tracking was also imple-
mented in the multiphase model of grain growth [22]. In
this work, we followed the active parameter tracking algo-
rithm proposed by Vedantam and Patnaik [19]. In this
approach, the number of active order parameters at each
simulation grip point remains small (usually less than 10)
even when a large number of order parameters are
employed for the model. The evolution equations are only
solved for the active order parameters near grain bound-
aries. Since the number of grain boundaries decreases as
the overall size of the grains grow, the simulation becomes
increasingly more efficient as a function of time. With a suf-
ficient number of order parameters, e.g., when the number
of order parameters is equal to the number of grains in the
initial microstructure, complete coalescence-free simula-
tions can be carried out.

In order to implement the active parameter tracking
algorithm, instead of employing the more efficient and
accurate semi-implicit Fourier spectral method [23], we
applied the simple forward-Euler scheme to descretize the
time derivatives:

giðt þ DtÞ ¼ giðtÞ þ
dgi

dt
Dt ð6Þ
2.3. Simulation conditions

To investigate the effect of size distributions and morphol-
ogy of second-phase particles on the grain growth kinetics,
we used a model system rather than a specific material. The
values of the parameters used in this study are given in
non-dimensional units. We performed two-dimensional sim-
ulations with a system size of 2048 � 2048 grid points and a



Fig. 2. Average grain size evolution for the mono-size particle case, the
normal distribution case and the uniform distribution case. The system
size is 2048 � 2048 and initially 32,000 grains are randomly distributed.
The fraction of the second-phase is 7% and the number of particle centers
is 1490 for all cases.

Fig. 1. (a) The uniform size distribution of the second-phase particle area
placed on the matrix. (b) The normal size distribution of the second-phase
particle area placed on the matrix.
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grid size dx = 1. We chose ai = bi = ci = 1 for the coefficients
in the free energy function. The gradient coefficient ji = 2.0,
and the kinetic constant Li = 1 for all order parameters. We
chose the time step (dt) as 0.1. We employed a total of 32,000
order parameters. We applied periodic boundary conditions
to all simulations. Performing simulations with 2048 � 2048
grid points and 32,000 order parameters for 30,000 time steps
takes approximately 13 h and a maximum of 1.85 GB mem-
ory on an average PC.

3. Results

3.1. Effect of second-phase size distribution

In general, the size of second-phase particles in a system is
not uniform. We first examine the influence of particle size
distributions on the grain growth kinetics. The system size
is 2048 � 2048 grid points with 32,000 order parameters
which represent the grain orientation of every individual
grain. The area fraction of the circular second-phase parti-
cles is 7%, and all particles are randomly distributed. The
fraction of the second-phase particles in the simulations is

given by fraction ¼ Number of grids indicating second phase�100

Total grid points of the system ð20482Þ ð%Þ. In

the mono-sized particle case, the number of the particles is

given as area of total second phase
area per one particle

. We consider three types of distri-

butions – the mono-sized particles, the uniform size distribu-
tion and the normal size distribution. The average area of the
second-phase particle is 197 for all three cases and the area
fraction of the second-phase particles is 7% for all cases.
The number of particle centers is given as 1484 for all cases.
The distributions of the particle areas are shown in Fig. 1a
and b for the uniform and normal distributions. In reality,
we can describe all particle size distributions as normal distri-
butions. If the standard deviation is infinite, it corresponds a
uniform distribution. On the other hand, the standard devi-
ation of the second-phase particle size distribution should be
zero in the mono-sized case. As shown in Fig. 2, the effect of
the particle size distribution is not notable during single-
phase grain growth with inert second-phase particles. The
pinned diameter in the presence of mono-sized, uniformly
distributed, and normally distributed second-phase particles
are approximately the same as long as the number of parti-
cles and volume fractions are the same. We performed at
least three simulations for each case and these repetitions
gave consistent results.

3.2. Effect of second-phase particle size

It was shown above that the pinned grain size is rather
independent of particle size distribution as long as the vol-
ume fraction, the average size, and the number of second-
phase particles remain the same for the different distribu-
tions. In this section, we discuss the effect of particle size.
In our simulations, second-phase particles of uniform size
were randomly distributed, and all particles were separated
from each other at least 12 grids apart. We fixed the



Fig. 3. (a) Morphology pattern at 70,000 time steps with no second-phase
particles. The system size is 2048 � 2048 and, initially, 32,000 grains are
randomly distributed. (b) Morphology pattern at 70,000 time steps with
7% second-phase particles. The system size is 2048 � 2048 and, initially,
32,000 grains are randomly distributed.
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volume fraction for second-phase mono-sized particles at
7%. The system size is 2048 � 2048, and 32,000 grains are
initially distributed. Examples of grain structures without
second-phase particles and with 7% second-phase particles
are shown in Fig. 3a and b. At 70,000 time steps, the num-
ber of grains in the microstructure without particles was
262. With the 7% second-phase particles, the number of
grains was 706. In the 7% particle case, most of the sec-
ond-phase particles were at the grain boundaries. This
results indicate that, in two-dimensional grain growth with
inert second-phase particles, almost all inert particles are
effective in pinning grain boundary movement.

The average grain diameter is plotted as a function of
time for several different sizes of second-phase particles in
Fig. 4. The grain size reached a stationary state for all par-
ticle sizes. Furthermore, the limiting grain size decreased as
the second-phase particle size decreased, i.e. small second-
phase particles are more efficient than large particles, given
the same volume fraction and morphology. Fig. 4 shows
the limiting diameter as a function of second-phase particle
size. These results are consistent with Zener’s prediction [1],
which shows a linear relationship between the pinned grain
diameter and a homogenous particle radius.

The presence of second-phase particles also affects the
grain size distribution. For example, the peak of the grain
size distribution shifts to smaller values as a function of
time (Fig. 5). For the pinned grain structure, the peak value
of the grain size distribution is smaller than the average
grain diameter. This result means that second-phase parti-
cles prevent the elimination of small grains.

3.3. Effect of second-phase particle aspect ratio

We thus far look at the effect of second-phase particle
average size and size distributions on pinned grain growth.
We will now consider one of the less-studied morphological
factors in this system, the effect of second-phase aspect
ratio. The original Zener relation assumed a spherical
shape for all second-phase particles. We plot the average
grain size as a function of time for several different aspect
ratios of second-phase particles in Fig. 6. From this plot,
we can see that the pinning effect increases when the aspect
ratio (e ¼ b

a, where a, b indicate two axes) of the particle is
deviated from 1. An aspect ratio much larger or smaller
than 1 indicates needle-shaped particles, while an aspect
ratio of 1 denotes circular particles in the two-dimensional
space. Therefore, simply speaking, needle-shaped particles
are more effective in terms of pinning, as compared to cir-
cular particles of the same size. There are more grains in a
pinned grain structure with high aspect ratio second-phase
particles than in a grain structure with more isotropic par-
ticles. In our simulations, the number of grains was 706 for
an aspect ratio 1.00 and 948 for an aspect ratio of 8.91
(0.11). This result is consistent with our average particle
size calculation.

We also examined the role of the alignment directions of
the needle-shaped particles. In particular, we considered
the case in which all of the particles are aligned along the
same direction and another case with the second-phase par-
ticles are distributed between two directions oriented at 90�
from each other (Fig. 7). In the two-direction case, an equal
number of particles were oriented along each direction. The
system size was 2048 � 2048, and second-phase particle
fraction was 7% in both cases. The area per particle was
317 grid points. The half length of the long axis was 29.4,
and the half length of the short axis was 3.3. According
to Fig. 8, the case with all second-phase particles aligned
along one direction was slightly more efficient at pinning



Fig. 4. Time evolution of the average grain diameter with the mono-sized,
spherical, randomly distributed particles. The system size is 2048 � 2048
grid points with 32,000 order parameters.

Fig. 6. Average grain radius versus time for different particle aspect ratios.
For all cases, the area fraction of the second-phase particles was 7%, and is
the particles were randomly distributed, mono-sized, and aligned along
one direction. The system size is 2048 � 2048 grid points with 32,000 order
parameters.
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than the two-direction case. Since a large number of small
grains were captured by two parallel needle-shaped parti-
cles, the unidirectional aligned case showed a more efficient
pinning effect.

4. Discussion

4.1. Dragging force applied by a single second-phase particle

According to previous research [7,24], a single second-
phase particle applies the pinning force only at two singular
points (A and B in Fig. 9). The magnitude of the dragging
force along the x direction is given as follows:

F ¼ 2rgb sin h ð7Þ
Thus the maximum dragging force occurs when h ¼ p

2
and

F max ¼ 2rgb. The total dragging force is derived as follows:
Fig. 5. Grain diameter distribution generated by a phase-field simulation.
The system size is 2048 � 2048 with 32,000 order parameters. Second-
phase spherical, mono-sized particles (r = 5) corresponding to 7% of the
total area are randomly distributed. Distributions are plotted for three
time steps.
F total ¼
Z p=2

0

F dh ¼
Z p=2

0

2rgb sin h dh ¼ 2rgb ð8Þ

According to the sharp grain boundary model, the maxi-
mum and the total dragging force show no particle size
dependence. Only the number of particle centers and the
grain boundary energy determine the dragging force in a
two-dimensional system. Thus, it is not surprising that
the particle size distribution plays no role in determining
the overall pinning effect, and it was confirmed in Fig. 2.

To better understand observations and results of our
simulations, we designed a simple system shown in
Fig. 10. Assuming that the driving force to move a grain
boundary is constant, we derived the relation between a
driving force (Df) and a velocity of a straight grain bound-
ary without a second-phase particle as follows:

v ¼ Lj
rgb
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Df ð9Þ

where rgb is the grain boundary energy given by
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L is the mobility and j is the gradient coefficient.
Consequently, Eq. (3) is modified as follows:
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Plugging Eq. (3
0
) into Eq. (1) we have
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Fig. 7. (a) All second-phase particles are aligned along one direction. The
system size is 2048 � 2048 with 32,000 order parameters. It takes 70,000
time steps to obtain the described microstructure. (b) All second-phase
particles are aligned along two directions (right). The system size is
2048 � 2048 with 32,000 order parameters. It takes 70,000 time steps to
obtain the described microstructure.

Fig. 8. Second-phase particles corresponding to 7% of the total area are
placed on the 2048 � 2048 system. All particles are randomly distributed
with an aspect ratio of 8.91. In the single orientation case, all particles are
aligned along one direction. In the two-direction case, half of the particles
are aligned along one direction and the remaining particles are aligned
along the other direction, which is 90� from the first direction.

Fig. 9. Dragging of the grain boundary migration by a circular second-
phase particle in the two-dimensional system.

Fig. 10. Schematic drawing of the flat grain boundary moving with a
single second-phase particle.
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When dragging force Dfdrag is applied on the grain bound-
ary, the velocity of the contact point A in Fig. 9 function of
position y (vc.p

.(y)) is given as follows:
vc:p:ðyÞ ¼
Lj
rgb

� �
ðDf � DfdragðyÞÞ ð90 Þ

Thus, the contact point velocity decreases as the dragging
force increases.

We estimated the velocity of contact point A between
the particle and the grain boundary in Fig. 9 to evaluate



Fig. 12. (a) Dragging of the grain boundary migration by an elliptical
second-phase particle in the two-dimensional system. (b) Dragging of the
grain boundary migration by two elliptical second-phase particles in the
two-dimensional system.
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the dragging force. We plotted the velocity of contact point
A function of position y in Fig. 11. The particle center was
located at y = 85 and the total system size was 1500 � 600
and driving force Df was chosen as 0.002. As we expected,
the velocity of contact point decreased along the grain-
boundary-moving direction from the particle center. The
minimum velocity of contact point A in Fig. 11 is approx-
imately constant. It is one of the evidences that the maxi-
mum dragging force does not depend on the particle size
in a two-dimensional system.

4.2. Dragging force applied by two parallel particles

As discussed in Section 4.1, the maximum dragging
force shows no size dependence in the case of a single sec-
ond-phase particle. However, the case of many particles
can be different. For example, if two second-phase particles
are located close each other, then the grain boundary can
be captured when h� p

2
. In order to explain why a nee-

dle-shaped particle pins grains more effectively than a cir-
cular-shaped particle of the same size, we considered the
case of a grain boundary dragged by two second-phase par-
ticles, as shown in Fig. 12b.

The equation of the ellipse in Fig. 12a is x2

a2 þ y2

b2 ¼ 1 and
it is easy to derive the relation between h and h0.

tan h0 ¼ e2 tan h when e ¼ a
b

� �
ð11Þ

In Fig. 12b, the forces applied on point A are a curvature-
driven driving force and a pinning force applied by the sec-
ond-phase particle. The curvature, 1/R, of the grain bound-
ary in Fig. 12b is given as follows:

1

R
¼ 2 sin h0

d � 2r cos h
ð12Þ

F A ¼
rgb

R
� rgb sin h0 ¼ rgb sin h0

2

d � 2r cos h
� 1

� �
ð13Þ

When d� r, we assumed that d � 2r cos h ¼ dð1�
2 cos h r

dÞ � d. Thus, Eq. (4
00
) can be rewritten as
Fig. 11. Plot of the minimum velocity of the contact point A function of
the position (Y).

Fig. 13. The order parameter values for sharp and diffuse interfaces
between second-phase particles and the matrix grains.
F A � rgb sin h0 2�d
d

� �
. From Eq. (11), we can obtain the rela-

tion that sin h0 � e2 sin h when h� p
2
. Finally, we have

F A �
rgbe2 sin hð2� dÞ

d
when h� p

2
and d � r

� �
ð14Þ



Fig. 14. Average diameter of grains as a function of time for of a sharp or
diffuse interface between the matrix grains and the second-phase particles.
Both results are calculated using a phase-field method. According to our
simulation, the difference between these two cases is not significant.
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Consequently, the driving force for moving a grain bound-
ary at the middle of the particle decreases as the aspect ra-
tio e decreases. As shown in Fig. 7, many straight grain
boundaries can be captured by two needle-shaped particles.
This phenomenon is the main reason why needle-shaped
particles are more efficient in terms of pinning force. The
probability that two parallel particles are located close en-
ough to capture a grain boundary is two times larger in the
unidirectional aligned case than the two-direction case.
Thus, the one direction case shows more efficient pinning,
as illustrated in Fig. 8.

4.3. Interface between a particle and matrix

Finally, in the above simulations, we assumed that the
interface between second-phase particles and the matrix
grains are sharp, i.e. of only one grid point in thickness.
To validate this assumption, we examined the effect of
the diffuseness of the interface on the pinning effect. The
sharp interface is described by 0.5 � tanh (�r + R) + 0.5,
where r and R indicate the distance from the particle center

(r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xpÞ2 þ ðy � ypÞ

2
q

) where xp, yp are the positions

of the particle center and the particle radius, respectively.
The order parameter profile in the diffuse interface and
sharp interface are shown in Fig. 13. According to
Fig. 14, the interface between a particle and matrix does
not play a significant role in determining the kinetics of
grain growth. If there is no anisotropy in interfacial energy
between a particle and the matrix, the pinning force is not
affected by the interfacial energy.
5. Conclusions

We studied the effect of the average size and size distri-
butions and morphology of second-phase particles on grain
growth kinetics in two dimensions. We showed that for the
same second-phase volume fraction, smaller particle sizes
are more effective at pinning grain boundary motion. In
contrast, the size distribution of the second-phase particles
does not play a significant role in pinning. We also showed
that needle-shaped second-phase particles are more effec-
tive for retarding grain growth, while the directional orien-
tation of these needle-shaped second-phase particles has a
very small effect on pinning. We are currently conducting
more realistic three-dimensional simulations in which nee-
dle- and plate-shaped particles can be distinguished.
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