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Abstract

We developed special quasirandom structures (SQSs) for substitutionally random pseudobinary A1 � xBxC B2 alloys at compo-

sitions x = 0.25 and 0.5. The structures mimic the local pair and multisite correlation functions of the corresponding random simple-

cubic alloy. Our SQSs were applied to study non-stoichiometric B2 NiAl alloys containing high concentrations of constitutional

point defects. Direct first-principles calculations on the SQSs provide formation enthalpies, equilibrium lattice parameters and elas-

tic constants of non-stoichiometric B2 NiAl alloys in satisfactory agreement with existing experimental data in the literature. Our

calculations unambiguously show that Ni vacancies and Ni antisites are the stable constitutional point defects in Al-rich and Ni-rich

B2 NiAl, respectively, up to large deviations from stoichiometry. Our SQS calculations also confirmed the experimentally observed

structural instability of B2 NiAl at high Ni concentrations. Finally, we demonstrated that our SQSs can even give formation enthal-

pies of isolated defects in good agreement with 54-atom supercell calculations.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The intermetallic compound b-NiAl is routinely em-

ployed in high-temperature applications due to its high

melting temperature, good oxidation resistance, high
thermal conductivity and low density [1]. It is stable over

a wide composition range [2] with an ordered B2 (CsCl-

type) structure, which consists of two interpenetrating

simple-cubic sublattices with each sublattice having the

same number of lattice sites. In its perfectly ordered

state at stoichiometric composition, one sublattice is en-

tirely occupied by Al and the other entirely by Ni atoms.

Deviations from ideal stoichiometry are accommodated
by the formation of constitutional (structural) point de-
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fects (e.g., vacancies and antisites). In Al-rich and Ni-

rich B2 NiAl alloys, those constitutional point defects

are Ni vacancies and Ni antisites, respectively [3]. The

existence of those point defects is of great technological

importance as they strongly affect such important prop-
erties of B2 alloys as mechanical properties and diffusion

mechanisms [4–6].

Extensive first-principles studies of point defects in

B2 NiAl have been performed in the literature [7–12].

Recently, the site preference of Pt in B2 NiAl has also

been studied using first-principles calculations by Jiang

et al. [13]. In those studies, large supercells containing

N sites and only one point defect were employed to ob-
tain properties of isolated point defects in stoichiometric

B2 NiAl and properties at non-dilute defect concentra-

tions have to be obtained through linear extrapolation

from the dilute limit, e.g., the Wagner–Schottky model

(a gas of non-interacting point defects on well-defined
ll rights reserved.
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sublattices) [14]. In contrast, the purpose of the present

study was to directly obtain properties of non-stoichi-

ometric B2 NiAl containing high concentrations of

defects by means of first-principles calculations. How-

ever, the situation now becomes complicated due to

the compositional disorder caused by the significant
number of point defects.

The brute force way to treat non-stoichiometric com-

pounds with concentrated point defects would be to

construct a large supercell and randomly distribute the

point defects on the host lattice. This would necessarily

require very large supercells to adequately mimic the sta-

tistics of random alloys. Since first-principles calcula-

tions based on density functional theory (DFT) [15]
are computationally constrained by the number of

atoms that one can treat, such an approach could be

computationally prohibitive. Therefore, in this study,

we adopted the special quasirandom structure (SQS) ap-

proach proposed by Zunger et al. [16,17]. SQSs are spe-

cially designed small-unit-cell periodic structures with

only a few (8–32) atoms per unit cell, which closely mi-

mic the most relevant local pair and multisite correlation
functions of the random substitutional alloys. Due to

the small sizes of the SQSs, essentially any DFT method

can be employed, including full-potential methods capa-

ble of accurately capturing the effects of atomic

relaxations.

Admittedly, the SQS approach is inapplicable for

studying physical properties that depend on all correla-

tion functions, not just the first few nearest ones. Fortu-
nately, there are many important alloy properties that

are local environmentally dependent. For example, the

SQS approach has been applied extensively to study

the formation enthalpies, bond length distributions,

density of states, band gaps and optical properties in

semiconductor alloys [16–18]. They have been applied

to investigate the local lattice relaxations in size-mis-

matched transition metal alloys [19–22] and to predict
the formation enthalpies of Al-based fcc alloys [23]. Re-

cently, SQSs for binary body-centered cubic (bcc) alloys

have also been developed to study their formation

enthalpies, equilibrium lattice parameters, magnetic mo-

ments and nearest-neighbor bond lengths [24].

In this paper, we further developed SQSs for random

pseudobinary A1 � xBxC B2 alloys. Here A and B atoms

are randomly distributed on one B2 sublattice with the
second sublattice completely occupied by C atoms.

The substitutional alloy problem is thus simple-cubic-

based. It is straightforward to apply our SQSs to model

non-stoichiometric B2 NiAl compounds containing dif-

ferent types of constitutional point defects by treating

them as corresponding pseudobinary B2 alloys. We treat

B2 NiAl containing Ni vacancies, Al vacancies, Ni anti-

sites and Al antisites as Ni1 � xVaxAl, Al1 � xVaxNi,
Al1 � xNixNi and Ni1 � xAlxAl pseudobinary B2 alloys,

respectively. Here Va denotes vacancy. It is noted that
the present SQSs only consider the temperature-inde-

pendent constitutional point defects. At finite tempera-

tures, thermal defects will also be activated in addition

to the constitutional ones by entropy. As single point de-

fects in ordered alloys alone are not composition con-

serving, those thermal defects appear in balanced
combinations in order to maintain the overall composi-

tion of the alloy. For example, the dominant thermal de-

fects in B2 NiAl are triple-defects, i.e., simultaneous

generation of two Ni vacancies and one Ni antisite [1].

Nevertheless, since B2 NiAl is strongly ordered (its

A2–B2 order–disorder transition temperature is well

above its melting temperature [25]), the concentrations

of those thermal defects are orders of magnitude smaller
than those of the constitutional ones even at high tem-

peratures [26]. As the result, it is still a good approxima-

tion to represent non-stoichiometric B2 NiAl at finite

temperatures using the present SQSs.

In the subsequent sections, we will first give a detailed

description of the SQS approach. The first-principles

methods we adopted will then be described. Finally,

we demonstrate the usefulness of our SQSs by applying
them to predict the formation enthalpies, equilibrium

lattice parameters and elastic constants of non-stoichi-

ometric B2 NiAl; the results are compared with the

existing experimental data in the literature.
2. Generation of special quasirandom structures

For a binary A1 � xBx substitutional alloy, many

properties such as energy are dependent on the configu-

ration, or the substitutional arrangement of A and B

atoms on the lattice. The configuration dependence of

properties can be efficiently characterized by a ‘‘lattice

algebra’’ [16,17,19,20]: Pseudo-spin variables are as-

signed to each site, Si = �1 (+1) if an A (B) atom sits

at site i. We further define geometric figures f as symme-
try-related groupings of lattice sites, e.g., single site,

nearest-neighbor pair, three-body figures, etc. Those fig-

ures f = (k,m) can have k vertices and span a maximum

distance of m (m = 1,2,3 . . . are the first-, second- and

third-nearest neighbors, etc.). By taking the product of

the spin variables over all sites of a figure, and averaging

over all symmetry-equivalent figures of the lattice, we

obtain the correlation functions �Pk;m [16,17]. For the
perfectly random A1 � xBx alloy, there is no correlation

in the occupation between various sites, and therefore

the pair and multisite correlation function �Pk;m can be

simply written as h �Pk;miR ¼ ð2x� 1Þk, i.e., the product

of the lattice-averaged site variable, which is related to

the composition by ÆSiæ = 2x � 1.

The SQS approach in essentially finding the small-

unit-cell ordered structures that possess ð �Pk;mÞSQS ffi
h �Pk;miR for as many figures as possible. Admittedly,

describing random alloys by small unit-cell periodically
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repeated structures will surely introduce erroneous cor-

relations beyond a certain distance. However, since

interactions between widely separated atoms are ex-

pected to be weaker than interactions between nearer

ones, we can construct SQSs that exactly reproduce

the correlation functions of a random alloy between
the first few nearest neighbors, deferring periodicity er-

rors to more distant neighbors.

In the present study, we have generated various SQS-

N structures for the random pseudobinary A1 � xBxC B2

alloys (with N = 4 and 16 simple-cubic sites per unit cell,

or a total of 2N atoms per unit cell including the com-

mon C sublattice) at compositions where x = 0.5 and

0.25. For each composition x, our procedure can be
described as follows: (1) using the gensqs code in the

alloy-theoretic automated toolkit (ATAT) [27], we

exhaustively generate all structures based on the sim-

ple-cubic lattice with N simple-cubic sites per unit cell

and composition x; (2) we then construct the pair and

multisite correlation functions �Pk;m for each structure;

(3) finally, we search for the structure(s) that best match

the correlation functions of random alloys over a speci-
fied set of pair and multisite figures. Our search criterion

requires that the pair correlation functions of the struc-

ture be identical to those of the random alloy up to the
Table 1

Structural descriptions of the SQS-N structures

A0.5B0.5C

SQS-16 Lattice vectors

~a1 ¼ ð1:0; 2:0; 1:0Þ; ~a2 ¼ ð1:0; 0:0;�1:0Þ
~a3 ¼ ð�3:0; 2:0;�3:0Þ
Atomic positions

A – (�1.5, 2.5, �2.5), A – (�1.5, 1.5, �2.5)

A – (0.5, 1.5, �1.5), A – (�0.5, 1.5, �2.5)

A – (�1.5, 2.5, �3.5), A – (�1.5, 3.5, �2.5)

A – (0.5, 0.5, �1.5), A – (0.5, 0.5, �0.5)

B – (�0.5, 1.5, �1.5), B – (�0.5, 2.5, �2.5)

B – (�0.5, 2.5, �1.5), B – (�0.5, 3.5, �2.5)

B – (0.5, 1.5, �0.5), B – (0.5, 2.5, �1.5)

B – (0.5, 2.5, �0.5), B – (1.5, 1.5, �0.5)

C – (�2.0, 2.0, �3.0), C – (0.0, 3.0, �1.0)

C – (�1.0, 2.0, �3.0), C – (�1.0, 2.0, �2.0)

C – (�1.0, 3.0, �3.0), C – (�1.0, 3.0, �2.0)

C – (0.0, 1.0, �2.0), C – (0.0, 1.0, �1.0)

C – (0.0, 2.0, �2.0), C – (0.0, 2.0, �1.0)

C – (0.0, 3.0, �2.0), C – (�1.0, 4.0, �3.0)

C – (1.0, 1.0, �1.0), C – (1.0, 2.0, �1.0)

C – (1.0, 2.0, 0.0), C – (�2.0, 3.0, �3.0)

SQS-4 Lattice vectors

~a1 ¼ ð2:0; 1:0; 1:0Þ, ~a2 ¼ ð1:0; 1:0; 2:0Þ
~a3 ¼ ð1:0; 2:0; 1:0Þ
Atomic positions

A – (0.5, 0.5, 0.5), A – (3.5, 3.5, 3.5)

B – (1.5, 1.5, 1.5), B – (2.5, 2.5, 2.5)

C – (0.0, 0.0, 0.0), C – (1.0, 1.0, 1.0)

C – (2.0, 2.0, 2.0), C – (3.0, 3.0, 3.0)

Lattice vectors and atomic positions are given in Cartesian coordinates, in u

ideal, unrelaxed B2 sites.
third-nearest neighbor (in the present notation, the sim-

ple cubic first-, second- and third-nearest neighbors are

equivalent to the second-, third- and fifth-nearest neigh-

bors in the B2 structure, respectively). For x = 0.5, we

find one such SQS already for N = 4. For x = 0.25, how-

ever, we found that we need a SQS-16 structure to
satisfy our criterion. To further investigate the conver-

gence of the SQSs with respect to the size of the unit cell,

we also generate one SQS-16 structure for x = 0.5 whose

pair correlation functions are identical to those of the

random alloy up to the 14th-nearest neighbor.

The lattice vectors and atomic positions of the ob-

tained SQS-N structures in their ideal, unrelaxed forms

are given in Table 1, all in Cartesian coordinates. The
positions of all the atoms on the common C sublattice

are also included. The definitions of the multisite fig-

ures considered here are given in Table 2. In Table 3,

the pair and multisite correlation functions of the

SQS-N structures presented in Table 1 are compared

with those of the corresponding random simple-cubic

alloys. The SQS-N structures for x = 0.75 can be simply

obtained by switching the A and B atoms in SQS-N for
x = 0.25.

Unless specified, we use SQS-4 and SQS-16 to repre-

sent the random A1 � xBxC B2 alloy at composition
A0.75B0.25C

Lattice vectors

~a1 ¼ ð3:0; 1:0; 1:0Þ; ~a2 ¼ ð�1:0;�3:0; 1:0Þ
~a3 ¼ ð�1:0; 1:0;�3:0Þ
Atomic positions

A – (1.5, �1.5, 0.5), A – (2.5, 0.5, 0.5)

A – (0.5, �0.5, �0.5), A – (1.5, 0.5, �0.5)

A – (�0.5, 0.5, �2.5), A – (1.5, �0.5, 0.5)

A – (1.5, �0.5, �0.5), A – (�0.5, �1.5, �1.5)

A – (0.5, �0.5, �1.5), A – (�0.5, �0.5, �1.5)

A – (0.5, 0.5, �1.5), A – (0.5, �1.5, �0.5)

B – (�0.5, �1.5, �0.5), B – (�0.5, �2.5, 0.5)

B – (0.5, �1.5, 0.5), B – (1.5, 0.5, �1.5)

C – (2.0, 1.0, �1.0), C – (�1.0, �2.0, �1.0)

C – (2.0, 0.0, 0.0), C – (0.0, �1.0, �1.0)

C – (0.0, 0.0, �1.0), C – (1.0, 0.0, �1.0)

C – (0.0, �2.0, 0.0), C – (2.0, �1.0, 1.0)

C – (0.0, �1.0, 0.0), C – (1.0, �1.0, 0.0)

C – (1.0, �1.0, �1.0), C – (1.0, 0.0, 0.0)

C – (1.0, �2.0, 1.0), C – (�1.0, �1.0, �2.0)

C – (0.0, 0.0, �2.0), C – (1.0, 1.0, �2.0)

nits of a, the B2 lattice parameter. Atomic positions are given for the



Table 2

Vertices of the multisite figures, given in units of a, the B2 lattice parameter

Type Figure designation Vertices

Triplets (3,2) (0,0,0) (0,0,1) (0,1,1)

Quadruplets (4,2) (0,0,0) (1,1,0) (1,0,1) (0,1,1)

Table 3

Pair and multisite correlation functions of SQS-N structures

Figure x = 0.5 x = 0.25

Random SQS-16 SQS-4 Random SQS-16

�P2;1 [3] 0 0 0 0.25 0.25
�P2;2 [6] 0 0 0 0.25 0.25
�P2;3 [4] 0 0 0 0.25 0.25
�P2;4 [3] 0 0 �1 0.25 0
�P2;5 [12] 0 0 0 0.25 0.25
�P2;6 [12] 0 0 0 0.25 0.25
�P2;7 [6] 0 0 1 0.25 0
�P3;2 [12] 0 0 0 �0.125 �0.125
�P4;2 [2] 0 0 �1 0.0625 0

The number in the square brackets next to �Pk;m gives the degeneracy factor of the corresponding figure.
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x = 0.5 and 0.25, respectively. SQS-4 for x = 0.5 is a

trigonal-type 8-atom supercell with space group R�3m
(space group No. 166 in the International Tables of Crys-
Fig. 1. Crystal structure of SQSs in their ideal, unrelaxed forms. Gray, white

for A0.5B0.5C; (b) SQS-16 for A0.75B0.25C.
tallography), and SQS-16 for x = 0.25 is a trigonal-type

32-atom supercell with space group R3m (space group

No. 160 in the International Tables of Crystallography)
and dark spheres represent A, B and C atoms, respectively. (a) SQS-4
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[28]. They are shown in Fig. 1 in their ideal, unrelaxed

forms.
3. First-principles methodology

First-principles calculations were performed using the

all-electron Blöchl�s projector augmented wave (PAW)

approach [29,30] within the generalized gradient approx-

imation (GGA), as implemented in the highly efficient

Vienna ab initio simulation package (VASP) [31,32].

For the GGA exchange-correlation functional, we em-

ployed the Perdew–Wang parameterization (PW91)

[33,34]. The semi-core 3p electrons of Ni were explicitly
treated as valence. The k-point meshes for Brillouin zone

sampling were constructed using the Monkhorst–Pack

scheme [35] and the total number of k-points times the

total number of atoms per unit cell was at least 10,000

for all structures. A plane wave cutoff energy of 459.9

eV was used. Spin-polarized calculations were performed

to account for the ferromagnetic nature of Ni though our

calculations showed B2 NiAl as non-magnetic, in agree-
ment with previous first-principles calculations [36].

3.1. Bulk modulus

We obtained elastic constants using the approach

proposed by Mehl et al. [37]. To obtain the equilibrium

volume and bulk modulus B = (C11 + 2C12)/3 of B2

NiAl, we fit the first-principles calculated total energies
as a function of volume to a Birch–Murnaghan [38]

equation of state:

EðV Þ ¼
X2

n¼0

anV �2n=3; ð1Þ

where V is the volume of the unit cell. The equilibrium
volume V0 is obtained by letting oE

oV ¼ 0, and the bulk

modulus is calculated at the theoretical equilibrium vol-

ume V0 as:

BðV Þ ¼ V
o2E

oV 2

����
V¼V 0

: ð2Þ
3.2. Shear modulus

To obtain the shear modulus C 0 = (C11C12)/2, we ap-

plied a homogeneous volume-conserving orthorhombic

strain to the underlying B2 lattice [37,39]:

e
$ ¼

d 0 0

0 �d 0

0 0 d2=ð1� d2Þ

0
B@

1
CA ð3Þ

and the distorted lattice vectors of the SQS unit cells were

obtained via the following matrix multiplications [37]:

a
$0

¼ I
$
þ e

$ � a$; ð4Þ
where a
$

and a
$0

are the matrix containing the old and

new SQS lattice vectors, respectively. I
$
is a 3 · 3 identity

matrix. The distortion energy DE(d) = E(d) � E(0) (i.e.,

the total energy difference between the distorted and

undistorted structures) can then be written as DE(d) =
2V0C

0d2 + O(d4). To extract C 0, we fit the first-principles
calculated distortion energies at d = 0.005, 0.01, 0.15

and 0.02 to the following function:

DEðdÞ ¼
X2

m¼1

bmd
2m ð5Þ

and we obtain C 0 = b1/2V0. It may be argued that, since
our SQSs have lower-than-cubic symmetry, in principle

they cannot be used to calculate the cubic elastic con-

stants. However, both our SQS-4 structure for x = 0.5

and SQS-16 structure for x = 0.25 do strictly satisfy

the condition DE(d) = DE(�d) and also the calculated

distortion energies are indeed independent of the choice

of axis. Therefore, despite their seemingly low symme-

tries, they can still be used to give unique elastic shear
modulus C 0.

3.3. Formation enthalpies

In the present study, the unit cell volumes of all struc-

tures were fully relaxed. To further consider the effects

of local atomic relaxations around point defects, we also

fully relaxed all atoms from their ideal lattice sites into
their equilibrium positions according to the quantum-

mechanical Hellmann–Feynman forces using a quasi-

Newton algorithm, maintaining the overall volume

and shape of the unit cell. Due to limited computing re-

sources, we did not consider such effects in our elastic

constant calculations, i.e., we assume that all the atoms

occupy their ideal lattice positions.

The formation enthalpy of a B2 NiAl alloy can be ob-
tained from the following equation:

DHðxNiÞ ¼ EðNixNi
Al1�xNi

Þ � ð1� xNiÞEðAlÞ � xNiEðNiÞ;
ð6Þ

where E(Al), E(Ni) and E(NixAl1 � x) are, respectively,
the first-principles calculated total energies (per atom)

of the constituent pure elements Al and Ni and the cor-

responding SQS, each relaxed to their equilibrium

geometries. Here xNi is the molar composition of Ni in

the alloy. In the present study, face-centered cubic

(fcc) Al and ferromagnetic fcc Ni are used as reference

states in Eq. (6).
4. Results and discussions

4.1. Formation enthalpies

In Fig. 2, the SQS calculated formation enthalpies

of B2 NiAl containing each of the four types of



Fig. 2. Comparison between first-principles calculated and experimen-

tally observed formation enthalpies of B2 NiAl as a function of

composition. Experimental data are from Nash and Kleppa [40]. The

solid and dashed lines correspond to unrelaxed (volume relaxations

only) and fully relaxed (volume + local atomic relaxations) formation

enthalpies, respectively.

Fig. 3. First-principles calculated mixing enthalpies (per formula unit)

of pseudobinary (a) Ni1�xVaxAl and (b) Al1�xNixNi B2 alloys as a

function of composition.
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constitutional point defects, Al antisite, Ni antisite, Al

vacancy and Ni vacancy, are plotted as four branches,

respectively. We consider a canonical ensemble contain-
ing a total one mole of Al and Ni atoms and the total

number of lattice sites may vary when vacancies are

present. Since deviation from stoichiometry can be

accommodated by either constitutional antisites or con-

stitutional vacancies, there are two branches on either

side of the stoichiometric composition in Fig. 2, the

branch with lower formation enthalpy corresponding

to the stable one. Fig. 2 unambiguously shows that the
stable constitutional point defects in Al-rich and Ni-rich

B2 NiAl are Ni vacancies and Ni antisites, respectively.

This conclusion is in accordance with Bradley and Tay-

lor [3] and the previous first-principles studies [7–12].

For comparison, we also show in Fig. 2 the experimental

measurements by Nash and Kleppa [40] using high tem-

perature reaction calorimetry, in good agreement with

our SQS calculations.
As has already been mentioned, non-stoichiometric

B2 NiAl alloys were treated as corresponding random

pseudobinary (AC)1 � x(BC)x= A1 � xBxC B2 alloys in

the present study. It is thus also interesting to calculate

their mixing enthalpies (per formula unit) relative to the

composition-weighted average of their end members

rather than pure Al and Ni:

DHmixðxÞ ¼ EðA1�xBxCÞ � ð1� xÞEðACÞ � xEðBCÞ;
ð7Þ

where x is the site fraction of B (atoms or vacancies) on

the simple-cubic sublattice and E is the total energy per
A1 � xBxC formula unit. The total energies of the end

members in Eq. (7) were obtained in the present study

via first-principles calculations.

Fig. 3 shows the mixing enthalpies of Al-rich B2 NiAl

containing Ni vacancies (Ni1 � xVaxAl) and Ni-rich B2

NiAl containing Ni antisites (Al1 � xNixNi) with respect
to their respective end-members as a function of compo-

sition. As shown, the mixing enthalpies are all negative,

thus indicating an ordering-tendency of the Ni vacancies

as well as the Ni antisites on their respective sublattices.

In fact, the formation of Ni2Al3 and Ni5Al3 phases in

the Ni–Al system can be viewed as due to the ordering

of constitutional Ni vacancies and Ni antisites on the

Ni and Al sublattices, respectively, in such a way that
no two defects are in nearest-neighbor position with

each other [7].
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4.2. Equilibrium lattice parameters

The equilibrium lattice parameters of B2 NiAl ob-

tained from the relaxed SQSs are plotted in Fig. 4(a)

together with the experimental X-ray measurements by
Fig. 4. Comparison between first-principles calculated and experimen-

tally observed (a) equilibrium lattice parameter and (b) equilibrium

volume per atom of B2 NiAl. Experimental data are from Bradley and

Taylor [3].

Table 4

Effects of SQS supercell size on lattice parameters a (Å) and formation enth

Alloy SQS-4

a DHur DH

Ni0.5Va0.5Al 2.836 �41.7 �4

Al0.5Ni0.5Ni 2.834 �32.9 �3

Al0.5Va0.5Ni 2.746 �3.6 �
Ni0.5Al0.5Al 3.056 �10.7 �1

DHur and DHr denote unrelaxed (volume relaxations only) and fully relaxed
Bradley and Taylor [3]. The equilibrium lattice parame-

ter of the stoichiometric B2 NiAl is obtained in the pres-

ent study to be 2.89 Å. There are four branches in Fig.

4(a), each corresponding to one of the four possible

types of constitutional point defects. For the two stable

branches, the present SQS calculations are in good
agreement with experimental data.

In Fig. 4(b), we plot the volume per atom of B2 NiAl

as a function of composition. We now observe that con-

stitutional vacancies always increase the system volume

and as the consequence, increasing pressure will sup-

press the formation of constitutional vacancies. On the

Ni-rich side, increasing pressure will only further in-

crease the stability of Ni antisites. Whereas on the Al-
rich side, at certain crossover pressure, Ni vacancies will

become unstable with respect to Al antisites, i.e., a rever-

sal of stable constitutional point defects will occur [7,10].

4.3. Convergence tests

In this section, we further investigate if our SQSs are

indeed good approximations of the random pseudobi-
nary B2 alloys. As already mentioned, describing ran-

dom alloys by periodic structures such as SQSs will

surely introduce erroneous correlations beyond a certain

distance. Nevertheless, as the size of the SQSs becomes

larger, such periodicity error diminishes, as clearly

shown in Table 3. In other words, with increasing size,

the SQSs become increasingly better approximations

of the real random alloys.
Table 4 shows the effects of SQS supercell size N on

the calculated lattice parameters and formation enthal-

pies of non-stoichiometric B2 NiAl alloys. For all four

alloys considered, we observed a rapid convergence of

the SQSs calculated alloy properties with respect to N.

Remarkably, our 8-atom SQS-4 structures already give

identical lattice parameters as those given by 32-atom

SQS-16 structures. For formation enthalpies, our SQS-
4 structures give within 1.4 kJ/mol the results obtained

using SQS-16 structures, even when local atomic relax-

ations are taken into account. This thus strongly indi-

cates that those alloy properties that we considered are

indeed dominated by the interactions between near

neighbors. In such a case, relatively small SQSs are al-

ready sufficient to provide reliable results. Similar rapid
alpies DH (kJ/mol)

SQS-16

r a DHur DHr

2.8 2.836 �40.3 �41.9

3.9 2.834 �32.5 �33.1

7.9 2.746 �2.5 �9.1

8.2 3.056 �10.9 �19.5

(volume + local atomic relaxations) formation enthalpies, respectively.
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convergence behavior of the SQSs has also been ob-

served by Zunger et al. [16,17] and in our previous stud-

ies [24], which further underlines the validity of the SQS

approach.

4.4. Elastic constants

Fig. 5 shows our calculated distortion energies DE as

a function of d2 for various B2 NiAl alloys. The slopes

of the curves at d2 = 0 correspond to C 0. For a truly har-

monic crystal, the distortion energies should all fall on a

straight line. Fig. 6 shows our calculated elastic bulk

modulus B and shear modulus C 0 of B2 NiAl as a func-

tion of composition in excellent agreements with the
room temperature experimental measurements by Ruso-

vic and Warlimont [41] and Davenport et al. [42]. For a

cubic structure to be mechanically stable, the three cubic

elastic constants, i.e., B, C 0 and C44, must all be positive.

The present calculations and experiments both show a

rapid decrease of C 0 with increasing Ni concentration.

Beyond a critical concentration of x�Ni � 0:68, C 0 be-

comes negative, i.e., B2 NiAl becomes mechanically
unstable.

Interestingly, such a structural instability of B2 NiAl

coincides with the occurrence of martensitic transforma-

tion in this compound at high Ni concentrations [43,44].

Experimentally, the martensitic transformation temper-

ature of B2 NiAl increases rapidly with Ni concentration

(124 K per at.% Ni [43]), which seems to be well ratio-

nalized by the rapid softening of C 0 with Ni concentra-
tion: low value of C 0 indicates weak resistance of the

B2 lattice to f1 1 0gh1 �1 0i shear and thus high transfor-

mation temperature.
Fig. 5. Distortion energies of various B2 NiAl alloys under a

homogeneous volume-conserving orthorhombic strain.

Fig. 6. Comparison between first-principles calculated and experimen-

tally observed (a) bulk modulus B and (b) shear modulus C 0 of B2

NiAl. Experimental data are from Rusovic and Warlimont [41] and

Davenport et al. [42].
4.5. Point defect formation enthalpies

In this section, we demonstrate how to extract forma-

tion enthalpies of isolated point defects in stoichiometric

B2 NiAl from our SQS calculations at high defect con-

centrations. For each of the four branches in Fig. 2,

we fitted our SQS calculated formation enthalpies to a

quadratic function of alloy composition in the following
form:

DHðvÞ ¼ DHNiAl þ c1vþ c2v2; ð8Þ
where v = |xNi � 0.5| is the absolute deviation from stoi-

chiometry and DHNiAl is the formation enthalpy of the

perfectly ordered stoichiometric B2 NiAl. The coefficient

c1 represents the linear part of the composition depen-



Table 5

Formation enthalpies (eV/defect) of isolated point defects and complex composition-conserving thermal defects in stoichiometric B2 NiAl

Defect type Designation Present SQS 54-atom Supercell [13] Experiment

Unrelaxed Relaxed Unrelaxed Relaxed

Ni vacancy VaNi 0.45 0.30 0.45 0.30

Al Antisite AlNi 2.56 1.90 2.19 1.59

Al vacancy VaAl 1.88 1.83 1.84 1.78

Ni Antisite NiAl 1.09 0.99 1.12 1.04

Triple Ni 0! 2VaNi + NiAl 1.99 1.59 2.02 1.64 1.65–1.83 [45] 1.28 [46]

Both unrelaxed (volume relaxations only) and fully relaxed (volume + local atomic relaxations) values are shown. Reference states: fcc Al and

ferromagnetic fcc Ni.
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dence of the alloy formation enthalpy and is directly re-

lated to the defect formation enthalpies Hd used in the

Wagner–Schottky model [7,14]:

DH ¼ DHNiAl þ
X
d

Hdxd ; ð9Þ

where defect type d = Al antisite, Ni antisite, Al vacancy

and Ni vacancy. xd is the atomic concentration defined

as the total number of defects of type d divided by the

total number of atoms. Since xd = v for antisites and

xd = 2v for vacancies, we have Hd = c1 for antisites

and Hd = c1/2 for vacancies. The final results are given

in Table 5, in good agreement with first-principles calcu-

lations using large 54-atom supercells by Jiang et al. [13].
For the purpose of comparison with experiments, we

also calculated the formation enthalpy of triple-Ni de-

fects using the formation enthalpies of isolated point de-

fects obtained in the present study, which is in good

agreement with experiments [45,46], especially when lo-

cal atomic relaxations are considered.

In principle, Eq. (9) is only applicable when the defect

concentrations are small. At higher defect concentra-
tions, departure from the Wagner–Schottky model

may occur due to the interactions between defects.

Our SQS calculations directly considered the interac-

tions between point defects of the same type, as indi-

cated by the nonlinear quadratic term in Eq. (8). A

direct consequence of such nonlinearity is that two

branches in Fig. 2 may cross each other at certain com-

position and in that case a reversal of the stable consti-
tutional point defects may occur. In fact, since simple

cubic Al is energetically unfavorable with respect to

bcc Al, a reversal of stable constitutional point defects

from Ni vacancies to Al antisites must occur at high

Al concentrations. Such a transition is, however, purely

theoretical since the crossover composition is outside of

the stable composition range of B2 NiAl.
5. Summary

We developed SQSs for random pseudobinary

A1 � xBxC B2 alloys by mimicking their local pair and

multisite correlation functions. The introduction of the
B2 SQSs allows for the first time direct first-principles

calculations of physical properties of non-stoichiometric

B2 NiAl alloys containing high concentrations of consti-

tutional point defects. The first-principles calculated lat-

tice parameters, formation enthalpies and elastic

constants are in good agreement with the experimental
data in the literature. Our calculations unambiguously

show that Ni vacancies and Ni antisites are the stable

constitutional point defects in Al-rich and Ni-rich B2

NiAl, respectively, up to large deviations from stoichi-

ometry. Our calculations also confirmed the experimen-

tally observed structural instability in Ni-rich B2 NiAl,

which coincides with the occurrence of martensitic

transformation in this compound at high Ni concentra-
tions. The convergence tests show that even our 8-atom

SQSs are adequate to provide reliable results. We also

demonstrated that our SQSs can give formation enthal-

pies of isolated defects in good agreement with first-

principles calculations using large 54-atom supercells.

Finally, the proposed B2 SQSs are quite general and

can be applied to other B2 alloys.
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